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Abstract

The paper proposes a novel construction algorithm for generalized Gaussian kernel

regression models. Each kernel regressor in the generalized Gaussian kernel regression model

has an individual diagonal covariance matrix, which is determined by maximizing the

correlation between the training data and the regressor using a repeated guided random search

based on boosting optimization. The standard orthogonal least squares algorithm is then used

to select a sparse generalized kernel regression model from the resulting full regression matrix.

Experimental results involving two real data sets demonstrate the effectiveness of the proposed

regression modeling approach.
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1. Introduction

A fundamental principle in practical nonlinear data modeling is the parsimonious
principle of ensuring the smallest possible model that explains the training data.
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Forward selection using the orthogonal least squares (OLS) algorithm [3–6,8] is a
simple and efficient construction method that is capable of producing parsimonious
linear-in-the-weights nonlinear models with excellent generalization performance.
Alternatively, the state-of-art sparse kernel modeling techniques, such as the support
vector machine and relevant vector machine [19,21–23], have been gaining
popularity in data modeling applications. These existing sparse regression modeling
techniques typically place the kernel centers or mean vectors at the training input
data and use a fixed common kernel variance for all the regressor kernels. The value
of this common kernel variance obviously has a critical influence on the sparsity and
generalization capability of the resulting model, and it has to be determined via some
sort of cross validation. For example, in [8] a genetic algorithm is applied to
determine the appropriate common kernel variance through optimizing the model
generalization performance.
In this paper, we consider a generalized Gaussian kernel model, in which each

kernel regressor has an individually tuned diagonal covariance matrix. Such a
generalized kernel regression model has the potential of improving modeling
capability and producing sparser final models, compared with the standard approach
of single fixed common variance. The difficult issue is then how to determine these
kernel covariance matrices. Since the correlation function between a kernel regressor
and the training data defines the ‘‘similarity’’ between the regressor and the training
data, it can be used to ‘‘shape’’ the regressor by adjusting the associated kernel
covariance matrix in order to maximize the absolute value of this correlation
function. A weighted optimization algorithm, which has its root from boosting
[9,16,18], is considered to perform the associated optimization task. This weighted
optimization algorithm is a guided random search method and the solution obtained
may depend on the initial choice of population. To provide a robust optimization
and guarantee stable solutions regardless of the initial choice of population, the
algorithm is augmented into a repeated weighted optimization method.
The determination of kernel covariance matrices essentially provides the full bank

of regressors or the full regression matrix, and this allows the application of the
standard OLS algorithm [3,4] to select a parsimonious subset model. The outline of
the paper is as follows. Section 2 gives the generalized Gaussian kernel regression
model to be considered. Section 3 derives the correlation criterion to be used for
determining the kernel covariance matrices and presents a repeated boosting search
optimization algorithm for performing the corresponding optimization tasks.
Section 4 briefly summarizes the standard OLS algorithm used to select a sparse
kernel regression model, while Section 5 describes our modeling experiments.
Finally, Section 6 offers our conclusions.
2. Generalized Gaussian kernel regression model

Consider a general discrete stochastic nonlinear system represented by

yk ¼ f sðyk�1; . . . ; yk�ny
; uk�1; . . . ; uk�nu

; hÞ þ ek ¼ f sðxk; hÞ þ ek ð1Þ
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where uk and yk are the system input and output variables, respectively, nu

and ny are positive integers representing the known lags in uk and yk;
respectively, the observation noise ek is uncorrelated with zero mean, xk ¼

½yk�1 � � � yk�ny
uk�1 � � � uk�nu

�T denotes the system input vector with a known
dimension n ¼ ny þ nu; f sð	Þ is a priori unknown system mapping, and h is an
unknown parameter vector associated with the appropriate, but yet to be
determined, model structure. The system model (1) is to be identified from an N-
sample system observational data set DN ¼ fxk; ykg

N
k¼1; using some suitable functions

which can approximate f sð	Þ with arbitrary accuracy.
We will model the unknown dynamical process (1) by using the following

generalized Gaussian kernel regression model

yk ¼ ŷk þ ek ¼
XN

i¼1

yigiðxkÞ þ ek ð2Þ

where ŷk denotes the model output given the input xk; yi are the model weight
parameters, and gið	Þ are the kernel regressors. We allow the regressor function to be
chosen as the general Gaussian function giðxÞ ¼ Gðx; xi;SiÞ with

