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ABSTRACT 
The investigation of neuron structures is an incredibly 
difficult and complex task that yields relatively low rewards 
in terms of information from biological forms (either 
animals or tissue). The structures and connectivity of even 
the simplest invertebrates are almost impossible to establish 
with standard laboratory techniques. Recent work has shown 
how a simplified behavioural approach to modeling neurons 
can allow “virtual” experiments to be carried out that map 
the behaviour of a simulated structure onto a hypothetical 
biological one, with correlation of behaviour rather than 
underlying connectivity. The problems with such approaches 
are twofold. The first is the difficulty of simulating realistic 
aggregates efficiently, and the second is making sense of the 
results. In this paper we describe a method of modeling 
neuron aggregates using SystemC (a language developed for 
hardware design), and also a design interface to enable 
structures and connection maps to be developed, with 
simulations carried out leading to animated visualization of 
the results. 

1. INTRODUCTION 
1.1. Biological Neurons 
Neurons are body cells specialized for signal transmission 
and signal processing. Figure 1 shows the typical structural 
characteristics of a neuron.  

 
Figure 1 Diagram of a generic neuron 

It has a cell body (or soma) and root-like extensions called 
neurites. Amongst the neurites, one major outgoing trunk is 
the axon, and the others are dendrites. The signal processing 
capabilities of a neuron is its ability to vary its intrinsic 
electrical potential (membrane potential) through special 
electro-physical and chemical processes. A single neuron 
receives signals from many other neurons, (typically in order 
of 10,000 for mammals) at   specialized sites on the cell 

body or on the dendrites, known as synapses. Synapses 
receive signals from a pre-synaptic neuron and alter the state 
of the postsynaptic neuron (the receiver neuron) and 
eventually trigger the generation of an electric pulse, the 
action potential (a spike), in the postsynaptic neuron. This 
action potential is initiated at the rooting region of the axon, 
the axon-hillock, and it subsequently travels along the axon 
sending information signal to the other parts of the nervous 
system. 

1.2. Neuron Models 
Models of neurons can be created at various level of 
abstraction ranging from sub-molecular level to network 
level. The pioneering Hodgkins–Huxley model [3] and other 
compartmental models based on it [4-6] model variation in 
cell membrane voltage using ion channels kinetics. 
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Figure 2 Typical Action Potential 
Experiments have shown that the membrane voltage 
variation during the generation of an action potential is 
generally in a form of a spike (a short pulse - figure 2); and 
the shape of this pulse in neurons is rather stereotype and 
mathematically predictable. Models such as “Integrate and 
Fire” are built with an assumption that the timing of a spike 
is the information carrier and not the shape of the spike [8-
10]. This bio-physical approach is suitable for electro-
physicists to develop quantitative description based on 
experimental results, but these models are computationally 
expensive and unsuitable for the simulation of large 
aggregate of neurons.   
 
An alternative approach is to develop highly abstract neuron 
models encapsulating the essential functionality of a neuron 
relevant for network behaviour in order to develop 
understanding of network population dynamics. Binary 
neuron models (McCulloch and Pitts [11]), the Perceptron 
model (Rosenblatt [12]) and the Spiking-rate model [7] 
represent this end of the spectrum in neuron modelling and 
they are widely used in artificial neural networks. These 
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models are computationally efficient but they are generally 
too abstract to be used in biologically realistic simulations.    
  
An intermediate approach uses cell automata models make 
use of state automaton to capture the functionality. Various 
types of behaviour can be captured at an abstract level using 
this technique. They are computationally much more 
efficient than the traditional biophysical models and they 
have been successfully used for biological neuron 
simulation. [7] and this type of approach was applied in this 
work. 

1.3. Simulators 
The simulation of biological neurons is computationally 
expensive and designing a practical simulation platform is an 
area of an active research.   Traditionally the biophysical 
models have been designed using continuous simulation. 
However, the evolution of highly computationally efficient 
discrete simulation techniques has made this approach more 
attractive choice for larger networks. 
 
