
978 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

A Behavioral Synthesis System for
Asynchronous Circuits

Matthew Sacker, Andrew D. Brown, Senior Member, IEEE, Andrew J. Rushton, and Peter R. Wilson, Member, IEEE

Abstract—Behavioral synthesis of synchronous systems is a well
established and researched area. The transformation of behavioral
description into a datapath and control graph, and hence, to a
structural realization usually requires three fundamental steps:
1) scheduling (the mapping of behavioral operations onto time
slots); 2) allocation (the mapping of the behavioral operations
onto abstract functional units); and 3) binding (the mapping of
the functional units onto physical cells). Optimization is usually
achieved by intelligent manipulation of these three steps in some
way. Key to the operation of such a system is the (automatically
generated) control graph, which is effectively a complex sequence
generator controlling the passage of data through the system in
time to some synchronizing clock. The maximum clock speed is
dictated by the slowest time slot. (This is the timeslot containing
the longest combinational logic delay.) Timeslots containing
quicker (less) logic will effectively waste time: the output of the
combinational logic in the state will have settled long before the
registers reading the data are enabled. If we allow the state to
change as soon as the data is ready, by introducing the concepts of
“ready” and “acknowledge,” the control graph becomes a disjoint
set of single-state machines—it effectively disappears, with the
consequence that the timeslot–timeslot transitions become self
controlling. Having removed the necessity for the timeslots to be of
equal duration the system becomes selftiming: asynchronous. This
paper describes a behavioral asynchronous synthesis system based
on this concept that takes as input an algorithmic description of a
design and produces an asynchronous structural implementation.
Several example systems are synthesized both synchronously
and asynchronously (with no modification to the high level de-
scription). In keeping with the well-established observation that
asynchronous systems operate at average case time complexity
rather than worse case, the asynchronous structures usually
operate some 30% faster than their synchronous counterparts,
although interesting counterexamples are observed.

Index Terms—Asynchronous synthesis, behavioral synthesis.

I. INTRODUCTION

ASYNCHRONOUS circuits have many potential ad-
vantages over their synchronous equivalents [1]–[3],

including lower latency, lower power consumption, and lower
electromagnetic interference. However, their acceptance into
industry has been slow, which may be due to a number of
reasons: First, the techniques required to design synchronous
circuits are well known and taught to all students of electronics,
whereas few people have the skills to design asynchronous

Manuscript received March 27, 2003; revised August 19, 2003. This work
was supported by the Royal Society and the Engineering and Physical Science
Research Council (EPSRC), U.K.

The authors are with the University of Southampton, Hampshire
SO17 1BJ, U.K. (e-mail: ms00r@ecs.soton.ac.uk; adb@ecs.soton.ac.uk;
ajr1@ecs.soton.ac.uk; prw@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2004.832944

circuits. Second, few tools are available outside of the aca-
demic community to aid the design of asynchronous circuits,
compared to the large number of commercial tools available
for the design of synchronous circuits. To address both these
problems an asynchronous behavioral synthesis tool has been
created that supports the implementation of large asynchronous
designs without the need to understand the architectures of the
circuit produced.

Behavioral synthesis allows circuits with different architec-
tures to be quickly realized from a single specification. Trade-
offs between parameters such as area and delay can be used to
explore different points within the design space, while the tech-
nology independent specification allows the design to be tar-
geted at different technologies. The MOODS [4]–[7] synthesis
system is an advanced tool for synthesizing synchronous cir-
cuits. It has now been extended to allow both synchronous and
asynchronous circuits to be synthesized from a single behavioral
description, with no change to the design definition.

Behavioral synthesis is the process of transforming an algo-
rithmic specification into a physical architecture (“Algorithms
to Silicon”). This is a well studied problem [8], [9], and many
techniques have been developed [10]–[12] to attack it. As with
asynchronous technology, behavioral synthesis has yet to pen-
etrate deeply into the design community. Design teams under-
standably exhibit high inertia, a new technology is not readily
accepted until someone else has used it extensively.

Asynchronous circuits can be designed at various levels of
abstraction, from manual design, to the synthesis of low-level
asynchronous state machines, through data transfer level (DTL)
specification and onto behavioral synthesis.

As for synchronous circuits, asynchronous circuits can also
be designed by hand. The AMULET [13]–[15] processors are
a good example of the use of asynchronous circuits, based on
micropipelines [16], designed by hand to be ARM compatible
and have comparable performance.

The synthesis of asynchronous controllers has been an area
of considerable research. The two most notable techniques are
the synthesis of Petri-net.[17] specifications using Petrify [18],
and the synthesis of burst mode state machines using minimalist
[19] or three-dimensional (3-D) [20], [21]. Although these sys-
tems have different input specification style, they all create asyn-
chronous state machines from two-level hazard free logic.

Stepping up from small asynchronous state machines, there
are several synthesis tools that operate at the DTL, equivalent to
the register transfer level (RTL) of synchronous design. Balsa
[22], [23] and Tangram, [24] both use similar input languages
based on CSP [25] and OCCAM [26], and generate circuits
using the handshake circuit methodology. These tools have been

1063-8210/04$20.00 © 2004 IEEE

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 979

Fig. 1. ICODE generated from VHDL. (a) Generating HDL. (b) Generated intermediate code.

used to create significant designs, such as the SPA [27] using
Balsa and a low power pager [28] using Tangram. Another
approach is that used by the ACK Framework [29], that parti-
tions designs specified using Verilog [30] into separate control
and datapath parts. The controller is synthesized using 3-D,
while the datapath is synthesized using standard commercial
synthesis tools. Theseus Logic, Inc., use a technique known
as NCL [31] that also uses commercial synthesis tools, but to
create asynchronous circuits that use dual rail encoding and are
delay insensitive; however they tend to be some three-to-five
times larger than their synchronous equivalent and may have a
larger delay and power consumption.

At the behavioral level, Tan has created a tool [32], which
allows a limited subset of VHDL to be synthesized onto
micropipeline [16] structures, using basic naïve techniques;
and [33] which creates optimized controllers for a predefined
control data flow graph (CDFG). Finally Bachman [34], [35]
has modified many of the standard synchronous synthesis
algorithms [8], [9] to be made suitable for the asynchronous
domain.

A separate approach to the design of asynchronous circuits is
the translation of a synchronous design into an asynchronous
one. An approach to this is presented by Cortadella in [36],
which allows the registers and clock tree of a synchronous de-
sign to be replaced by master slave latches and asynchronous
handshaking.

The MOODS synthesis system has been a synthesis research
vehicle for over 15 years. Its optimization algorithms work
quite differently to many other tools (see above) and including
the commercially available Behavioral Compiler from Syn-
opsys [37], and Monet from Mentor Graphics [38].

MOODS takes as input the behavior of the system speci-
fied in behavioral VHDL [39] or SystemC [40]. (Semantically,
there is little to distinguish between the two languages, and
throughout the rest of this paper VHDL will be used as the I/O
stream, although SystemC could equally well have been used.)
The output of the synthesis process is a structural netlist, de-
scribing a physical system that displays the desired behavior.

Section II describes the generic synthesis process steps used
to translate a behavioral description to a structural implementa-

980 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

Fig. 2. Datapath generated from ICODE.

tion. This description is target neutral, in that it applies equally
well to a synchronous and asynchronous final implementation.