Gðx; xi;SiÞ ¼ exp � 1
2
ðx� xiÞ

TS�1
i ðx� xiÞ

� �
ð3Þ

where the kernel covariance matrix takes the form of Si ¼ diagfs2i;1; . . . ; s
2
i;ng: As is in

a standard kernel regression model, the kernel mean vectors are placed at the
training input data points. If all the diagonal covariance matrices are set to the
identical form of diagfs2; . . . ;s2g; we arrive at the standard Gaussian kernel model.
The kernel model (2) over the training set DN can be written in the matrix form as

y ¼ Gh þ e ð4Þ

by defining

y ¼ ½y1 y2 � � � yN �
T ð5Þ

h ¼ ½y1 y2 � � � yN �
T ð6Þ

e ¼ ½e1 e2 � � � eN �
T ð7Þ

G ¼ ½g1 g2 � � � gN � ð8Þ

gi ¼ ½giðx1Þ giðx2Þ � � � giðxNÞ�
T; 1pipN: ð9Þ

The objective of sparse modeling is to construct a subset model consisting of
Ns ð5NÞ significant regressors only from the full set of regressors defined in (9).
3. Determination of the full regression matrix

To specify the pool of regressors or the full regression matrix G; one needs to
determine all the associated diagonal covariance matrices Si; 1pipN: Let us start
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the discussion by defining the least squares cost or mean square error (MSE)
associated with an m-term model as

Sm ¼
1

N

XN

k¼1

ðyk � ŷkÞ
2

ð10Þ

where for the notational simplicity the same notation ŷk is also used for representing
the m-term model output. Obviously S0 ¼ yTy ¼ kyk2:

3.1. Correlation criterion

The correlation between a regressor gi and the training data is defined by

CðSiÞ ¼
yTgiffiffiffiffiffiffiffiffi

yTy
p ffiffiffiffiffiffiffiffiffi

gTi gi

p ð11Þ

This correlation is a function of the regressor’s kernel covariance matrix. We
propose to use this correlation function as the optimization criterion to determine
the regressor’s kernel covariance matrix. Specifically, we should choose Si so that
jCðSiÞj is maximized. Why this is a good strategy to specify the pool of regressors can
easily be explained. Assuming that gi is selected to form a one-term model, the
associated reduction in the MSE value can be shown to be

DS ¼ S0 � S1 ¼
ðyTgiÞ

2

gTi gi

ð12Þ

which can be rewritten as

DS ¼ ðyTyÞ
ðyTgiÞ

2

ðyTyÞðgTi giÞ
¼ kyk2jCðSiÞj

2 ð13Þ

Since kyk2 is a constant, maximizing jCðSiÞj leads to a maximum reduction in the
MSE value.
Having chosen the optimization criterion, we now turn our attention to

optimization algorithm. We propose a repeated guided random search method to
perform the associated optimization tasks. This algorithm adopts ideas from
boosting [9,16,18].

3.2. Weighted optimization algorithm

The task of maximizing jCðSiÞj with respect to Si can be carried out by various
optimization methods. For example, the global optimization methods, such as the
genetic algorithm [13,15] and adaptive simulated annealing [7,14], can be used. A
global optimization method however is generally computationally very costly
and may be overkill, since in this application we only seek to tune a kernel’s
diagonal covariance matrix. Let us consider the following simple search method
to perform this optimization. Given p points of S;Sð1Þ; . . . ;SðpÞ; let Sbest ¼

arg maxfjCðSðiÞÞj; 1pippg and Sworst ¼ arg minfjCðSðiÞÞj; 1pippg: A (p+1)th point



ARTICLE IN PRESS

X.X. Wang et al. / Neurocomputing 62 (2004) 441–457 445
is generated by a weighted combination of SðiÞ; 1pipp: Because this weighted
combination is a convex combination, the point Sðpþ1Þ is always within the
convex hull defined by the p values. A (p+2)th point is then generated as the
mirror image of Sðpþ1Þ; with respect to Sbest; along the direction defined by Sbest �

Sðpþ1Þ: The best of Sðpþ1Þ and Sðpþ2Þ then replaces Sworst: The process is repeated until
it converges.
A simple illustration is depicted in Fig. 1 for a one-dimensional case, where

there are p=3 points, Sð1Þ; Sð2Þ and Sð3Þ; and Sbest ¼ Sð2Þ and Sworst ¼ Sð3Þ: The
4th value Sð4Þ is a weighted combination of Sð1Þ; Sð2Þ and Sð3Þ; and Sð5Þ is the
mirror image of Sð4Þ with respect to Sð2Þ: As Sð4Þ is better than Sð5Þ in this case, it
replaces Sð3Þ: Clearly, how the weighted combination is performed is critical.
The weightings for SðiÞ; 1pipp; should reflect the ‘‘goodness’’ of SðiÞ; and
the process should be capable of self-learning or adapting these weightings.
This is exactly the basic idea of boosting [9,16,18]. Specifically, by combining the
AdaBoost algorithm of [9] with the above-mentioned simple search strategy,
we arrive at the weighted optimization algorithm. Given the training data DN

and for fitting the lth regressor’s covariance matrix, the algorithm is summarized
as follows.

Initialization: Set iteration index t=0, give the p randomly chosen initial values for
Sl ;S

ð1Þ
l ðtÞ;Sð2Þ

l ðtÞ; . . . ;SðpÞ
l ðtÞ; with the associated weightings dðtÞi ¼ 1=p for 1pipp;

and specify a small positive value x for terminating the search.
Step 1: Boosting
1.
 Calculate the loss of each point in the population, namely

costi ¼ 1� jCðSðiÞ
l ðtÞÞj; 1pipp
2.
 Find

Sbest
l ðtÞ ¼ arg minfcosti; 1pippg

and

Sworst
l ðtÞ ¼ arg maxfcosti; 1pippg
|C(Σ)|

Σ
Σ(1) (2) (3)

Σ Σ
Σ Σ

(4)(5)

Fig. 1. Illustration of a simple weighted search optimization process.
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3.
1

kee
Normalize the loss

lossi ¼
costiPp
j¼1 costj

; 1pipp
4.
 Compute a weighting factor bt according to

Zt ¼
Xp

i¼1

dðtÞi lossi; bt ¼
Zt

1� Zt
5.
 Update the weighting vector

dðtþ1Þi ¼
dðtÞi blossi

t for btp1;

dðtÞi b1�lossi

t for bt41;

(
1pipp
6.
 Normalize the weighting vector

dðtþ1Þi ¼
dðtþ1ÞiPp
j¼1d

ðtþ1Þ
j

; 1pipp
Step 2: Parameter updating
1.
 Construct the (p+1)th point using the formula

Sðpþ1Þ
l ðtÞ ¼

Xp

i¼1

dðtþ1Þi SðiÞ
l ðtÞ
2.
 Construct the (p+2)th point using the formula

Sðpþ2Þ
l ðtÞ ¼ Sbest

l ðtÞ þ ðSbest
l ðtÞ � Sðpþ1Þ

l ðtÞÞ
3.
 Choose a better point (smaller loss value) from Sðpþ1Þ
l ðtÞ and Sðpþ2Þ

l ðtÞ to replace
Sworst

l ðtÞ; which will inherit the weighting d value from Sworst
l ðtÞ:1

Set t ¼ t þ 1 and repeat from Step 1 until

kSðpþ1Þ
l ðtÞ � Sðpþ1Þ

l ðt � 1Þkox

Then choose the lth regressor covariance matrix as Sl ¼ Sbest
l ðtÞ:

The algorithmic parameter that needs to be set appropriately is the population size
p. The population size depends on the dimension of S and the objective function to
be optimized. Generally, an appropriate value of p has to be found empirically. This
is very similar to for example the choice of population size in the genetic algorithm.
Each SðiÞ
l ; 1pipp; has an associated weighting value di : When Sðpþ1Þ

l or Sðpþ2Þ
l replaces Sworst

l ; it will
p the weighting value of Sworst

l :
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3.3. Repeated weighted optimization algorithm

The above weighted optimization algorithm performs a guided random search and
the solution obtained may depend on the initial choice of population. To derive a
robust algorithm that guarantees a global optimal solution, one may incorporate the
full idea of the scatter search [10–12] with this weighted optimization algorithm.
However, to avoid an overly complicated algorithm, we simply augment the
algorithm into the following repeated weighted optimization algorithm. The aim is
not to guarantee a global optimal solution. Rather it is to make sure that the
algorithm will arrive at similar solutions regardless of the initial choices of
population.