Several computer software packages are available for 
simulation of a biological neuron network. Most of them are 
based on continuous simulation and biophysical models, and 
therefore they are computationally expensive. Only two 
packages use event-driven discrete simulation: 
SPIKE/NEURON, Nishwitz-Gluender. They are, however, 
not optimised for large networks. The simulation system 
developed in [7] has successfully used event driven 
simulation with abstract modelling techniques for 
biologically realistic neuron systems and it has achieved 
very good performance for neuron systems of about 105 
neurons [7 p112].  However, this simulation system is not 
suitable as a general, extensible and reusable framework for 
object-oriented methodology. We have used the same basic 
approach as in [7], but with a flexible, modular and standard 
approach implemented using SystemC C++ libraries [14].  

2. SYSTEMC FRAMEWORK 
2.1. Rationale for using SystemC  
Modelling of biological neuron systems at network level 
requires modelling a large number of neurons functioning 
concurrently.   An HDL (Hardware Description Language) 
with inbuilt concurrency and time becomes natural candidate 
for this kind of modelling. SystemC is built on the general 
purpose C++ programming language, which enables us to 
use it for applications in domains other than the electronic 
designs. The choice of SystemC for designing neural 
simulator framework is appealing for the following reasons: 
• SystemC comes with efficient event driven kernel with 

inbuilt concept of events, message passing, concurrency 
and time, thus reducing design time. 

• SystemC is open source and uses standard compilers. 
• In SystemC number of instantiations of a particular 

module can be specified at the run time. 
• SystemC uses object oriented programming. 

• SystemC is designed to handle large systems. 
• Reconfigurability is possible using C++ pointers.  
• Model developers can generate small executables (.exe) 

file, completely hiding complexity/ implementation of 
the models from its users – particularly useful in the life 
sciences. 

• C/C++ is pervasive in the scientific/ engineering 
community.  

2.2. Overview 
Figure 3 shows the hierarchical structure of the simulator.  

Figure 3 Structure of the simulator 
There are two core functional components:  neuron and 
synapse. A network is made-up of connected instantiations 
of neurons and synapses.  Each neuron has one output port 
connected to a Boolean signal in network (shown as solid 
lines). These signals are connected to the input of a synapse. 
When a synapse is triggered by a presynaptic neuron, after 
some delay the synapse changes weight sum variable w_sum 
in a target neuron (indicated by dashed lines). Changes in 
w_sum start or stop burst generator via threshold mechanism.  
When triggered ‘on’, burst generator generates a burst of 
output (toggles the Boolean output). This again triggers the 
synapses attached to that particular neuron and thus a signal 
is propagated. Stimulii are provided either by the 
monitor_driver module by changing input signals in 
network, and/or by internal oscillators in the neuron 
module.  

 
 

Figure 4: Neuron Impulse timing diagram 
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An assumption in our simulation system is that the 
information is in the timing of the impulse of action potential 
of the neuron and not in the shape itself. Two the classes of 
information coding scheme, spiking rate coding and 
temporal coding, can be implemented using relevant models 
in our framework.  The models used are based on the work 
in [7]. Like their biological counterparts, all models work 
asynchronously and there is no central clock. They use the 
time reference provided by SystemC to model delays. 

2.3. Models  
2.3.1. Synapse Model  
In biological neurons, the consequence of an action potential 
in the axon is the release of neurotransmitter after a certain 
delay from synapse to postsynaptic neuron (target neuron). 
The release of a neurotransmitter affects the postsynaptic 
neuron by increasing or decreasing its membrane potential. 
After some duration, this effect is diminished. The efficacy 
of different synapse on target neuron membrane potential 
can be represented in models by relative weight attached to 
it. Our synapse model is parameterised by the following 
parameters, which reflects the properties of its biological 
counterpart: syn_delay - representing axonal delay, 
syn_duration - Duration of postsynaptic pulse & w_syn - 
representing synaptic efficacy.  
 