Section III describes how optimization of the design may be
effected by manipulation of the representation of the design.
Again, this description is target neutral.

Section IV describes the implementation details of the asyn-
chronous synthesis system. (The corresponding minutiae of the
synchronous system have been published elsewhere [7], [41].)

Finally, in Section V a set of example designs are presented
and analyzed, some in detail. The principal point of this section
is not to illustrate how good the optimization algorithm is; this
has been published extensively [4]–[6], [42], but how the syn-
chronous and asynchronous implementations differ, given the
same behavioral input and optimization parameters. The design
statistics enumerated in the results are for the same set of de-
signs, run under the same optimizer with the same optimization
criteria, making them directly comparable.

Fig. 3. Sharing functional units. (a) Two multiply operations. (b) Operations
shared on one operator.

II. THE GENERIC SYNTHESIS PROCESS

This section provides a brief description of the overall syn-
thesis process, from VHDL behavioral input through (almost) to
structural output. The structure produced by this process will be
large, slow and inefficient, but functionally correct. The process
is generic in that the explanation applies equally and without
modification to both synchronous and asynchronous implemen-
tations. Specifically, the term “timeslot” does not imply the time
intervals are of equal length. In a synchronous system, they are.
In an asynchronous system, this may not be the case. We also
stop short of committing the design to a synchronous or asyn-
chronous implementation.

The processes that need to be performed (and almost every
practical synthesis system is a variation on this theme) are com-
pilation (where the HDL source is translated into some con-
venient, low-level equivalent form), scheduling (where the ab-
stract operations used in the low level form are mapped onto
time slots), allocation (where the set of abstract operations are
mapped onto abstract operators), binding (where the abstract
operators are mapped onto physical operators). Alongside this
is controller synthesis, which is the construction of a sequence
generator to drive the register loads and multiplexer controls at
the appropriate times, to steer the data through the operators
without collisions or deadlocks. Finally there is linking, where
the entire structure is turned into a physical netlist. Scheduling,
allocation and binding are highly interdependent. In principal,
they can be separated and tackled in isolation to each other, but

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 981

Fig. 4. Controller synthesis.

the quality of the design produced in this manner is generally
extremely poor. Any overall aggressive optimization system has
no realistic choice but to consider the three activities alongside
each other. However, for the sake of clarity, in this section they
are described separately.

A. Compilation to Intermediate Code

In common with most synthesis systems, the first step is to
take the input description and translate this into a language neu-
tral form. We call this ICODE (intermediate code), and it is
essentially a hardware assembly language. It has an extremely
simple syntax, but whereas most assembly languages use the
notion of multiple control threads sparingly if at all, multiple
threads are fundamental to the semantics of ICODE.

Fig. 1 shows a small fragment of VHDL describing a system
to solve a (cut down) quadratic equation, and the corresponding
ICODE.

• For the sake of keeping the example to a manageable size,
we have made the process sensitive to only and , and
omitted both the evaluation of the second root, and the
trap necessary to detect . Note that use of a high
level behavioral tool does not (necessarily) absolve the de-
signer from the responsibility of defining the entire system
behavior.

• The example uses integer coefficients; by changing the
variable declarations and the cell library, the design could
equally well generate fixed or floating point or even a com-
plex arithmetic implementation. Depending on the level of
sophistication (physical size) of the library cells, the de-
sign could be made to (automatically) tolerate the condi-
tion , by having the low-level cells propagate NaNs.

Fig. 5. Chaining synchronous operations. (a) Two multiply operations: two
timeslots. (b) Two multiply operations chained together.

This would generate predicable behavior, but is no substi-
tute for sensible design.

• Note the back annotation file:3, ln:14, pos:12 associ-
ated with each ICODE statement: this allows complete
back annotation from the final hardware to the generating
HDL source.

• The square root operation is implemented as a function
call, the divide as a built in operation, even though the un-
derlying functionality is virtually identical. This is a direct
reflection of the way the HDL source was written.

• Most register declarations (tmpxx) are omitted for the sake
of brevity. tmp61, tmp63, and tmp64 are one bit wide; all
others are 32 bits.

• The figure shows a single process, and hence the ICODE
has a single control thread. (In a multiple process de-
sign, the “start” of each process loop would have its own
thread.) At this stage, the text can be interpreted as a se-
quential set of (labeled) low-level instructions, reading
from and writing to “variables.” At the end of each state-
ment is an implied “activate next statement.” Uncondi-
tional branching is supported by an ACTivate statement
(there are none in Fig. 1.), and conditional branching by
the IF xxx ACTT label ACTF label statement.
(xxx is a Boolean, ACTT means “activate if true,” ACTF
means “activate if false.”) More complex structures also
exist: two multiway branching instructions (SWITCH and
DECODE); a detailed description of ICODE is not the
focus of this paper.

Note also that (at this stage) the “variables” are abstract con-
tainers of data. The use of the keyword REGISTER is historic
and misleading; these entities may ultimately be represented as
physical registers, but they are equally likely to end up as bits
of wire.

982 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

Fig. 6. Three-dimensional (dynamic) design space trajectory.

B. Scheduling

Scheduling involves mapping the sequence of operations
described in the intermediate form onto specific time slots. (For
a synchronous implementation, these time slots are naturally
clock cycles, but from the dataflow perspective there is no
reason why the slots have to be of equal width, which is the ob-
servation that opens the door to asynchronous implementation
described later). For the simplest possible schedule, we can
simply take the instructions of Fig. 1 and map them temporally,
as in Fig. 2.

A few points to note.

• The figure represents the data flow within the design. Or-
chestrating and controlling the flow of information is im-
plied, but not yet specified. In essence, we note that if a
variable is written to in one timeslot and read in another,
then it must be registered. In Fig. 2, only one thing ever
happens in each slot, so each operation has an implied reg-
ister associated with it.

• The statement labels of Fig. 1(b) map directly onto the
time slots.

• The dataflow associated with the evaluation of the root
(.L001 to .L012) is readily identifiable in the figure; the
MOVEs of .L012 and .L013, the inequality tests (.L014
and .L015) and the single bit OR (.L016) implement the
dataflow aspects of the HDL WAIT construct; in this

case inferred from the process sensitivity list. The “old”
values of a and b are stored in tmp60 and tmp62: if either
change, the appropriate “not equal” variables (tmp61 or
tmp63) will be asserted, triggering the reactivation of the
entire instruction sequence by the mechanism described
in Section II-E.

C. Allocation

Allocation is the process of mapping the abstract operations
of Fig. 2 onto abstract operators. The most naive allocation is to
map each abstract operation on to a physical operator. Thus, the
system of Fig. 2 would require four multipliers, two subtrac-
tors, one adder, and so on. These operators all take up silicon
real estate, and clearly such a mapping is ridiculously wasteful.
The operators are only in use during the timeslot the operation
occupies; for 15 of the 16 timeslots of Fig. 2, each physical oper-
ator is doing nothing. Far more sensible is to share the physical
operators between timeslots, as in Fig. 3.