Initialization: Give a positive integer number M for controlling the
maximum repeating times, and choose a small positive number x1 for terminating
the search.

First generation: Randomly choose the p number of the initial population
Sð1Þ

l ; . . . ;SðpÞ
l ; and call the weighted optimization algorithm to obtain a solution

Sbest
l :

Repeat loop: For i=1:M

Set Sð1Þ

l ¼ Sbest
l ; and randomly generate the other p � 1 points SðiÞ

l for 2pipp:

Call the weighted optimization algorithm to obtain a solution Sbest

l :

If kSð1Þ

l � Sbest
l kox1
Exit loop;

End if
End for

Choose the lth regressor’s covariance matrix as Sl ¼ Sbest

l :

The important algorithmic parameter that need to be chosen appropriately is the
termination criterion x1: Basically, x1 determines whether the solutions obtained in
different runs of the weighted optimization are closely enough to be regarded as the
same solution. If a too small x1 is chosen, the loop may keep going for long time. To
safeguard against this, we also specify the maximum repeating times M. Again,
appropriate values for M and x1 depends on the dimension of S and how hard the
objective function to be optimized. Also the choice of p has some influence on the
choice of M and x1: Generally, these algorithmic parameters have to be found
empirically.
4. OLS algorithm for subset model selection

Once the full regression matrix G has been designed, the standard OLS algorithm
[3,4] can be used to select a subset model. Let an orthogonal decomposition of the
regression matrix be

G ¼ UA ð14Þ
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where

A ¼

1 a1;2 � � � a1;N

0 1 . .
. ..

.

..

. . .
. . .

.
aN�1;N

0 � � � 0 1

2
666664

3
777775 ð15Þ

and

U ¼ ½u1 u2 � � �uN � ð16Þ

with orthogonal columns that satisfy uT
i uj ¼ 0; if iaj: The regression model (4) can

alternatively be expressed as

y ¼ Uwþ e ð17Þ

where the orthogonal weight vector w ¼ ½w1 w2 � � �wN �
T satisfy the triangular system

Ah ¼ w: ð18Þ

Knowing A and w; h can readily be solved from (18).
For the orthogonal regression model (17), the MSE

SN ¼
1

N
eTe ð19Þ

can be expressed as

SN ¼
1

N
yTy�

1

N

XN

i¼1

/T
i /iw

2
i : ð20Þ

Thus the MSE for the l-term subset model can be expressed recursively as

Sl ¼ Sl�1 �
1

N
/T

l /lw
2
l : ð21Þ

At the lth stage of regression, the lth term is selected to maximize the error reduction
criterion [3,4]

DSl ¼
1

N
/T

l /lw
2
l : ð22Þ

The forward selection procedure is terminated at the Nsth stage if

SNs
oz ð23Þ

is satisfied, where the small positive scalar z is a chosen tolerance. This produces a
parsimonious model containing Ns significant regressors.
In this study, we should assume that an appropriate tolerance value z can be

chosen. It is worth emphasizing that the termination of the model construction
process can alternatively be decided using cross validation [17,20]. A simple method
is to have a separate validation data set. The model construction is based on the
training data set, while the performance of the selected model, the MSE (20), is
monitored over the validation data set. The construction process is terminated when
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the MSE over the validation data set stops improving. Instead of using the pure least
squares cost (20), it is also worth pointing out that other criteria can alternatively be
adopted for the orthogonal forward selection, and these include regularization,
optimal experimental design, and leave-one-out cross validation criterion [5,6].
5. Modeling examples

Two real-data sets were used to demonstrate the effectiveness of the proposed
sparse model construction algorithm. The population size p, the maximum repeating
times M and the termination criterion x1 were chosen empirically to ensure that the
OLS subset selection procedure could produce consistent final models with the same
levels of modeling accuracy and model sparsity for repeating runs.

