
Appendix A

Plane wave method

The plane wave method (PWM) for the calculation of the band structure of PCs

is presented in this appendix.

First, the general formalism of this method in briefly introduced. The expan-

sion of the inverse dielectric function has been used for all calculations instead

the expansion of the dielectric function itself, since better convergence is ob-

tained in this way [55]. The case of a one dimensional periodic arrangement is

discussed for illustrative purposes and to introduce the notation used thereafter.

Successively, the formalism of the PWM for two dimensional models periodic

along orthogonal directions is presented. For rectangular elements aligned with

these orthogonal directions, the use of plane wave basis functions collinear with

the lattice vectors is straightforward and yields accurate results, as in the case

of lamellar gratings discussed in section 1.5.2. The two-dimensional PWM has

been employed in the study of rectangular and centred rectangular structures

discussed in chapter 2 and consequently, the formalism is treated in relation to

the applications.
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A.1 Plane wave method

To find the solution of equation 2.1 for a distribution of index of refraction

periodic in three dimensions , i.e. ε(�r+ �R) = ε(�r) with �R = l1�a1 + l2�a2 + l3�a3,

{�aj}j the set of lattice vectors and {lj}j sets of integers, one Fourier -expands

the inverse dielectric function

1

ε(�r)
=

∑
�G

η �Gei �G�r, η �G =
1

µ(Ω)

∫
Ω

1

ε(�r)
e−i �G�rd�r,

with �G = l1�b1 + l2�b2 + l3�b3 and
{
�bj

∣∣∣�ai
�bj = 2πδij

}
the set of basis vectors of

the reciprocal lattice, Ω the primitive cell and µ(Ω) its volume.

As for the last example in section 2.1, Bloch theorem is applied to the

solutions

�H�k(�r, ω) = �u�k(�r, ω)ei�k�r, �u�k(�r + �R, ω) = �u�k(�r, ω).

Since the functions �u�k are periodic they can equally be Fourier -expanded

�u�k(�r, ω) =
∑
�G′

�u�k, �G′e
i �G′�r, �u�k, �G′ =

1

µ(Ω)

∫
Ω

�u�k(�r, ω)e−i �G′�rd�r.

Substituting the two expansions in equation (2.1) one obtains

∑
�G′

∑
�G′′

η( �G′
− �G′′)

(((
�G′′ + �k

)
· �u�k, �G′

) (
�G′ + �k

)
−

((
�G′′ + �k

)
·
(

�G′ + �k
))

�u�k, �G′

)
×

×ei( �G′′+�k)�r +
ω2

c2

∑
�G′′

�u�k, �G′′e
i �G′′�r = 0,

where �G′′ = �G + �G′, which is valid for all locations �r and therefore reduces

to

∑
�G′

η( �G′
− �G′′)

(((
�G′′ + �k

)
· �u�k, �G′

) (
G′

j + kj

)
−

((
�G′′ + �k

)
·
(

�G′ + �k
)))

u�k, �G′,j
+

+
ω2

c2
u�k, �G′′,j

= 0, (A.1)
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with j = 1, 2, 3.

A matrix representation of the last expression will be given in section A.2

for the simpler one-dimensional case.

A.2 Plane wave method in one dimension

For a one-dimensional system, symmetric with respect to discrete translation

in one direction, say ẑ, and invariant with respect to continuous translation

in all directions perpendicular to ẑ, it is sufficient to consider the following

reciprocal lattice vectors in the treatment of section A.1:

�G′ =
(
0, 0, l′

2π

a

)T

, �G′′ =
(
0, 0, l′′

2π

a

)T

.

The lattice constant is a and l′, l′′ are integer numbers. To be able to compute

numerically the expansions, a limit N is set such that −N ≤ l′, l′′ ≤ N .

To find the Fourier coefficients, the inverse dielectric constant is first

rewritten as follows:

1

ε(z)
=

1

ε1

+ g(z),

g(z) =




0 , |z| > fa − R,
ε1 − ε2

ε1ε2

, |z| ≤ fa − R.