Fig. 3(a) shows the first two slots of Fig. 2, including the
implied registers and their “load enable” lines. This fragment
of the system requires two multiplies, and multipliers are large
cells. Far better (smaller) is the arrangement of Fig. 3(b), where
access to a single multiplier is controlled by two multiplexers.
The passage of time is controlled by the two signals ld1 and ld2;
note that the time histories of the signals associated with a, b,
tmp0 and tmp1 are identical in Fig. 3(a) and (b), but the circuit

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 983

Fig. 7. Chaining asynchronous operations.

of Fig. 3(b) is just over half the size of that in Fig. 3(a). As each
timeslot in Fig. 2 has only one operation, this argument can be
extended to the point that the entire structure can be realized
with exactly one instance of each type of functional unit.

D. Binding

Binding refers to the choice of functional unit used to imple-
ment a physical operator; for example, the single multiplier in
Fig. 3(b) could be a Booth structure, a carry lookahead, or any
of the host of available microarchitectures that will implement
the multiply operation. The tradeoffs introduced by this added
level of complexity will not be discussed here.

E. Controller Synthesis

Each operation in Fig. 2 has an implied register after it
(explicitly depicted in Fig. 3). Each one of these registers has
a ‘load enable’ line, which has to be driven by something. The
sequence of load enables that allows the dataflow part of the
circuit to deliver the required overall functionality is generated
by a state machine: the controller. The controller associated
with the dataflow of Fig. 2 is shown in Fig. 4.

The distinction between abstract representation and physical
structure is deliberately blurred here, to illuminate how one may
be generated from the other: the controller is a graph, where
the nodes represent the states of the sequence generator. It is
essentially a one-hot machine, which may be thought of as a
Petri net.

In reality, in a synchronous system, each controller graph
node maps exactly onto a D-type flipflop, which has a clock
input, and hence the machine states are of equal length. There

Fig. 8. Asynchronous control cell. (a) Asynchronous control cell.
(b) Event-based selector.

is no intrinsic reason why the state intervals should be of equal
length: once the logic within a state has completed, the transi-
tion to the next state can occur at any time.

The pair of gates in slot 17 are state machine glue logic,
also known as one-bit MUX, also known as a switch unit in
the Petri net. The salient point is that the behavior of the se-
quence generator is altered by a primary input from the dataflow
(tmp64 in Fig. 2). On power-up, the generator will cycle through
states .L001 to .L016, in accordance with the semantics of the
VHDL process. Then the machine will enter a tight “busy loop,”
(.L014-.L015-.L016-.L014), continually checking to see if a
or b has changed. (The VHDL “wait” construct.) As and when
either of these changes, the sequence diverts up to state .L001
again, and the process body is reevaluated.

III. OPTIMIZATION

It is worth reemphasizing here that the term “timeslot” does
not necessarily imply time intervals of equal length in this ex-
planation.

Behavioral synthesis is an application that has been ret-
rofitted onto hardware description languages, and one of the
consequences of this is that any sensible optimizing synthesis
system almost inevitably either breaks the temporal semantics
of the input language or places severe restrictions on its use.
This is the price that has to be paid for allowing the optimizer
the freedom to do its work.

Any structural design can be characterized by a number of
metrics. Some of these can be evaluated from a static analysis
of the structure (overall area and delay are typical and usual,

984 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

Fig. 9. Asynchronous functional unit.

Fig. 10. The asynchronous register. (a) Asynchronous register. (b) Double
edge flipflop.

although sometimes delay is data-dependant). Other attributes,
such as power distribution and RF spectra can only be evaluated
by dynamic analysis, i.e., simulation: they depend critically on
the actual excitation of the system. Irrespective of this, the term
“optimization” in the context of behavioral synthesis means
moving the metrics toward some user-defined target, while at
the same time maintaining the overall functional behavior of
the system. One such “peephole” optimization was shown in
Fig. 3: the multiplier was shared, thereby saving a considerable
amount of area. Other transformations to the structure have
different effects. Consider Fig. 5(a), which is another fragment
of the overall system of Fig. 2. This is trivially transformed into
the structure of Fig. 5(b). The functional behavior is the same,
but the area and delay metrics are considerably different:

1) Temporal: The two operations have been pushed into the
same timeslot, so ostensibly for synchronous design, the speed

Fig. 11. Operations in parallel: neither operator shared.

has doubled, unless the propagation delay of the chained opera-
tions is larger than the slot period. In which case, the clock may
have to be slowed, which may or may not reduce the overall
process loop delay. Another way round the problem (if the in-
structions concerned are not on the critical path) is to cycle-skip
that particular pair of operations.

2) Spatial: We have removed a register, and reduced the
number of states in the controller, both of which will reduce
the overall area. If the controller is one-hot, each state will have
a linear area cost. If it is an encoded architecture, the spatial
saving is likely to be logarithmic with the total state count. Note
also that the variable tmp1 is now a piece of wire, not a register.
The most important consequence of applying this transforma-
tion, however, is that by so doing we have prevented the possi-
bility of sharing the operations on one operator. We cannot now
use the transform outlined in Fig. 3, because both multiplica-
tions take place in the same timeslot, so we have no choice but
to use two discrete multipliers.

Typically, there will be very many possible alternative struc-
tures that generate equivalent behavior, and the task of the
optimizer is to balance the (usually conflicting) effects of trans-
forms—like the above—against each other. A useful way to
handle this is by reference to a “design space” a geometric
space where a given structure is represented by a set of coordi-
nates corresponding to the parameters of interest to the human
designer. A 3-D area, delay, energy space for a design is
shown in Fig. 6. Here, the point is at the centre of
the figure, and the trajectories show three projections of a
3-D path, each onto a two dimensional plane, as the optimizer
attempts to minimize the area, delay, and energy dissipated
by the design [6].

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 985

Fig. 12. Sharing units. Multiplexing in time, the asynchronous version of
Fig. 3(b).

Two optimization techniques have been outlined in this
section and many others exist [41]; the topic of behavioral
optimization is immense, and it is not the purpose of this paper
to contribute to that field. The point illustrated by this section is
that optimizing almost inevitably involves resolving, by some
mechanism, conflicting pressures between extremely diverse
metrics.

Finally, it is worth reinforcing that all practical behavioral
synthesis breaks the semantics of the generating HDL source.
The concept of a process is common to all hardware description
languages: it enables the designer to separate out the temporal
and functional aspects of a description. A process is a loop, con-
taining a sequence of calculations of arbitrary complexity, that
“executes” in zero time. Real time passes, only at “wait” or the
equivalent statements. Synthesis is the process of automatically
translating a behavioral description into a structure. It follows,
then, that the behavior of the actual synthesized structure only
approaches that described by the HDL as the timeslot period
approaches zero, which it clearly cannot do in reality.

IV. ASYNCHRONOUS SYNTHESIS

Any synthesized system, is simply an automatically generated
network, where the flow of data through the network is regulated
such that the behavior of the system is what the user/designer
wanted. In a synchronous system, the dataflow is regulated by
a discrete controller, itself controlled by a fixed clock. Each

Fig. 13. The asynchronous control DEMUX.

Fig. 14. Asynchronous data MUX.

timeslot is of equal length, and it follows that the maximum clock
speed is controlled by the longest propagation delay through the
combinational logic implementing the functionality in a single
state. From the perspective of the dataflow, however, there is
clearly no reason why the timeslots need be of equal length:
once a set of functional units has completed its calculations,
the system can move to the next state and continue. If we
take a synchronous system, and replace the “clock” driving the

986 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

controller with a “stage complete” flag, we effectively have
an asynchronous implementation.

