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ABSTRACT

In this paper, two subband implementations of a frequency

invariant beamformer (FIB) are studied. In the first struc-

ture, the received array signals are split into subbands and

an FIB is operated in each of the corresponding decimated

subbands, with a potential of achieving a lower computa-

tional complexity. As the spatio-temporal distribution of

the subband signals is different from the original fullband

signal, a modified design method of the FIB is proposed.

Based on the subband implementation, we then change the

sensor spacings of different subband signals so that lower

frequency bands have a larger spacing, which results in a

class of FIBs with scaled aperture with improved perfor-

mance in lower frequencies. Several design examples are

given to show the performance of our new structures.

1. INTRODUCTION

In the past, broadband beamformers have been stud-

ied extensively due to their applications to sonar, radar

and communications [1]. Amongst them is a class of ar-

rays with frequency invariant beam patterns [2, 3]. Most

recently, a new class of frequency-invariant broadband ar-

rays, which exploits the Fourier transform relationship be-

tween the array’s spatio-temporal distribution and its beam

pattern, has been proposed [4]. Starting from the desired

frequency-invariant beam pattern, by a series of substitu-

tions a simple design method was found for frequency in-

variant beamforming design. This method can be applied

to 1-D, 2-D and 3-D broadband arrays. A previously pro-

posed frequency invariant linear array [5] can be regarded

as a special case of this new class of arrays.

In this paper, we further exploit the potentials of this

new class of arrays and present two subband implementa-

tions of it. In the first structure, the received array signals

are split into subbands and a frequency invariant beam-

former (FIB) is operated in each of the corresponding dec-

imated subbands. When the spatio-temporal dimension of

the fullband array becomes large enough, the subband im-

plementation can provide a better performance at lower fre-

quencies with a lower computational complexity, although

the frequency invariant property on the whole is not as good

as the fullband FIB due to the aliasing problem. As the

spatio-temporal distribution of the subband signals is dif-

ferent from the original fullband signal, a modified design

method of the FIB is proposed. In a refinement, we mod-

ify this subband FIB for use with nested arrays. Several

design examples are given to show the performance of our

new structures.

This paper is organised as follows. A brief review of

FIBs is given in Section 2. We study its subband implemen-

tation in Section 3 and consider a nested array in Section 4.

Design examples are given in Section 5, and conclusions

drawn in Section 6.

2. FREQUENCY INVARIANT

BEAMFORMING

Although the method proposed in [4] can be applied to 1-D,

2-D and 3-D broadband arrays, without loss of generality,

we here focus only on the equispaced linear array.

Consider an equally spaced linear array with element

spacing of dx and signal sampling period T . Its beam pat-

tern P (ω, θ) is given by

P (ω, θ) =

∞∑
m,n=−∞

d[m, n] e−jm ω sin θ
c

dx e−jnωT , (1)

where d[m, n] is the coefficient in the n-th position of the

m-th sensor’s tapped-delay line (TDL).

To avoid aliasing in both the spatial and temporal do-

mains, T should be half of the period of the maximum sig-

nal frequency of interest and dx half of its wavelength λmax.

Thus we have dx = λmax
2

= cT and ωT = Ω, where Ω is
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Fig. 1: A general structure of a K-channel filter bank with

a decimation factor of N .

the normalised angular frequency. Therefore, (1) can be

rewritten as

P (Ω, θ) =

∞∑
m,n=−∞

d[m, n] e−jmΩ sin θ e−jnΩ . (2)

Substituting Ω1 = Ωsin θ and Ω2 = Ω into (2) yields

P (Ω1, Ω2) =

∞∑
m,n=−∞

d[m, n] e−jmΩ1 e−jnΩ2 . (3)

As the spatio-temporal spectrum of the impinging signal

lies on the line Ω1 = Ω2 sin θ, a method can be developed

to obtain a frequency invariant beam pattern by following

the design below.

Step 1. From the desired beam pattern P (sin θ) we de-

rive the frequency response of a 1-D filter F (Ω̂), which is

periodic with 2π, defined over one period as

F (Ω̂) = P (Ω̂/π) for Ω̂ ∈ [−π; π). (4)

Step 2. With the substitution Ω̂ = Ω1
Ω2

π, for (Ω1, Ω2) ∈
[−π; π) we have

P (Ω1, Ω2) =

{
F ((Ω1/Ω2)π) for Ω2 6= 0

a(Ω1) for Ω2 = 0
, (5)

where a(Ω1) is an arbitrary function with finite values. Note

that P (Ω1, Ω2) is a function with a period of 2π.

Step 3. Applying a 2-D inverse Fourier transform to P (Ω1, Ω2)

results in an infinite support of d[m, n]. As it is difficult to

obtain result analytically, we can apply the 2-D inverse DFT

as an approximation by sampling P (Ω1, Ω2). In either case,

the resulting d[m, n] needs to be delayed along the n axis

for reasons of causality and to be truncated according to

the number of sensors and the TDL length.