The function g(z) describes a stepwise distribution of two materials with

respective dielectric constants ε1 and ε2, and a filling fraction f of the first

material in the period a. The pattern is repeated at each lattice “vector”

R = l′a. The Fourier expansion of this function is

1

ε(z)
=

∑
G

ηGeiGz, G = l
2π

a
,

ηG =
1

a

∫ z0+a

z0

1

ε(z)
e−iGzdz
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=




1

ε1

+ f
ε1 − ε2

ε1ε2

, l = 0

f
ε1 − ε2

ε1ε2

sin(fπl)

fπl
, l �= 0

TE polarisation

With TE polarisations the magnetic field oscillates in the plane of inci-

dence, which is chosen to be xz and therefore one sets

�k = (kx, 0, kz)
T , �u�k,l =

(
u�k,l,x, 0, u�k,l,z

)T
.

One can now substitute these expressions in the system of equations A.1 and

the following 2(2N + 1)-dimensional eigenvalue problem is obtained:

M




u�k,−N,x

u�k,−N,z

u�k,−N+1,x
...

u�k,N−1,z

u�k,N,x

u�k,N,z




= −
ω2

c2




u�k,−N,x

u�k,−N,z

u�k,−N+1,x
...

u�k,N−1,z

u�k,N,x

u�k,N,z




,

M =




M−N,−N M−N,−N+1 · · ·
...

. . .

MN,N


 ,

Ml,l′ =


 −ηl−l′

(
l 2π

a
+ kz

) (
l′ 2π

a
+ kz

)
−ηl−l′

(
l 2π

a
+ kz

)
kx

−ηl−l′kx

(
l′ 2π

a
+ kz

)
−ηl−l′k

2
x


 .
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TM polarisation

With TM polarisations the magnetic field is normal to the plane of inci-

dence and therefore one sets

�k = (kx, 0, kz)
T , �u�k,l =

(
0, u�k,l,y, 0

)T
.

In this case, from equation (A.1) a (2N +1)-dimensional problem is obtained

M




u�k,−N,y
...

u�k,N,y


 = −

ω2

c2




u�k,−N,y
...

u�k,N,y


 ,

M =




. . .
...

· · · −ηl−l′k
2
x

(
l 2π

a
+ ky

) (
l′ 2π

a
+ ky

)
· · ·

...
. . .


 .

171



A.3 Plane wave method in two dimensions

For a periodic arrangement of orthogonal elements aligned with and placed

in an orthogonal lattice, it is straightforward to formulate the system of

equations A.1 using a basis of orthogonal plane waves.

For a two-dimensional system, symmetric with respect to discrete trans-

lations in two orthogonal direction, say x̂ and ẑ, and invariant with respect to

continuous translation in ŷ direction, it is sufficient to consider the following

reciprocal lattice vectors in the treatment of section A.1:

�Gx =




lx
2π
ax

0

0


 , �G′

x =




l′x
2π
ax

0

0


 , �Gz =




0

0

lz
2π
az


 , �G′

z =




0

0

l′z
2π
az


 .

The lattice constants are ax and az, and lx, l
′

x, lz, l
′

z are integer numbers. To

be able to compute numerically the expansions, a limit N is set, such that

−N ≤ lx, l
′

x, lz, l
′

z ≤ N .

The derivation of the terms of the Fourier expansion of the inverse di-

electric function ηlx,lz is discussed below for the cases of a rectangular lattice

of rectangular elements and a centred rectangular lattice of rectangular ele-

ments.

Once the terms of the Fourier expansion of the inverse dielectric function

are found, the system of equations A.1 can be expressed in matrix form.

With TE polarisations the magnetic field oscillates in the plane of inci-

dence, which is chosen to be xz and therefore one sets

�k = (kx, 0, kz)
T , �u�k,lx,lz

=
(
u�k,lx,lz ,x, 0, u�k,lx,lz ,z

)T
.

One can now substitute these expressions in the system of equations A.1 and

the following 2(2N + 1)2-dimensional eigenvalue problem is obtained:
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M




u�k,−N,−N,x

u�k,−N,−N,z

u�k,−N+1,−N,x
...

u�k,N−1,N,z

u�k,N,N,x

u�k,N,N,z




= −
ω2

c2




u�k,−N,−N,x

u�k,−N,−N,z

u�k,−N+1,−N,x
...

u�k,N−1,N,z

u�k,N,N,x

u�k,N,N,z




,

M =




M−2N(N+1),−2N(N+1) M−2N(N+1),−2N(N+1)+1 · · ·
...