The “flow of control” passes through the control cells and the
datapath units: see the thick grey arrow in Fig. 7. The details will
be explained later.

In principle, this is all that is required to produce a function-
ally correct structure, but in practice there are a number of other
modifications worthy of note.

A. Optimization—Measure of Goodness

The optimization function attempts to minimize some “mea-
sure of goodness” (MOG) numerically defining the quality
of the design. (In this paper, we are largely restricting this to
the area and delay of the design.) The derivation of the MOG
changes if we move to an asynchronous implementation:

1) Area: The functional units are now bigger, not only do
they have to support the defined functionality, but they also are
now responsible for generating the “stage complete” signal, and
reacting to the “request” input.

The control cells have a completely different internal structure
to their synchronous counterparts (see Section IV-B), and hence
will have a different area. In the general case, it is impossible
to predict whether the synchronous or asynchronous controller
will be smaller. For a synchronous system, the architecture of the
controller is usually one-hot for less than about eight states (the
size of the controller grows roughly linearly with the number of
states), or encoded (where the size grows logarithmically with
state count) for larger systems. In an asynchronous system,
the same tradeoff exists, but the size of the larger encoded
system depends significantly on the number of dummy cycles1

necessary to avoid race hazards, which makes the size difficult
to predict from abstract reasoning. It is partly for this reason
that we have chosen to use the distributed one-hot asynchronous
architecture for the controller.

2) Delay: For a synchronous system, the delay of a process
is the critical path length (including any known loop informa-
tion) multiplied by the clock period.

For an asynchronous system, it is simply the sums of the state
delays (including as before any known loop information) in the
critical path.

1In a synchronous state machine, the actual bit patterns used to distinguish
the states (the state vector) are irrelevant from the point of view of the
behavior of the machine. The state–state transitions are dictated by the “glue
logic” and orchestrated by the clock. In an asynchronous machine, adjacent
state codes must have a Hamming distance of exactly 1, to avoid race hazards
in the combinational logic. If this is not possible, a dummy cycle (state) must
be inserted to ensure that every state transition satisfies the above criteria.
Consider the trivial example of a three-state machine, cycling in a loop. With
a synchronous implementation, without loss of generality, the state encoding
could be A(00)) B(01)) C(10)) A(00) and so on. This coding
cannot be used in an asynchronous machine, because the B) C transition
cannot be realized in combinational logic without a race. To realize this
particular example in asynchronous logic, a dummy cycle would be inserted to
eliminate the race: A(00)) B(01)) C(11)) dummy(10)) A(00).
The dummy state is unconditionally unstable, and once entered, transitions
immediately to its successor state. Note that in this example, the only cost
of this is a slight increase in gate count and a slightly longer delay in
the C) A transition. However, in a more complex system, it may be
necessary to insert multiple chains of dummy cycles, and it may also be
necessary to increase the length of the state vector well above log (total
states) to accommodate this. These latter points make it virtually impossible
to estimate the size of the machine without actually designing it in totality.

Fig. 15. Asynchronous IF realization (compare with Fig. 4).

Fig. 16. Extension of the IF construct (Fig. 15) to the generic select
(SWITCH-CASE) construct.

B. Controller

The synchronous control cells (see Fig. 4) are simply D-type
flip-flops, with a reducing-OR function on the inputs (Fig. 4,
state 14, for example). The flow of control is trivially modulated
using a switch configuration like that shown in Fig. 4, state 17.
The clock and global reset is implied. Essentially, two signals
go from control state to control state: the clock and the control
line.

With an asynchronous implementation, the controller state
machine is similar in topology, a sequence of one-hot cells, but
there is no clock, and the cells communicate with each other and
the datapath using request–activate handshakes. Fig. 7 shows an
example of a single state containing a chain of two multiplies
[compare this with Fig. 5(b)]. Again, two signals go from con-
trol state to control state: acknowledge and control.

The signals lines shown in Fig. 7 are all logic lines, with
the dataflow carrying information of arbitrary bit-width and the
control logic being single bit. The control logic is a mixture of
event-based and level-based information. The (level-

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 987

TABLE I
SYNCHRONOUS PORTFOLIO DESIGN STATISTICS

based) XOR gate symbol in Fig. 7 implements the reducing-OR

function for events. The internal structure of the control node
is shown in Fig. 8: compare the structure of the event based
switch [Fig. 8(b) [43]] with the level based synchronous version
(Fig. 4 state 17). The Muller-C gate in Fig. 8(a) implements the
event-based reducing-AND function [16], [43].

C. Datapath Units

The asynchronous datapath units are simply synchronous
combinational units with a disjoint event based network in
parallel providing the “all done” handshake information, see
Fig. 9. This gives the same worst case performance for a single

DPU as for synchronous. However, if a cell library exists that
contains units with completion detection, these could be used
instead to give average case performance for each DPU. Note
that if a datapath unit has been shared, then a demultiplexer
is required for the output acknowledge in order to prevent
acknowledge events being issued to parts of the circuit where
they are not required.

D. Registers

An asynchronous register is considerably more complex than
its synchronous counterpart. A one-bit structure is shown in

988 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

TABLE II
ASYNCHRONOUS PORTFOLIO DESIGN STATISTICS

Fig. 10 (taken from .[44]). The event selector box in Fig. 10(a)
is the same device as used in the controller, shown in Fig. 8(b).

E. Signal Encoding

There exist several popular design methodologies for the de-
sign of asynchronous systems: these affect how handshaking is
performed and how data is represented. For the handshaking
protocol, the main choice is between two-and four-phase or re-
turn-to-zero handshaking protocols [45], [46]. For four phase,
there are three variations on the theme: early, broad and late data.
These differ in the phase in which the data is valid.

Single rail encoding is the standard method used when
designing synchronous circuits, where single wire can represent
a single bit of data. When using dual rail, two wires are required
to represent a single bit of valid data; the other two bit patterns
mean the data is invalid. Dual rail circuits have the disadvantage
of being large, typically requiring over twice the area of their
single rail equivalents, however, they have the advantages that
they fit in well with the four phase signaling protocol, are easy
to perform completion detection on and are delay insensitive.
Single rail circuits have the advantages of being smaller, faster
and more widely available than dual rail circuits, but require

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 989

Fig. 17. The quadratic equation solver control graphs. (a) Synchronous
target, optimized for area. All procedure calls inlined. (b) Asynchronous
target, optimized for area. All procedure calls inlined. (c) Synchronous target,
optimized for area. Procedure calls not inlined. (d) Asynchronous target,
optimized for area. Procedure calls not inlined.

tighter timing constraints when used with bundled handshake
signals, as this configuration is not delay insensitive.

We use single rail encoding with two phase signaling,
which in principle puts the correct functioning of the circuit
at the mercy of unbalanced delays introduced by” (APR) sub-
system; however, conservative choice of the delay parameters
[Figs. 8(a), 9, and 10(b)] mean that this has not been a problem
to date.

F. Optimization Structures

Practical optimization relies for the main in taking a naive
dataflow and schedule (Fig. 2, for example) and perturbing it.

Two principal techniques are used: first, moving the opera-
tions between timeslots. (Where the operations have some data
dependency, this is known as chaining, Fig. 7. Where there is no
dependency, the process is called grouping. Obviously, groups
may contain chains.) This effectively changes the schedule, and
affects the overall latency of the design.