The input of a synapse is attached to the presynaptic neuron 
output (a Boolean signal). A change in presynaptic neuron 
output (either positive or negative edge) triggers the synapse. 
It waits for syn_delay time and then increases w_sum in 
target neuron by w_syn (via update_w_sum function); and 
decreases it by w_sum after syn_duration (figure 4). The 
synapse basically works a delay element.  
 
Typically most of the neurons have large number of input 
synapses. For network of n neurons, the number of synapses 
can reach an order of n2. The synapse module is likely to be 
instantiated in a very large number  (10,000 or more) for any 
realistic medium size neuronal network. Therefore, the 
performance of the synapse module, both in terms of 
memory and execution speed, is the most critical factor for 
the performance of the simulator. Hence, optimisation of the 
synapse module is essential. Section 2.4 addresses 
performance issues of synapse in more detail.   

2.3.2. Neuron Model 
A neuron block basically works as a burst generator, where 
burst generator is controlled by a threshold function. When 
the neuron state variable w_sum exceeds its excitatory 
threshold, the burst generator starts toggling Boolean output 
of the neuron.  After generating a finite number of bursts, the 
burst generator stops. If during the bursting period w_sum 
drops below the inhibitory threshold, the burst generator 
stops immediately. w_sum is controlled by input synapse via 
update_w_sum function. Neuron also has an internal 

oscillator, which triggers neuron burst generator 
periodically. Table 1 lists the characterizing neuron 
parameters with its biological relevance. The more complete 
description of the model can be found in [13]. 
   

Table 1 Neuron parameters and its biological relevance  
Parameter Biological relevance 

w_sum Intrinsic Membrane voltage  
ex_thold Excitatory threshold membrane voltage 
inh_thold Inhibitory threshold membrane voltage 
t_ap Duration of action potential 
t_ref Duration of refractory period 
N_bursts Number of spikes per burst 
t_osc Oscillation period of internal oscillatory 

mechanism 

2.3.3. Network Model  
A network is created using instantiations of synapse and 
neuron modules and connecting signals according the user 
specifications. The network component parameterises all 
instantiations of neuron and synapse while instantiating. 
Connectivity can be specified either by explicit connectivity 
list or by probabilistic connectivity rules. Output of 
presynaptic neurons is connected to the input port of 
synapse. A synapse is provided its target neuron pointer via 
a constructor argument.  

2.4. Design and Performance issues 
2.4.1. Coding style 
Both neuron and synapse models require modelling of 
delay. Modelling using SC_THREAD type of procedure 
produces very simple and highly readable code. However, 
the memory requirement of a SC_THREAD procedure is 
much higher than a SC_METHOD procedure (see Figure 5).  

2.4.2. Modelling of Transport delay  
Synapse behaves like a delay element where several signals 
can be in pipeline. If the maximum time period between 2 
consecutive bursts in a pre-synaptic neuron is less than sum 
of synaptic delay and synaptic duration, then we need to 
model transport delay in synapse. Unfortunately, we find 
this case in many biological systems were a synaptic delay 
(representing axonal delay) is larger than the bursting 
interval. This feature is becomes more important when we 
are implementing models using variable rate coding.  

 
Figure 5: Comparison of memory consumption of different 

implementation style for a simple oscillator module 



 
Figure 6:  Memory consumption of different synapse modules 

 
Transport delay is not built into SystemC and hence poses a 
considerable design problem for its efficient implementation. 
A class scx_event_queue has been developed by OSCI 
members, which can be used for modelling transport delays. 
However its memory consumption is much higher in 
comparison to a simple blocking synapse with no transport 
delay (even higher than the neuron module, which is quite 
unacceptable- as shown in figure 6). 
 