. . .

M2N(N+1),2N(N+1)


 ,

M(2N+1)lx+lz ,(2N+1)l′x+l′z
=

= ηlx−l′x,lz−l′z


 −

(
l′z

2π
az

+ kz

) (
lz

2π
az

+ kz

) (
l′z

2π
az

+ kz

) (
lx

2π
ax

+ kx

)
(
l′x

2π
ax

+ kx

) (
lz

2π
az

+ kz

)
−

(
l′x

2π
ax

+ kx

) (
lx

2π
ax

+ kx

)

 .

With TM polarisations the magnetic field is normal to the plane of inci-

dence and therefore one sets

�k = (kx, 0, kz)
T , �u�k,lx,lz

=
(
0, u�k,lx,lz ,y, 0

)T
.

In this case, from equation (A.1) a (2N+1)2-dimensional problem is obtained

M




u�k,−N,−N,y

u�k,−N+1,−N,y
...

u�k,N−1,N,y

u�k,N,N,y




= −
ω2

c2




u�k,−N,−N,y

u�k,−N+1,−N,y
...

u�k,N−1,N,y

u�k,N,N,y




,

M(2N+1)lx+lz ,(2N+1)l′x+l′z
=

= −ηlx−l′x,lz−l′z

((
l′x

2π
ax

+ kx

) (
lx

2π
ax

+ kx

)
+

(
l′z

2π
az

+ kz

) (
lz

2π
az

+ kz

))
.
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A.3.1 The rectangular lattice

To find the Fourier coefficients, the inverse dielectric constant is first rewrit-

ten as follows:

1

ε(x, z)
=

1

ε1

+ gx(x)gz(z),

gx(x) =




0 , |x| > fxax − lxax,
ε1 − ε2

ε1ε2

, |x| ≤ fxax − lxax.

gz(z) =




0 , |z| > fzaz − lzaz,
ε1 − ε2

ε1ε2

, |z| ≤ fzaz − lzaz.

The functions gx(x), gz(z) are top-hat functions. The dielectric function cor-

responds to a rectangular element of dielectric constant ε2 in each unit cell

with a background dielectric constants ε1. The linear filling fractions of the

rectangular element are fx, fz in x, z direction, respectively. The unit cell

is repeated in a rectangular lattice with lattice constants ax, az, which is

indicated above by the integers lx, lz.

The Fourier coefficients of the inverse dielectric function are given by:

ηlx,lz =




1

ε1

+ fxfz

ε1 − ε2

ε1ε2

, lxandlz = 0

fxfz

ε1 − ε2

ε1ε2

sin(fxπlx)

fxπlx

sin(fzπlz)

fzπlz
, lxorlz �= 0.

Reconstruction of the dielectric function using the coefficients in the

Fourier expansion yields the result shown in figure A.1. The filling frac-

tions were fx = 0.6 and fz = 0.5.
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Figure A.1: Reconstruction of the dielectric function of the rectangular lat-
tice.

A.3.2 The centred rectangular lattice

The centred rectangular lattice has two elements (atoms) per rectangular

cell. The second element is shifted by half a lattice constant along each

lattice vector with respect to the first one.

The Fourier coefficients of the inverse dielectric function are obtained via

integration of the function over the rectangular cell. For non-overlapping

elements however, the superposition of the coefficients of each element in the

rectangular cell also gives the correct result, when considering the phase shift

between expansion terms of different elements in the reciprocal space. For

the sake of brevity this method is presented here. The coefficients are as

follows:

η′

lx,lz
= ηlx,lz cos(lxπ + lzπ) − δlx,lz

1

ε2

,

where ηlx,lz are the coefficients of the rectangular lattice presented above and

δlx,lz is Kronecker ’s symbol. The cos-factor expresses the phase shift between
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the different elements mentioned above and the last term subtracts the excess

background inverse dielectric function resulting from the superposition.

Reconstruction of the dielectric function using the coefficients in the

Fourier expansion yields the result shown in figure A.2. The filling frac-

tions were fx = 0.3 and fz = 0.5.

Figure A.2: Reconstruction of the dielectric function of the rectangular cen-
tred lattice.
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