Example 1. This example constructed a model representing the relationship between
the fuel rack position (input uk) and the engine speed (output yk) for a Leyland TL11
turbocharged, direct injection diesel engine operated at low engine speed. Detailed
system description and experimental setup can be found in [1]. The data set, depicted
in Fig. 2, contained 410 samples. The first 210 data points were used in training and
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Fig. 2. The engine data set: (a) system input uk ; and (b) system output yk :
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the last 200 points in model validation. The previous study [1] has shown that this
data set can be modeled adequately as

yk ¼ f sðxkÞ þ ek ð24Þ

with f sð	Þ describing the unknown underlying system and the system input vector
defining by

xk ¼ ½yk�1 uk�1 uk�2�
T ð25Þ

The previous results [5,6] have shown that when fitting a Gaussian kernel model
with a single common variance, s2 ¼ 1:69 is the optimal value for this kernel
variance. Since every training input data points were considered as a candidate
regressor’s center, there were 210 regressors for the full Gaussian kernel model. With
the tolerance level set to z ¼ 5:5� 10�4; the OLS algorithm selected a 19-term subset
model from the full regression model, and the resulting subset model is listed in
Table 1. The MSE values of the resulting model were 5:28� 10�4 for the training set
and 6:72� 10�4 for the validation set, respectively. Fig. 3 shows the corresponding
model prediction ŷk and the model prediction error ek ¼ yk � ŷk:
The proposed sparse model construction algorithm was then applied to construct

a generalized Gaussian kernel model. The algorithmic parameters of the repeated
Table 1

Subset model generated for the engine data set by the OLS algorithm with a Gaussian kernel model of a

single common variance

Step l Mean vector xl Diagonal covariance matrix Sl Weight yl MSE Sl � 100

0 1558.9

1 4.2823 5.0245 5.0245 1.69 1.69 1.69 �109.2247 73.9841

2 2.8236 3.7439 3.7439 1.69 1.69 1.69 2.4249 34.7312

3 4.5954 5.8200 5.8200 1.69 1.69 1.69 16.0325 8.3802

4 3.1978 5.8200 3.7439 1.69 1.69 1.69 5.0481 7.5403

5 3.9310 3.7439 4.5006 1.69 1.69 1.69 �2.0419 4.6502

6 4.2976 5.0439 5.0439 1.69 1.69 1.69 106.5281 2.9565

7 4.6183 4.5006 5.0051 1.69 1.69 1.69 0.1787 2.4999

8 3.2131 5.8006 5.8006 1.69 1.69 1.69 �58.8794 1.5953

9 4.5725 5.8006 5.8006 1.69 1.69 1.69 �17.0584 0.7767

10 3.9844 4.5200 4.5200 1.69 1.69 1.69 4.3978 0.5986

11 2.8618 3.7439 4.5200 1.69 1.69 1.69 25.1798 0.4682

12 3.4498 4.5200 3.7439 1.69 1.69 1.69 �0.8959 0.3327

13 3.2284 5.8006 5.8006 1.69 1.69 1.69 61.2593 0.2065

14 2.9381 3.7439 4.5006 1.69 1.69 1.69 �110.8486 0.1589

15 3.1520 5.8006 3.7245 1.69 1.69 1.69 �4.5398 0.1292

16 3.6866 5.8200 5.8200 1.69 1.69 1.69 �2.1195 0.1032

17 2.9763 3.7439 4.5200 1.69 1.69 1.69 91.5013 0.0758

18 3.3735 3.7245 4.5394 1.69 1.69 1.69 �22.2389 0.0579

19 3.5491 3.7439 4.5200 1.69 1.69 1.69 16.7227 0.0528
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Fig. 3. The engine data set: (a) model prediction ŷk ; and (b) model prediction error ek ¼ yk � ŷk using the

19-term Gaussian kernel model with a single common kernel variance.
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weighted optimization for kernel covariance fitting were chosen to be p = 37, M =
60 and x1 ¼ 0:0002: Using the same tolerance level of z ¼ 5:5� 10�4; the OLS
algorithm selected a 11-term subset model from the full generalized Gaussian kernel
model, and the obtained model is listed in Table 2. The MSE values of this model
were 5:09� 10�4 over the training set and 5:19� 10�4 over the validation set,
respectively. The model prediction and prediction error generated by this model are
illustrated in Fig. 4.