Since the performance of a synapse module is critical for 
overall simulator performance, we have developed several 
other models to levitate this problem, and their performance 
in terms of static memory allocation is compared in figure 6.  
Performance of some of the models in terms of execution 
time is presented in [7].  More detail analysis about using 
different synapse models can be found in [13].  

 

2.4.3. Pointer access Vs Signal communication 
In our framework, the synapse accesses a member function 
of neuron by a function pointer, rather than using pre-
defined interface of ports and signals.  The use of Pointer 
access instead of signal has the advantages of easy 
scalability, easy and flexible runtime reconfigureability and 
efficient computation of w_sum (perhaps 10,000 inputs. Using 
signals the description of a threshold module would be: 
 

SC_METHOD ( threshold)  
sensitive( in1,in2,in3,. . . ,in_n) 
… 

void neuron :: threshold () { 
w_sum= in1+in2+in3 + . . . + in_n ; 
if ( w_sum >= excitation_threshold ) 
     { start_burst_generator( ) }; 
if ( w_sum <= inhibitory_threshold )   
{ stop_burst_generator( ) }; 
} 

 
In this implementation, whenever any of the input changes, 
the simulator computes w_sum by summing all the (large 
number of) inputs. This is computationally very costly. 
Instead the pointer access implementation changes w_sum 
just by the change required by w_syn (synaptic weight) 
using function update_w_sum: 
 

void neuron::update_w_sum (float 
weight_change) 
{w_sum+= weight_change;} 
void neuron::mth_threshold (){ 
if ( w_sum >= excitation_threshold ) 
{ start_burst_generator( ) ) ; 
if ( w_sum <= inhibitory_threshold )  
{ stop_burst_generator( ) ) ; 
} 

 
This implementation takes much less computational power 
than the one using a signal-based interface. (The 
implemented model in fact uses a combination of w_sum 
variable and internal signals to avoid multiple triggering of 
the burst generator.)  

2.4.4. Use of inter-process shared variable  
In SystemC, generally signals are used for inter-process 
communication. However, signals cannot have multiple 
drivers thus cannot be shared between processes. Other 
synchronization method such as sc_mutex, sc_semaphore 
etc. have some memory and performance overheads.  
However, all processes in a module can access a variable, 
which provides a flexible and efficient way communicating 
information amongst the processes. We have used shared 
variables/events as flags. The SystemC documentation 
advises against using pointer access and inter-process 
variables. We maintain, however, that careful use of pointer 
and shared variable should not create any problem and we 
have used both pointer access and shared variables because 
it produces more flexible and efficient design.  
 

2.4.5. Reconfiguribility 
Each model provides access to its parameters during 
runtime through friend classes: change_param and 
get_param. Connectivity can also be changed at run time by 
changing value of the target neuron pointer in synapse.  
Network module stores, manages and finds synapse and 
neurons pointers and signals and hand it to the 
monitor_driver. The monitor_driver is designed to 
monitor/ drive /change the network by user without looking 
details of other components. The following simple piece of 
code in a process of monitor_driver changes the burst 
timing parameters of neuron1 after 100 ms. 

Figure 7 Execution time for different synapse models 



 
wait(100,SC_MS); 
neuron_ptr=nw_ptr->get_neuron_ptr(1); 
change.t_ref(neuron_ptr,sc_time(1,SC_MS)); 
change.t_ap(neuron_ptr,sc_time (1,SC_MS)); 

3. Animated Visualization   
Simulation results (traced signals) are dumped into .vcd file, 
which can be viewed using any standard waveform viewer 
supporting .vcd format. A snapshot of one such simulation 
result is presented in figure 8 using GTKWAve). 

 
Figure 8 Simulation result showing typical impulses 

 
However, a waveform view, indicating values of signal 
changing with time, may not be sufficient to give insight of 
network behaviour because information processing in neuron 
is quire different compared to the data processing system we 
are accustomed with. Here information is mainly in timing 
and sequence of events rather than the values of the signals. 
 