3. SUBBAND IMPLEMENTATION

Fig. 1 shows the general structure of a K-channel filter bank

with a decimation factor N . For the subband implementa-

tion of the FIB, each of the received array signals xm[n],
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Fig. 2: Subband implementation of the frequency invariant

beamformer.

m = 0, 1, · · · , M − 1, is split into K subbands by an analy-

sis filter bank and the corresponding subband signals form

K sets of subband arrays. An FIB is operated in each of

the subband arrays and the processed subband signals are

then combined together by a synthesis filter bank into the

fullband output. The structure is shown in Fig. 2, where

the blocks labeled “A” are the analysis filter banks and the

block labeled “B” is the synthesis filter bank.

The advantage of this subband implementation is sim-

ilar to the subband implementation of adaptive filters [6],

i.e. due to the subband decomposition and decimation, the

length of each of the TDLs of the subband frequency inva-

riant beamformer can be shorter than the original fullband

beamformer to achieve a similar performance, in accordance

with the sampling rate reduction by a factor of N < K.

This can be explained by the fact that N subband FIBs are

trying to model the original fullband beamformer to have

the same spatio-temporal filtering effect.

Since the subband FIBs have a shorter length and op-

erate at a lower rate, the computational complexity of the

whole system can be much lower than the fullband imple-

mentation, when the fullband beamformer’s TDLs are suf-

ficiently long to render the additional filter bank operations

negligible.

For the design of the subband beamformer, because the

normalised signal angular frequency Ω̃ in decimated sub-

bands has changed after decimation, we need to modify the

method in Sec. 2 to fit the new scenario.

For the design of the i-th subband beamformer, at first,

we need to find the relationship Ω̃ = Si(Ω) between the

decimated subband Ω̃ and the fullband Ω. Suppose the

spectrum of the input signal to the analysis filter bank is

X(ejΩ), then the output spectrum Yi(e
jΩ̃) of the i-th anal-



ysis filter after decimation is given by [7]

Yi(e
jΩ̃) =

1

N

N−1∑
p=0

X(ej( Ω̃−2pπ
N

)) . (6)

We can find each Ω̃ = Si(Ω) according to this equation.

For the i-th subband beamformer, its response to the

decimated subband input signal can be written as

P̃i(Ω̃, θ) =

∞∑
m,n=−∞

di[m, n] e−jmΩ sin θ e−jnΩ̃ , (7)

where di[m, n] is the coefficients of the i-th subband beam-

former. We use the same phase difference e−jΩ sin θ between

adjacent sensors as that of the fullband beamformer in (2),

because it does not change after decimation. For its re-

sponse to the original fullband input signal, we have

P̃i(Si(Ω), θ) =

∞∑
m,n=−∞

di[m, n] e−jmΩ sin θ e−jnSi(Ω) . (8)

By substituting Ω1 = Ω sin θ and Ω̃2 = Ω̃ into (7), we have

P̃i(Ω1, Ω̃2) =

∞∑
m,n=−∞

di[m, n] e−jmΩ1 e−jnΩ̃2 . (9)

Thus, we can obtain di[m, n] by applying the inverse Fourier

transform to the desired subband response P̃i(Ω1, Ω̃2).

As Ω̃ = Si(Ω) and Ω2 = Ω, we also have Ω̃2 = Si(Ω2), then

P̃i(Ω1, Si(Ω2)) = P (Ω1, Ω2) (10)

for the i-th subband.

From the discussion above, we obtain a modified method

applicable to the subband beamformer using the inverse

DFT.

Suppose the dimension of the i-th subband beamformer

is Mi × Ji,where Mi is the sensor number and Ji the TDL

length. We first obtain P (Ω1, Ω2) from the fullband beam-

former design method. Then we uniformly sample Ω1 and

Ω̃2 in (−π; π] with Mmax × Jmax points, where Mmax >=

Mi and Jmax >= Ji. We calculate P̃i(Ω1, Ω̃2) on these

points according to (10). However, when the subband alias-

ing after decimation is too large, one value of Ω̃2 (Ω̃) will

correspond to several different values of Ω2 (Ω), where the

i-th subband signal before decimation is not zero. Thus we

will not be able to get unique values P̃i(Ω1, Ω̃2) on those

sampling points. To avoid this problem, we need to employ

oversampled filter banks to suppress the aliasing effect to

an acceptable level, such as the oversampled GDFT filter

banks [8], where although one value of Ω̃2 (Ω̃) still corre-

sponds to several different values of Ω2 (Ω), which is de-

cided by (6) and can not be changed, only on one value of

Ω2 (Ω), the i-th subband signal before decimation is signif-

icantly large compared to the other corresponding values of

Ω2 (Ω) and we will take that value to calculate the unique

P̃i(Ω1, Ω̃2). Applying the inverse DFT to the result, we

then get di[m, n] with a dimension Mmax × Jmax, which

needs to be shifted and truncated to fit the real dimension

Mi × Ji.

4. FREQUENCY INVARIANT

BEAMFORMING – SCALED APERTURE

The spatial resolution of a beamformer is reciprocally pro-

portional to both the aperture D of the sensor array and the

frequency Ω of an impinging waveform [1], therefore, it is

difficult to achieve a constant beamwidth for lower frequen-

cies. Although the design of the FIB becomes very simple

by the method proposed in [4] and a constant beamwidth

is achieved over a very large bandwidth, it is still frequency

variant for the lower frequency band. To extend the con-

stant beamwidth property to a frequency as low as possible,

we here propose the frequency invariant beamformer with

scaled aperture.