Second, individual abstract operations may be mapped onto
the same physical operator (Fig. 3)—this changes the alloca-
tion and affects primarily the overall area of the design. The
tradeoffs between these two operations alone are nontrivial and
nonmonotonic. Introducing further optimization criteria (for ex-
ample, Fig. 6 [6]) makes the situation even more complex.

Chaining, grouping, and sharing are all valid optimization
techniques in both the synchronous and asynchronous domains.
Figs. 7–10 show asynchronous chaining, and the associated
structures, which are relatively straightforward.

Fig. 11 shows two functions: and , grouped in a
single state. Although there are no data dependencies between

and , note that it is still necessary to synchronize the re-
sults together at the state boundary. The reason for this is as fol-
lows: although there is guaranteed to be no data feedback within
a state (the I/O dataflow relationships of a state can always be
written as purely combinational Boolean expressions) it is en-
tirely possible that feedback around a state (that is, its output
connected to its inputs) can occur. If there is more than one
output to a state, this data can become temporally misaligned,
with unpredictable dataflow results.

Datapath unit sharing, the asynchronous counterpart of
Fig. 3(b), is shown in Fig. 12. Note, it is no longer possible or
sensible to extend the state boundaries to the dataflow part of
the circuit.

The circuit is intrinsically safe, in that there is no possibility
of the two control state competing for the single resource. This
safety derives not from the local circuit topology, but from the
overall organization of the synthesis system: if the threat of com-
petition exists (which can be determined from a static analysis
of the dataflow) then the abstract operations are not shared on
the resource, so there is no problem.

Unit sharing requires two more specialized subunits: the
asynchronous control DEMUX (Fig. 13) and the asynchronous
data MUX (Fig. 14).

Note there is no such thing as an asynchronous data DEMUX
(it is a piece of wire) and the asynchronous control MUX is a
nonsensical concept.

The asynchronous equivalent of a conditional structure is
shown in Fig. 15. Compare this with the corresponding syn-
chronous structure of Fig. 4.

990 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

Fig. 18. Design space for the quartic equation solver, various static optimization criteria. (a) Synchronous target, procedure calls not inlined. (b) Asynchronous
target, procedure calls not inlined. Note: “Delay” and “Both” coincide. (c) Synchronous target, procedure calls not inlined. Note: “‘Delay” and “Both” coincide.
(d) Asynchronous target, procedure calls inlined.

This is trivially extended (Fig. 16) to support the concept of
a generic select (SWITCH-CASE) construct.

V. RESULTS

Statistics relating to the synthesis of six behavioral designs
are shown in Tables I and II. All the designs are defined in
VHDL, and consist of (without loss of generality) a single
process with a hierarchy of procedure and function calls under
it. The designs are: 1) a quadratic equation solver [47] (which
includes a square root and divide); 2) a cubic equation solver
[47] (which includes square and cube roots, and forward
cosines); 3) a quartic equation solver [47] (which also contains
square and cube roots, and forward cosines); 4) the DES block
encryption algorithm.[48]; 5) two versions of a differential
equation solver as discussed in Section V-A; and 6) a finite
impulse response discrete filter. Each of these designs were
synthesized for all combinations of the following parameters:

• synchronous–asynchronous;
• optimized with respect to nothing/area/delay/both area

and delay;
• procedure and function inlining or not.

(The filter has no hierarchy, so the inlined–not inlined results
are identical.) Table I shows the synchronous results, Table II
the asynchronous.

Inlined–calls indicates if the design hierarchy is flattened be-
fore optimization. (Flattening enables considerably more unit
sharing, both spatially and temporally, but usually from a larger
initial spatial configuration.)

Optim w.r.t. indicates the static optimization criteria asserted
by the user.

Latency (ns) is the length of the critical path through the
design, in nanoseconds, when the clock is run at its maximum
possible value (column Max clk).

Latency (states) is the number of states in the critical path.
Area is a relative figure; the cell library used was designed

for Xilinx Virtex devices [49], the figures refer to the estimated
slice count.

Max clk (ns) is the period of the fastest clock that can be used
to drive the system. Another way of looking at it is as the longest
combinational logic delay through any state (minus the register
setup time).

States is total number of states in the entire design.

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 991

Fig. 19. Design space for the DES encryption block, various static optimization criteria.

Waste in a synchronous design, all states have the same (tem-
poral) width, but the delay of the functional units with that state
will usually be less than that width. (Except for the slowest, nat-
urally, as this dictates the maximum clock speed.) Thus most
states will have a nonzero “dead time.” The waste column is the
sum over all the states of the dead time. (It is not the sum over
the critical path.) The average waste figure of the 44 entries is
0.65, i.e., 65% of the elapsed time is spent doing nothing.

It is tempting, at first sight, to attempt a comparison between
the wasted space in a synchronous design and the performance
increase in the asynchronous counterpart. However, they are not
directly comparable, for two reasons: First, the optimizer will
have made different atomic decisions as the relative timings
change in the two regimes, i.e., the scheduling and allocation

will be different (see Fig. 11). Second, the waste metric (see
Table I) refers to the total waste summed over all states of the
design; the latency figures refer to the states in the critical path.

Max state (ns) is the length of the longest state in an asyn-
chronous design. (This may or may not be on the critical path.)

A. Optimization: Scheduling

Fig. 17 shows the full control graphs for the quadratic equa-
tion solver (full solution, not the cut-down version used in the
earlier explanation). The four sections show the design targeted
at inlined–uninlined and synchronous–asynchronous solutions.

The full set of statistics relating to the design are given in
Tables I and II; the key point to note from the figure is that the
change in optimization criteria evaluation between synchronous

992 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

Fig. 20. Wasted time in the synchronous inlined cubic equation solver.

and asynchronous platforms has resulted in significantly dif-
ferent structures for the implementations. Closer examination
of the designs indicate that this effect arises from two causes:

• For an asynchronous target, there is less pressure to chain
functional units, because the incremental effect on the la-
tency is negligible.

• For a synchronous target, preemptive calculation costs area,
but no time. For the asynchronous counterpart, it costs time.
Thus, it is better to have lots of short asynchronous states.

The design generating the DIFFEQ(2) results in Tables I and II
is taken from [50]. It solves a fixed equation
with a fixed method (forward Euler) and so is intrinsically
much smaller and simpler than DIFFEQ(1), which supports
solution via Euler, modified Euler and Runge-Kutta [51]. It
is interesting to note that latency when optimized for area is
greater than the naive (unoptimized) implementation because
the MUX latency is greater than the control overhead of having
every operation in its own state.

B. Optimization: Static Design Space

Fig. 18 shows the static design spaces for the quartic equa-
tion solver, again for the four combinations of (inlined–unin-
lined)/(synchronous–asynchronous) solution.

On each design space four points are shown: a) for a naïve de-
sign with no optimization; b) for a design optimized to minimize
delay; c) for a design optimized to minimize area; and d) for a
design optimized to minimize both delay and area. The naive
design is usually the largest and slowest point (top right hand
corner of the design space). Note that the naïve asynchronous
circuits have a significantly smaller latency to that of their syn-
chronous equivalent, despite the schedule being the same as if
no optimization has occurred, due the large waste of an unuti-
lized synchronous system. Similarly, the design optimized for
minimum area is the point nearest the horizontal axis; however
the design optimized for minimum latency is not always. This is

due to inaccuracies in estimating the latency during synthesis, as
the number of iterations around loops that are not bounded (i.e.,
they are data dependant) is usually impossible to infer. The final
optimization is a compromise between optimizing for minimum
delay and minimum area.