Example 2. This example constructed a model for the gas furnace data set (Series J
in [2]). The data set, illustrated in Fig. 5, contained 296 pairs of input–output points,
where the input uk was the coded input gas feed rate and the output yk represented
CO2 concentration from the gas furnace. All the 296 data points were used in
training, with the model input vector defined by

xk ¼ ½yk�1 yk�2 yk�3 uk�1 uk�2 uk�3�
T: ð26Þ

For this data set, the previous experiments have found out that it was difficult for the
existing state-of-art kernel regression techniques to fit a Gaussian kernel regression
model using a common kernel variance [6]. Various existing state-of-art kernel
regression techniques were then used in [6] to fit a thin-plate-spline regression model
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Table 2

Subset model generated for the engine data set by the OLS algorithm with a generalized Gaussian kernel

model

Step l Mean vector xl Diagonal covariance matrix Sl Weight yl MSE Sl � 100

0 1558.9

1 4.6030 5.8006 5.8006 4.6610 23.2494 18.7487 �52.9824 0.9292

2 4.5114 5.8006 5.8006 4.2126 22.5550 18.0605 53.9543 0.1655

3 4.4579 5.0245 5.8006 2.7926 14.5527 33.8069 �74.9670 0.1202

4 4.4503 5.0051 5.8006 3.5534 360.546 12.8974 �74.5696 0.1134

5 3.2284 5.8006 5.8006 311.554 12.6886 7.5157 �246.1931 0.1129

6 4.6183 5.0051 5.8006 4.8006 48.6543 12.6258 96.1724 0.1007

7 3.6637 5.8006 5.8006 190.214 12.6563 7.5715 245.7579 0.0898

8 4.3510 5.0245 5.0245 2.8708 6.8213 253.1952 13.8707 0.0813

9 3.1062 4.5394 3.7245 400.00 400.00 400.000 �2.5807 0.0642

10 4.3663 5.0439 5.8200 2.2056 40.4580 75.2890 50.1908 0.0592

11 3.9233 3.7439 4.5200 2.0241 327.7485 263.2715 �4.3783 0.0509

The kernel covariance matrices are determined by maximizing the correlation criterion using the repeated

weighted optimization algorithm.
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Fig. 4. The engine data set: (a) model prediction ŷk ; and (b) model prediction error ek ¼ yk � ŷk using the

11-term generalized Gaussian kernel model, each kernel having an individually tuned diagonal covariance

matrix.
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Fig. 5. The gas furnace data set: (a) system input uk ; and (b) system output yk :
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for this data set and the best result obtained required at least 30 model terms to
achieve a modeling accuracy of z ¼ 0:054:

The proposed sparse model algorithm was employed to construct a generalized
Gaussian kernel model for this data set. The kernel covariance matrices were first
determined using the repeated weighted optimization with the following algorithmic
parameters: p=100, M=60 and x1 ¼ 0:0001: With the modeling accuracy of z ¼
0:054; the OLS algorithm constructed a 20-term subset model from the full
generalized Gaussian kernel model, as is listed in Table 3. The model prediction and
prediction error generated by this model are shown in Fig. 6.
6. Conclusions

A novel construction algorithm has been developed for the generalized Gaussian
kernel model. Each kernel regressor in the pool of candidate regressors has an
individual diagonal covariance matrix, which is determined by maximizing the
absolute value of the correlation between the regressor and the training data using a
repeated weighted search optimization. The standard orthogonal least squares
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Table 3

