Appendix A
Plane wave method

The plane wave method (PWM) for the calculation of the band structure of PCs
is presented in this appendix.

First, the general formalism of this method in briefly introduced. The expan-
sion of the inverse dielectric function has been used for all calculations instead
the expansion of the dielectric function itself, since better convergence is ob-
tained in this way [55]. The case of a one dimensional periodic arrangement is
discussed for illustrative purposes and to introduce the notation used thereafter.
Successively, the formalism of the PWM for two dimensional models periodic
along orthogonal directions is presented. For rectangular elements aligned with
these orthogonal directions, the use of plane wave basis functions collinear with
the lattice vectors is straightforward and yields accurate results, as in the case
of lamellar gratings discussed in section 1.5.2. The two-dimensional PWM has
been employed in the study of rectangular and centred rectangular structures
discussed in chapter 2 and consequently, the formalism is treated in relation to

the applications.
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A.1 Plane wave method

To find the solution of equation 2.1 for a distribution of index of refraction
periodic in three dimensions |, i.e. e(F+ R) = &(F) with R = 11y 4 lady + l3ds,
{d;}; the set of lattice vectors and {I,}; sets of integers, one Fourier-expands
the inverse dielectric function
1 iGr 1 1 i
—\ = /r’ ~€ 7 77 3= / — € d/r.’
{7~ 2 6= @) o
with é = llgl + lggg + 1353 and {gj

the reciprocal lattice, 2 the primitive cell and p(2) its volume.

Jil;j = 27r5ij} the set of basis vectors of

As for the last example in section 2.1, Bloch theorem is applied to the

solutions

Since the functions i} are periodic they can equally be Fourier-expanded

— — — G — 1 — — i >
u,;(r,w) = Zua@,e’@”, Ra = —M(Q) /Qu,;(r,w)e G AR,

2

Substituting the two expansions in equation (2.1) one obtains
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an

where G = G + G/ , which is valid for all locations 7 and therefore reduces

to

Y- ((G"+8) - Tga) (G + k) (G +£) - (G +F)))ug g i+
Gl
2

—|——uE7G7,’j =0, (A.l)
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with j = 1,2, 3.
A matrix representation of the last expression will be given in section A.2

for the simpler one-dimensional case.

A.2 Plane wave method in one dimension

For a one-dimensional system, symmetric with respect to discrete translation
in one direction, say 2, and invariant with respect to continuous translation
in all directions perpendicular to 2, it is sufficient to consider the following

reciprocal lattice vectors in the treatment of section A.1:

T T
G = (0,0, l’z—”) ., A= (0,0,1”2—”) :
a a
The lattice constant is a and ', [” are integer numbers. To be able to compute
numerically the expansions, a limit NV is set such that —N < [’,!” < N.
To find the Fourier coefficients, the inverse dielectric constant is first

rewritten as follows:

=P =g +9(2),
0 , |z| > fa— R,
9(z) =§ e1—& 2 < fa—R
€1E2 ’ - '

The function g(z) describes a stepwise distribution of two materials with
respective dielectric constants €; and €9, and a filling fraction f of the first
material in the period a. The pattern is repeated at each lattice “vector”

R =l'a. The Fourier expansion of this function is

1 , 2
:ZnGeszv G:l_ﬂv
e(z) G a

1 rzota ] e
I —1 zd
né a /zo E(z)e :
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TE polarisation

With TE polarisations the magnetic field oscillates in the plane of inci-

dence, which is chosen to be xz and therefore one sets
. T

T —
k= (kxa 07 kz) ) UE,Z = (UE,l,x’ O’ uE,Lz) :

One can now substitute these expressions in the system of equations A.1 and

the following 2(2N + 1)-dimensional eigenvalue problem is obtained:

uE,—N@: UE,—N,CC
ul;,fN,z ul;,fN,z
Up _Nilz o | YE-Nt+1a
M . _ _w_2 : 7
C
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MfN,fN M,N7,N+1
M = )

Mny N

( —iew (12 4+ k) (U2 k) = (12 4 k) b )
My = 21 2 ’
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TM polarisation

With TM polarisations the magnetic field is normal to the plane of inci-

dence and therefore one sets
F= (k0,67 i = (0,ug,,,0)

In this case, from equation (A.1) a (2N 4 1)-dimensional problem is obtained

ulg:*N?y 2 u];:*N?y
w
M : == : ,
C
uE,N,y uEvay
—_ 2 2 12m
M=| - —n_vk: (l; + /{:y) (l =+ ky)
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A.3 Plane wave method in two dimensions

For a periodic arrangement of orthogonal elements aligned with and placed
in an orthogonal lattice, it is straightforward to formulate the system of
equations A.1 using a basis of orthogonal plane waves.