The uninlined designs have smaller area than their inlined
equivalents. An inlined design reproduces the data and con-
trol path for each procedure, which has the potential to achieve
more optimization across procedural boundaries, however in
this case the inherently shared uninlined procedure modules are
smaller. The asynchronous designs are faster than their syn-
chronous equivalents except for the case of the uninlined de-
sign optimized to minimize both area and delay. On average the
quartic asynchronous designs require 66% of the time of their
synchronous equivalents.

Fig. 19 shows the design space for the DES block. The dra-
matic difference between synchronous and asynchronous la-
tency derive from the internal structure of the algorithm: DES
comprises mainly table lookups (which are effectively bit shuf-
fles) and the XOR operation. The numerous bit-shuffling opera-
tions further resolve to a series of bit-wise concatenations. In a
synchronous implementation, this is realized, literally, as pieces
of wire; the cost in terms of both area and delay is completely
negligible. In an asynchronous implementation, each concate-
nation requires asynchronous control, which as a penalty asso-
ciated with it. Finally, the XOR operation itself is intrinsically
slower asynchronously than it is synchronously.

C. Temporal Utilization (Waste)

Fig. 20 shows the histogram of state utilization for the unin-
lined synchronous implementation of the cubic equation solver,
optimized with respect to delay. Each column represents a con-
trol state, and the bars indicate the combinational logic delay
of the processing in each state. Thus the white space is effec-
tively “wasted time.” The longest state (n869—about two-thirds

SACKER et al.: BEHAVIORAL SYNTHESIS SYSTEM FOR ASYNCHRONOUS CIRCUITS 993

of the way from the left axis) dictates the fastest clock that can
be used for the entire design. The optimizer attempts to chain
operations (combining control states) to decrease the amount of
low occupancy states in the design, but obviously it can only do
so where data or control flow conflicts permit. Of the 114 states
in the design, a few have extremely low occupancy; these are
used to move data before–after entering–leaving a control loop.
No temporal optimization is possible here.

VI. FINAL REMARKS

A technique for the behavioral synthesis of asynchronous cir-
cuits has been presented, and the physical parameters of the re-
sulting implementations compared to a synchronous equivalent.
The technique is based on methods established for use in syn-
thesizing synchronous circuits, which are modified to support
the design of asynchronous circuits.

The results show that the asynchronous circuit generated can
perform significantly faster than the synchronous equivalent, at
the cost of extra area, which is to be expected. However, thus
is by no means guaranteed, and the only real conclusion that
can be drawn is that the availability of a choice between syn-
chronous and asynchronous may allow an implementation with
significantly different static parameters. The ability of advanced
behavioral synthesis tools to explore design space from a target
neutral specification means that designers can easily have the
best of both worlds: architectural exploration means just that
the designer can trivially ask the tools what the best solution is,
and simply go with it.

Future work is focused on the idea of extending the concept
further by allowing large “islands of synchronicity” to exist in
an asynchronous “sea,”where the boundaries between the do-
mains are identified and handled automatically by the synthesis
system, transparently to the user.

REFERENCES

[1] E. Brunvand, S. Nowick, and K. Yun, “Practical advances in asyn-
chronous design and in asynchronous/synchronous interfaces,”
presented at the Proc. Design Automation Conf., Piscataway, NJ, 1999.

[2] S. Hauck, “Asynchronous design methodologies: An overview,” Proc.
IEEE, vol. 83, pp. 69–93, 1995.

[3] C. J. Myers, Asynchronous Circuit Design. New York: Wiley, 2001.
[4] A. D. Brown, K. R. Baker, and A. C. Williams, “Online testing of stat-

ically and dynamically scheduled synthesized systems,” IEEE Trans.
Computer-Aided Design, vol. 16, pp. 47–57, Jan., 1997.

[5] Z. A. Baidas, A. D. Brown, and A. C. Williams, “Floating point be-
havioral synthesis,” IEEE Trans. Computer-Aided Design, vol. 20, pp.
828–839, July.

[6] A. C. Williams, A. D. Brown, and M. Zwolinski, “Simultaneous opti-
mization of dynamic power, area and delay in behavioral synthesis,” in
Proc. Inst. Elect. Eng. Computers Digital Techniques, vol. 147, 2000,
pp. 383–390.

[7] K. R. Baker and A. J. Currie, “Multiple objective optimization in a be-
havioral synthesis system,” in Proc. Inst. Elect. Eng., vol. 140, 1993, pp.
253–260.

[8] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on high-
level synthesis,” presented at the Design Automation Conf., 1988.

[9] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[10] H. Shiraishi and F. Hirose, “Efficient placement and routing techniques
for master slice LSI,” presented at the Design Automation Conf., Min-
neapolis, MN, 1980.

[11] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behav-
ioral synthesis of ASIC’s,” IEEE Trans. Computer-Aided Design, vol. 8,
pp. 661–679, June, 1989.

[12] T. Yoshimura and E. S. Kuh, “Efficient algorithms for channel routing,”
IEEE Trans. Computer-Aided Design, vol. 1, pp. 25–35, Jan., 1982.

[13] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver,
“AMULET2e: An asynchronous embedded controller,” presented at the
Advanced Research in Asynchronous Circuits and Systems, Eindhoven,
The Netherlands, 1997.

[14] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods,
“AMULET1: A micropipelined ARM,” presented at the IEEE Com-
puter Conf. (COMPCON), San Francisco, CA, 1994.

[15] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. M. Clark, D. A. Ed-
wards, S. B. Furber, J. Liu, D. W. Lloyd, S. Mohammadi, J. S. Pepper,
O. Petlin, S. Temple, and J. V. Woods, “AMULET3i—An asynchronous
system-on-chip,” presented at the Asynchronous Circuits and Systems,
2000.

[16] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, pp.
720–738, 1989.

[17] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, pp. 541–580, 1989.

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Petrify: A Tool for Manipulating Concurrent Specifications
and Synthesis of Asynchronous Controllers,” Departament d’Arquitec-
tura de Computadors, Universitat Politecnica de Catalunya, Tech. Rep.,
1996.

[19] R. M. Fuhrer, N. K. Jha, S. N. Nowick, B. Lin, M. Theobald, and L.
Plana, MINIMALIST: An Environment for the Synthesis, Verification,
and Testability of Burst-Mode Asynchronous Machines, 1999.

[20] K. Y. Yun and D. L. Dill, “Automatic synthesis of extended burst-mode
circuits: Part I (specification and hazard-free implementations),” IEEE
Trans. Computer-Aided Design, vol. 18, pp. 101–117, Jan., 1999.

[21] , “Automatic synthesis of extended burst-mode circuits: Part II (au-
tomatic synthesis),” IEEE Trans. Computer-Aided Design, vol. 18, pp.
118–132, Jan., 1999.

[22] A. Bardsley and D. A. Edwards, “The balsa asynchronous circuit syn-
thesis system,” in Proc. Forum Design Languages, Tübingen, Germany,
2000.