Subset model generated for the gas furnace data set by the OLS algorithm with a generalized Gaussian

kernel model

Step l Mean vector xl /diagonal covariance matrix 0:01� Sl Weight yl MSE Sl

0 2844.3

1 59.5 58.0 55.6 �2.053 �2.330 �2.4730 �267.5601 1.2067

5.0681 94.9960 58.5221 272.6948 158.8822 1.3383

2 57.2 56.4 55.4 �1.474 �1.746 �1.8910 221.7796 0.1549

3.7912 16.1987 213.2852 238.2681 51.3793 1.0180

3 55.0 55.6 56.8 �1.525 �1.086 �0.6200 95.2771 0.1307

57.7623 270.1883 3.8217 243.6048 0.4934 261.9284

4 56.0 54.3 53.0 �0.204 �0.528 �0.7400 �40.7100 0.1177

2.1951 158.9803 343.7560 223.1368 1.3853 357.1565

5 56.4 57.0 57.4 �0.848 �0.713 �0.6250 �349.0073 0.1061

9.6873 6.0958 85.0066 328.2904 0.9786 295.3635

6 51.4 52.8 54.5 �0.748 �0.458 0.0930 �81.1253 0.0974

49.5275 396.8625 2.7015 47.2399 0.4224 61.6835

7 57.3 57.0 56.2 �0.582 �0.634 �0.8130 �281.8031 0.0828

2.5829 67.9224 139.6028 9.7573 91.9482 92.2856

8 60.4 60.0 59.5 �1.261 �1.739 �2.0530 564.5599 0.0755

4.7792 246.5125 215.1170 43.7362 4.4022 208.8816

9 51.6 52.8 53.7 1.683 1.746 1.6070 �375.1686 0.0716

320.0416 393.5093 7.9007 64.7479 302.4567 212.9779

10 53.2 53.6 53.6 0.918 0.858 0.7820 355.5893 0.0639

400.0000 12.1366 32.3310 318.6978 400.0000 86.1125

11 53.8 53.7 53.6 0.254 �0.007 �0.2290 �150.5212 0.0596

32.2065 49.2961 223.7835 19.9128 232.0460 0.4760

12 54.0 54.1 53.9 0.301 0.161 0.0600 �57.9844 0.0571

275.6604 3.0180 107.5660 313.2379 94.6038 32.9662

13 50.6 49.7 49.3 �1.269 �1.099 �0.7140 �153.0328 0.0569

385.9776 71.0925 94.5789 239.7465 0.2531 23.1095

14 54.4 52.8 51.3 �1.456 �1.825 �1.7990 �17.1629 0.0561

34.9812 236.0426 291.7318 50.2033 46.0414 0.4039

15 56.0 56.4 56.4 0.605 0.709 0.6620 �116.3539 0.0557

3.3890 12.3638 5.9307 337.1134 15.9024 196.7020

16 52.3 51.2 50.4 �0.194 �0.424 �0.6030 �111.9460 0.0555

257.1146 84.5112 387.4997 274.5492 181.3500 0.3622

17 52.6 52.8 53.3 �0.759 �0.493 0.0 196.3985 0.0553

325.0471 315.4355 32.2995 145.7428 0.3241 271.2281

18 53.6 53.7 54.4 0.782 0.556 0.2090 85.7510 0.0550

265.5988 115.8858 1.9625 164.8533 184.6377 133.1301

19 54.6 55.9 55.9 0.109 0.484 0.6430 171.1110 0.0545

121.0842 2.2050 74.6179 23.9226 201.9486 215.9408

20 54.3 53.0 52.6 �0.528 �0.740 �0.8240 174.7513 0.0540

105.1096 102.6449 14.6421 47.2963 80.0091 0.2617

The kernel covariance matrices are determined by maximizing the correlation criterion using the repeated

weighted optimization algorithm.

X.X. Wang et al. / Neurocomputing 62 (2004) 441–457454
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Fig. 6. The gas furnace data set: (a) model prediction ŷk ; and (b) model prediction error ek ¼ yk � ŷk using

the 20-term generalized Gaussian kernel model, each kernel having an individually tuned diagonal

covariance matrix.

X.X. Wang et al. / Neurocomputing 62 (2004) 441–457 455
algorithm is then applied to select a parsimonious model from the full regression
matrix. Compared with the existing kernel regression modeling approaches which
adopt a single common kernel variance for all the regressors, the proposed method
has the advantages of improving modeling capability and producing sparser models.
These advantages have been demonstrated by the experimental results involving two
real data sets.
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