A Tcl / TK GUI application was therefore developed to 
represent simulation results in animated form. Figure 9 
represents the snapshot of the Tcl/Tk application. The 
application shows signalling activities and state of neuron in 
animated form and displays complete connectivity. Rounds 
symbolize neurons and an arrow represents connection. A 
thick arrows indicates signalling event from the source 
neuron at the time shown by current time.  A red outline on a 
neuron indicates that the neuron is in its bursting state.  
 

 
 

Figure 9 Tcl/Tk applications for Animated Visualization 
The user can play animation at a desired speed, which can be  
modified at runtime. The option of running step-by-step 
animation is available for detailed analysis. The simulation 
starting point can be specified and the user can Pause, Step 

and Play fractions. A right mouse button click on a neuron 
reveals the neuron parameters in a dialog box.   

4. C.elegans Locomotory Nervous System 
C.elegans is a free living nematode of small size (1 mm long 
and approximately 80 µm in diameter). The nervous system 
of C.elegans includes 302 neurons. C.elegans have number 
of interesting properties,(including its known topology) 
which makes it interesting from the  modelling point of 
view and it is widely used in studied of neuroscience. 
Neurons and their connectivity seem to be fairly constant 
amongst different individual worm. Topology of its nervous 
system has been completely mapped using electron 
microscopy [15],[16]. Its body is transparent, which allows 
laser beam to ablate specific neurons to test its functionality. 
Also histo-chemical experiments allow the identification of 
the neuron transmitter used in individual synapse and 
suggests a tentative classification for the connection as 
inhibitory or excitatory. C.elegans is well-known in biology 
as a standard animal for study of Neuroscience. We 
modelled a part of the nervous system of C.elegans 
consisting of 85 neurons controlling the locomotory system. 
It was simulated for different motions of the worm (forward, 
backwards, coiling and velocity reversals). The results were 
compared with the results in [7]. Figure 7 shows the 
reference results of neuron activities for the forward motion 
of the C.elegans from [7] and our SystemC simulation 
results.  
 

 
(a) Reference simulation results[1] 

 
(b) SystemC simulation results 

Figure 10 comparison of  neuron activities for the velocity 
reversal motion of the C. elegans 

 
We have obtained nearly the same output for all the motions 
as presented in [7]. Since, result in [7] is amply verified with 



the biological experiments, this resemblance to the reference 
results validates our basic models and framework and its 
application in biologically realistic neuron system 
simulation.   

 
Figure 11: animated visualization for the forward motion of the 

C. elegans 
Figure 11 shows the snapshot of the animated visualization 
for the forward motion of C.elegans. The yellow rounds 
represent the neuron controlling the muscle (Top yellow row 
for dorsal muscles and bottom row for ventral muscles). 
During the animation, we can observe the zigzag muscle 
activation of in the worm during the forward motion. Figure 
11 provides an idea of the effectiveness and worth of the 
animated visualization for such kind of biological 
simulations.     

5. Conclusions 
A SystemC Framework with basic models was developed for 
the simulation of biologically realistic neuron systems. It has 
been used to simulate the C.elegans nervous system 
controlling locomotory muscles. The results obtained are 
consistent with results in [7] which validates the models and 
framework.  Animated visualization Tcl/Tk application 
developed in this project was highly useful providing insight 
of the network behaviour for neuroscientist.  
 
Although SystemC is mainly designed for modelling 
hardware, it can be successfully used for behavioural 
modelling of biological neuron systems since it is build on 
general purpose C++ language.  Using SystemC as platform 
allows to build a general-purpose, flexible and extensible 
framework in relatively very short time. 
  
A limited set of simple models were developed in this 
project. Other wide range of models needs be developed, 
especially some with non-deterministic behaviour and 
spiking rate adaptation, to simulate more complex biological 
nervous systems.  Integration of I/O and animated 
visualisation in a single GUI application can make this 
framework much more user friendly. 
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