[23] A. Bardsley, “Implementing Balsa Handshake Circuits,” Ph.D. disserta-
tion, Univ. Manchester, Manchester, U.K., 2000.

[24] J. Kessels and A. Peeters, “The tangram framework (embedded tutorial):
Asynchronous circuits for low power,” in Proc. Asia South Pacific De-
sign Automation Conf., Yokohama, Japan, 2001.

[25] C. A. R. Hoare, “Communicating sequential processes,” Commun., vol.
21, pp. 666–677, 1978.

[26] Occam 2 Reference Manual. Englewood Cliffs, NJ: Prentice-Hall,
1988.

[27] L. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, J. D. Garside,
and S. Temple, “SPA—A synthesisable amulet core for smartcard ap-
plications,” in Proc. Int. Symp. Asynchronous Circuits Systems, Man-
chester, U.K., 2002.

[28] J. Kessels and P. Marston, “Designing asynchronous standby circuits for
a low-power pager,” in Proc. IEEE, Feb. 1999, pp. 257–267.

[29] H. Jacobson, E. Brunvand, G. Gopalakrishnan, and P. Kudva, “High-
level asynchronous system design using the ACK framework,” in Proc.
Int. Symp. Advanced Research Asynchronous Circuits Systems, Eilat, Is-
rael, 2000.

[30] IEEE Standard Hardware Description Language Based on the Verilog
Hardware Description Language, 1995. IEEE Std. 1364-1995.

[31] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asyn-
chronous design using commercial HDL synthesis tools,” in Proc. Int.
Symp. Advanced Research Asynchronous Circuits Systems, Eilat, Israel,
2000.

[32] S.-Y. Tan, S. B. Furber, and W.-F. Yen, “The Design of an asynchronous
VHDL synthesizer,” in Proc. Design, Automation Test Europe, Los
Alamitos, CA, 1998.

[33] M. Theobald and S. M. Nowick, “Transformations for the synthesis and
optimization of asynchronous distributed control,” in Proc. Design Au-
tomation Conf., Las Vegas, NV, 2001.

[34] B. M. Bachman, “Architectural-Level Synthesis of Asynchronous Sys-
tems,” Masters Thesis, Univ. Utah, Salt Lake City, UT, 1998.

[35] B. M. Bachman, Z. Hao, and M. C. J, “Architectural synthesis of timed
asynchronous systems,” in Proc. IEEE Int. Conf. Computer Design
(ICCD), Austin, TX, 1999.

[36] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “A concurrent
model for de-synchronization,” in Proc. Int. Workshop Logic Synthesis,
Laguna Beach, CA, 2003.

994 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004

[37] Behavioral Compiler User Guide Synopsys, 2000. Reference Manual
Version 2000.11.

[38] Monet, www.mentor.com/monet, 1998. Mentor Graphics.
[39] IEEE Standard VHDL Reference Manual, IEEE Std 1076-1993, 1993.
[40] Functional Specification for SystemC 2.0, 2001.
[41] A. C. Williams, “A Behavioral VHDL Synthesis System Using

Data Path Optimization,” Ph.D. dissertation, Univ. Southampton,
Southampton, U.K., 1997.

[42] A. D. Brown, A. C. Williams, and Z. A. Baidas, “Hierarchical module
expansion in a VHDL behavioral synthesis system,” in Electronic Chips
& Systems Design Languages, J. Mermet, Ed. Norwell, MA: Kluwer,
2001, pp. 249–260.

[43] K. Maheswaran and V. Akella, “Hazard-Free Implementation of the
Self-Timed Cell Set in a Xilinx FPGA,” Univ. Calif. Davis, Davis, CA,
Tech. Report, 1994.

[44] M. Pedram, Q. Wu, and X. Wu, “A new design for double edge triggered
flip-flops,” in Proc. Asia South Pacific Design Automation Conf., Yoka-
hama, Japan, 1998, pp. 417–421.

[45] S. S. Appleton, A. V. Morton, and M. J. Liebelt, “Two-phase
asynchronous pipeline control,” in Proc. Int. Symp. Advanced Research
Asynchronous Circuits Systems, Eindhoven, The Netherlands, 1997.

[46] S. B. Furber and P. Day, “Four-phase micropipeline latch control cir-
cuits,” IEEE Trans. VLSI Syst., vol. 4, pp. 247–253, Aug., 1996.

[47] Schaum’s Outline Series Mathmatical Handbook of Formulas and
Tables, McGraw-Hill, New York, 1968.

[48] “Designing DES with MOODS,” LME Design Automation Ltd., In-
ternal Report, 2001.

[49] “The Programmable Logic Data Book,” Xilinx Incorporation, 2000.
[50] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and J. Areceo,

“The design and verification of high-performance low-control-overhead
asynchronous differential equation solver,” in IEEE Trans. VLSI Syst.,
vol. 6, Dec. 1998, pp. 1–14.

[51] J. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C—The Art of Scientific Computing, 2nd ed. Cambridge,
U.K.: Cambridge Univ., 1992.

Matt Sacker received the B.Eng. in electronic engineering from the Univer-
sity of Southampton, Southampton, U.K., in 2000, and is currently working
toward the Ph.D. degree with the Electronic System Design Group at the same
university.

He worked in the DSP group of CRL Ltd, and now works as a Consultant for
Detica Ltd., Guildford, U.K.

Andrew D. Brown (M’90–SM’96) was born in the U.K. in 1955. He received
the B.Sc. degree (Hons.) in physical electronics and the Ph.D. degree in mi-
croelectronics from Southampton University, Southampton, U.K., in 1976 and
1981, respectively.

He was appointed Lecturer in electronics at Southampton University in 1981,
a Senior Lecturer in 1989, a Reader in 1992, and appointed to an established
chair in 1998. He was a Visiting Scientist at IBM, Hursley Park, U.K., in 1983,
a Visiting Professor at Siemens NeuPerlach, Munich, Germany, in 1989, and a
Visiting Professor at Trondheim University, Trondheim, Norway, in 2004. He
is currently Head of the Electronic System Design Group, Electronics Depart-
ment, Southampton University. The research interests include all aspects of sim-
ulation, modeling, synthesis, and testing.

Dr. Brown is a Fellow of the IEE, a Chartered Engineer, and a European
Engineer.

Andrew J. Rushton received the B.Sc. and Ph.D. degrees in electronics from
the Department of Electronics and Computer Science at Southampton Univer-
sity, Southampton, U.K., in 1983 and 1987, respectively.

Between 1988 and 1992, he was with Plessey Research Roke Manor (now
part of Siemens), involved in RTL Synthesis. He was a founding member of
TransEDA Limited, joining the company in 1992 and working for them as Re-
search Manager until 1999. During this time, he worked on RTL synthesis, HDL
verification and VHDL compilers. From 1999 to 2001, he was with LME De-
sign Automation, working on the commercialization of a behavioral synthesis
system. Currently, he is a Research Fellow in the School of Electronics and
Computer Science, Southampton University. His interests include VHDL, com-
piler design, behavioral synthesis, RTL synthesis and C++ library development.
He is the author of VHDL for Logic Synthesis (New York: Wiley, 1998).

Peter R. Wilson received the B.Eng. degree in electrical and electronic en-
gineering and the Postgraduate Diploma in digital systems engineering from
Heriot-Watt University, Edinburgh, Scotland, in 1988 and 1992, respectively,
an M.B.A. degree from the Edinburgh Business School, Edinburgh, in 1999 and
the Ph.D. degree from the University of Southampton, Southampton, U.K., in
2002.