For a two-dimensional system, symmetric with respect to discrete trans-
lations in two orthogonal direction, say & and 2, and invariant with respect to
continuous translation in g direction, it is sufficient to consider the following

reciprocal lattice vectors in the treatment of section A.1:

[ 2" Iz 0 0
éx = 0 ) _;; = 0 ) éz = 0 ) _?z = 0
0 0 12 pom

The lattice constants are a, and a,, and [,,l’,[,,l, are integer numbers. To
be able to compute numerically the expansions, a limit NV is set, such that
—N <I,U, 0,0 <N.

The derivation of the terms of the Fourier expansion of the inverse di-
electric function 7, ;. is discussed below for the cases of a rectangular lattice
of rectangular elements and a centred rectangular lattice of rectangular ele-
ments.

Once the terms of the Fourier expansion of the inverse dielectric function
are found, the system of equations A.1 can be expressed in matrix form.

With TE polarisations the magnetic field oscillates in the plane of inci-

dence, which is chosen to be xz and therefore one sets

7 T - T
k - (km’ 0’ kz) ? uE,lz,lz - (ulalz,lz@’ 0’ u’;ylz:lzvz> :

One can now substitute these expressions in the system of equations A.1 and

the following 2(2N + 1)*-dimensional eigenvalue problem is obtained:
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With TM polarisations the magnetic field is normal to the plane of inci-
dence and therefore one sets

k= (ky,0,k)"

T
uEvlsz - (07 uE,lmeW 0) ’

In this case, from equation (A.1) a (2N +1)?-dimensional problem is obtained
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A.3.1 The rectangular lattice

To find the Fourier coefficients, the inverse dielectric constant is first rewrit-

ten as follows:

1 1

= — + G z )
o3 = 5 @)
0 ) |l” > fxaa: - l:caxa
i €T = —_
o ) €1 — &2 7 ’x| < oty — Lyay.
€1€2
0 ) |Z| > fzaz —l.a,
P ya = —
g ( ) °1 °2 ) |Z| S fzaz - lza'z-
£1&9

The functions g¢,(z), g.(z) are top-hat functions. The dielectric function cor-
responds to a rectangular element of dielectric constant €5 in each unit cell
with a background dielectric constants ;. The linear filling fractions of the
rectangular element are f,, f. in x, 2z direction, respectively. The unit cell
is repeated in a rectangular lattice with lattice constants a,,a,, which is
indicated above by the integers [,,1,.

The Fourier coefficients of the inverse dielectric function are given by:

1 —
- + fmfzgl =2 ) lzandlz = O
Mgl fxfzgl — €9 Sin(fxﬂlx) Sin(fzﬁlz) 7 I orl, 7§ 0.
€1E9 fxﬂ'lx fzﬂ-lz

Reconstruction of the dielectric function using the coefficients in the
Fourier expansion yields the result shown in figure A.1. The filling frac-
tions were f, = 0.6 and f, = 0.5.
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Figure A.1: Reconstruction of the dielectric function of the rectangular lat-
tice.

A.3.2 The centred rectangular lattice

The centred rectangular lattice has two elements (atoms) per rectangular
cell. The second element is shifted by half a lattice constant along each
lattice vector with respect to the first one.

The Fourier coefficients of the inverse dielectric function are obtained via
integration of the function over the rectangular cell. For non-overlapping
elements however, the superposition of the coefficients of each element in the
rectangular cell also gives the correct result, when considering the phase shift
between expansion terms of different elements in the reciprocal space. For
the sake of brevity this method is presented here. The coefficients are as

follows:

1
77l’z7lz =, 1, cos(l,m + [,m) — (51907126—,
2

where 7, ;. are the coefficients of the rectangular lattice presented above and

01,1, is Kronecker’s symbol. The cos-factor expresses the phase shift between
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the different elements mentioned above and the last term subtracts the excess
background inverse dielectric function resulting from the superposition.
Reconstruction of the dielectric function using the coefficients in the

Fourier expansion yields the result shown in figure A.2. The filling frac-

tions were f, = 0.3 and f, = 0.5.

Figure A.2: Reconstruction of the dielectric function of the rectangular cen-
tred lattice.
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