The idea is similar to the one proposed in [9] and re-

flected in the structure shown in Fig. 3, depicting the ex-

emplary case for M = 4 sensors for each octave and beam-

formers operating in 4 uniformly split decimated subbands,

with each having a bandwidth π/4, whereby the array sig-

nals are drawn from a total of 8 nested sensors. For the 3

octave groups of subband FIBs, processor #0 operates on

the lowest band, processors #1 form the second octave, and

the remaining two processors are responsible for the high-

est octave band covered by two subbands. As indicated in

Fig. 3, not all subbands are required for processing from

each sensor.

As the array spacing is different for each octave of sub-

band beamformers, we need to change the subband beam-

former design procedure correspondingly. In Fig. 3, beam-

formers 3 and 2 have a standard spacing of d = λmax
2

, so we

can apply the previous design procedure directly; for beam-

formers 1 and 0, they have a spacing of λmax and 2λmax,

respectively, then we must consider this difference in our

design. Suppose the spacing of the subband beamformer is

σ times the standard spacing λmax
2

, then its response to the

original fullband input signal is

P̃i(Si(Ω), θ) =

∞∑
m,n=−∞

di[m, n] e−jmσΩ sin θ e−jnSi(Ω) ,

(11)

where di[m, n] is the coefficients of the i-th subband beam-

former. By substituting Ω̃1 = σΩsin θ = σΩ1 and Ω̃2 =
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Fig. 3: Proposed beamforming structure with scaled array

aperture for processors in various octave bands.

Si(Ω) into (11), we have

P̃i(Ω̃1, Ω̃2) =

∞∑
m,n=−∞

di[m, n] e−jmΩ̃1 e−jnΩ̃2 , (12)

The relationship between the subband beamformer response

and the fullband beamformer response is given by

P̃i(σΩ1, Si(Ω2)) = P (Ω1, Ω2) . (13)

Then the design can be modified as the following.

First, we uniformly sample Ω̃1 and Ω̃2 in (−π; π] with

Mmax×Jmax points. Then we obtain the response P̃i(Ω̃1, Ω̃2)

on these points according to (13). With the inverse DFT,

the temporal response di[m, n] with a dimension Mmax ×
Jmax is then obtained. After proper shift and truncation,

we get the final result with the real dimension Mi × Ji.

5. DESIGN EXAMPLE

To show the improved performance by our method, we

give one example for each of the implementations. The

desired ideal response of our design is given by

P (sin θ) =
1

5

2∑
m=−2

e−jmπ sin θ . (14)
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Fig. 4: The resultant beam pattern for the equispaced full-

band linear array.

The fullband array has a dimension of 12 × 16 and the

designed result is given in Fig. 4, which has a very good

frequency invariant property for the range [0.5π; π].

For the subband implementation, we employ the 6-channel

oversampled GDFT filter banks with decimation ratio 4 [8].

Without loss of generality, we here only consider real-valued

sensor signals, so that we only need to process half of the

6 subbands and in total there are 3 subband beamformers,

each of which has a dimension of 12 × 8. The resultant

beam pattern by our subband method is shown in Fig. 5,

which is frequency invariant for frequencies even as low as

0.4π, although it seems that the frequency invariant prop-

erty on the whole is not as good as the fullband example

due to the aliasing problem. Note that the subband beam-

former dimension is only half of the fullband beamformer,

so the computational complexity of the beamformer part is

reduced. But, in this case the computational complexity of

the whole subband implementation is higher than the full-

band case, as the extra complexity introduced by the filter

banks part is higher than the complexity reduced. However,

we can expect when the array dimension is larger enough,

the subband implementation can have a lower computa-

tional complexity.

Next, for the array with scaled aperture, we employ the

same filter banks. There are two octaves. For each of them,

the subband beamformer has a dimension of 12×8. because

of the increased complexity of the filter banks part, this

scaled aperture system has a higher complexity than the

subband implementation, but with a better performance,

as shown in Fig. 6, where the frequency invariant property

extends to frequencies lower than 0.2π. However, the fre-
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Fig. 5: The resultant beam pattern for the equispaced sub-

band linear array.
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Fig. 6: The resultant beam pattern for the scaled aperture

array.

quency invariant property on the whole is not as good as

the above two examples.

6. CONCLUSIONS

Two subband implementations of the frequency invariant

beamformer have been studied. In the first structure, the

received array signals are split into subbands and a fre-

quency invariant beamformer is operated in each of the cor-

responding decimated subbands. It has an improved per-

formance at lower frequencies and a potential of achieving a

lower computational complexity. For the second, we change

the sensor spacings of different subband signals, resulting in

a class of FIBs with scaled aperture with further improved

performance at lower frequencies. However, there is also a

problem with the two implementations, i.e. the degraded

frequency invariant property on the whole, due to the alias-

ing problem of the filter banks.
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