He is currently a Senior lecturer with the School of Electronics and Com-
puter Science, University of Southampton. From 1988 to 1990, he worked with
the Navigation Systems Division of Ferranti plc., Edinburgh, Scotland, on fire
control computer systems. In 1990, he joined the Radar Systems Division of
GEC-Marconi Avionics, Edinburgh, Scotland. From 1990 to 1994 he worked
on modeling and simulation of power supplies, signal processing systems, Servo
and mixed technology systems. From 1994 to 1999, he worked as a European
Product Specialist with Analogy Inc., Swindon, U.K. During this time he devel-
oped a number of models, libraries, and modeling tools for the Saber simulator,
especially in the areas of power systems, magnetic components and telecommu-
nications. Since 1999, he has been with the Electronic Systems Design group,
University of Southampton. His current research interests include modeling of
magnetic components in electric circuits, power electronics, renewable energy
systems, VHDL-AMS modeling and simulation, and the development of elec-
tronic design tools.

Dr. Wilson is a Member of the IEE, and a Chartered Engineer in the U.K.

	toc
	A Behavioral Synthesis System for Asynchronous Circuits
	Matthew Sacker, Andrew D. Brown, Senior Member, IEEE, Andrew J.
	I. I NTRODUCTION
	Fig.€1. ICODE generated from VHDL. (a) Generating HDL. (b) Gener

	Fig.€2. Datapath generated from ICODE.
	Fig.€3. Sharing functional units. (a) Two multiply operations. (
	II. T HE G ENERIC S YNTHESIS P ROCESS

	Fig.€4. Controller synthesis.
	A. Compilation to Intermediate Code

	Fig.€5. Chaining synchronous operations. (a) Two multiply operat
	Fig.€6. Three-dimensional (dynamic) design space trajectory.
	B. Scheduling
	C. Allocation

	Fig.€7. Chaining asynchronous operations.
	D. Binding
	E. Controller Synthesis

	Fig.€8. Asynchronous control cell. (a) Asynchronous control cell
	III. O PTIMIZATION

	Fig.€9. Asynchronous functional unit.
	Fig.€10. The asynchronous register. (a) Asynchronous register. (
	1) Temporal: The two operations have been pushed into the same t

	Fig.€11. Operations in parallel: neither operator shared.
	2) Spatial: We have removed a register, and reduced the number o

	Fig.€12. Sharing units. Multiplexing in time, the asynchronous v
	IV. A SYNCHRONOUS S YNTHESIS

	Fig.€13. The asynchronous control DEMUX.
	Fig.€14. Asynchronous data MUX .
	A. Optimization Measure of Goodness
	1) Area: The functional units are now bigger, not only do they h
	2) Delay: For a synchronous system, the delay of a process is th

	Fig.€15. Asynchronous IF realization (compare with Fig.€4).
	Fig.€16. Extension of the IF construct (Fig.€15) to the generi
	B. Controller

	TABLE I S YNCHRONOUS P ORTFOLIO D ESIGN S TATISTICS
	C. Datapath Units
	D. Registers

	TABLE II A SYNCHRONOUS P ORTFOLIO D ESIGN S TATISTICS
	E. Signal Encoding

	Fig.€17. The quadratic equation solver control graphs. (a) Synch
	F. Optimization Structures

	Fig.€18. Design space for the quartic equation solver, various s
	V. R ESULTS

	Fig.€19. Design space for the DES encryption block, various stat
	A. Optimization: Scheduling

	Fig.€20. Wasted time in the synchronous inlined cubic equation s
	B. Optimization: Static Design Space
	C. Temporal Utilization (Waste)
	VI. F INAL R EMARKS
	E. Brunvand, S. Nowick, and K. Yun, Practical advances in asynch
	S. Hauck, Asynchronous design methodologies: An overview, Proc.
	C. J. Myers, Asynchronous Circuit Design . New York: Wiley, 2001
	A. D. Brown, K. R. Baker, and A. C. Williams, Online testing of
	Z. A. Baidas, A. D. Brown, and A. C. Williams, Floating point be
	A. C. Williams, A. D. Brown, and M. Zwolinski, Simultaneous opti
	K. R. Baker and A. J. Currie, Multiple objective optimization in
	M. C. McFarland, A. C. Parker, and R. Camposano, Tutorial on hig
	G. De Micheli, Synthesis and Optimization of Digital Circuits .
	H. Shiraishi and F. Hirose, Efficient placement and routing tech
	P. G. Paulin and J. P. Knight, Force-directed scheduling for the
	T. Yoshimura and E. S. Kuh, Efficient algorithms for channel rou
	S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C
	S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Wood
	J. D. Garside, W. J. Bainbridge, A. Bardsley, D. M. Clark, D. A.
	I. E. Sutherland, Micropipelines, Commun. ACM, vol. 32, pp. 720
	T. Murata, Petri nets: Properties, analysis and applications, Pr
	J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
	R. M. Fuhrer, N. K. Jha, S. N. Nowick, B. Lin, M. Theobald, and
	K. Y. Yun and D. L. Dill, Automatic synthesis of extended burst-
	A. Bardsley and D. A. Edwards, The balsa asynchronous circuit sy
	A. Bardsley, Implementing Balsa Handshake Circuits, Ph.D. disser
	J. Kessels and A. Peeters, The tangram framework (embedded tutor
	C. A. R. Hoare, Communicating sequential processes, Commun., vo

	Occam 2 Reference Manual . Englewood Cliffs, NJ: Prentice-Hall,
	L. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, J. D. G
	J. Kessels and P. Marston, Designing asynchronous standby circui
	H. Jacobson, E. Brunvand, G. Gopalakrishnan, and P. Kudva, High-

	IEEE Standard Hardware Description Language Based on the Verilog
	M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, As
	S.-Y. Tan, S. B. Furber, and W.-F. Yen, The Design of an asynchr
	M. Theobald and S. M. Nowick, Transformations for the synthesis
	B. M. Bachman, Architectural-Level Synthesis of Asynchronous Sys
	B. M. Bachman, Z. Hao, and M. C. J, Architectural synthesis of t
	J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, A con

	Behavioral Compiler User Guide Synopsys, 2000. Reference Manual
	Monet, www.mentor.com/monet, 1998. Mentor Graphics.
	IEEE Standard VHDL Reference Manual, IEEE Std 1076-1993, 1993.
	Functional Specification for SystemC 2.0, 2001.
	A. C. Williams, A Behavioral VHDL Synthesis System Using Data Pa
	A. D. Brown, A. C. Williams, and Z. A. Baidas, Hierarchical modu
	K. Maheswaran and V. Akella, Hazard-Free Implementation of the S
	M. Pedram, Q. Wu, and X. Wu, A new design for double edge trigge
	S. S. Appleton, A. V. Morton, and M. J. Liebelt, Two-phase async
	S. B. Furber and P. Day, Four-phase micropipeline latch control
	Schaum's Outline Series Mathmatical Handbook of Formulas and Tab
	Designing DES with MOODS, LME Design Automation Ltd., Internal R

	The Programmable Logic Data Book, Xilinx Incorporation, 2000.
	K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and J. Ar
	J. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

