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Abstract. The emergence of the UML as a de-facto standard for object-oriented modelling has
been mirrored by the success of the B method as a practically useful formal modelling technique.
The two notations have much to offer each other. The UML provides an accessible visualisation of
models facilitating communication of ideas but lacks formal precise semantics. B, on the other
hand, has the precision to support animation and rigorous verification but requires significant effort
in training to overcome the mathematical barrier that many practitioners perceive. We utilise a
derivation of the B notation as an action and constraint language for the UML and define the
semantics of UML entities via a translation into B. Through the UML-B profile we provide
specialisations of UML entities to support model refinement. The result is a formally precise
variant of UML that can be used for refinement based, object-oriented behavioural modelling. The
design of UML-B has been guided by industrial applications.
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1 Introduction

Formal methods have long held the promise of providing a much-needed solid engineering
foundation for the ‘art’ of programming computers. Formal specifications can be used to
provide an unambiguous and precise supplement to natural language descriptions and can be
rigorously validated and verified leading to the early detection of specification errors.
Experiential reports of their use have been favourable and yet the adoption of formal methods
has been limited. Academic interest in formal methods has been lively with many active
research groups throughout the world and plenty of conferences dedicated to their discussion.
Despite this interest, uptake within industry has mainly been limited to safety critical
applications (sometimes due to mandate by regulatory authorities) and experimentation by a
few pioneering market leaders. It seems that practitioners, in their constant search for an edge
in productivity, judge formal methods to be insufficiently beneficial to outweigh pragmatic
problems. However, proponents have countered popular myths that sceptical practitioners
have raised [Hall, 1990, Bowen and Hinchey, 1995]. Formal specification is the first step to
using formal methods and is, in itself, a useful activity even if a fully formal development
process is not followed. However, even this first step is not being adopted to any great degree
within industry.

Since formal specification is the first step to using formal methods it is also the first barrier
that must be overcome if the benefits of full formal development, including refinement and
verification, is to be achieved. Our research [Snook, 2002] has explored some of the barriers
to the widespread use of formal specification in industry. Formal specification bears many
similarities with program design. It is convenient and useful when thinking about barriers to
formal specification, to think about whether similar barriers exist in programming; and if so,
how they have been overcome. The comparison with programming is useful because
programming is a more developed and researched area and is also the main activity and
primary goal of the people that we would like to help overcome the barriers to formal
specification. These people have a good intuitive ‘feel’ for attributes of programming, making
comparisons meaningful in a practical sense.

In [Amey, 2003], a practitioner that uses formal methods reports that customers are often
“aghast” at the idea of formal methods being used to develop their products and might say
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“couldn’t you use UML”. He goes on to suggest that the area that offers the greatest promise
for overcoming such prejudices is ‘formality by stealth’ and cites semantically strengthened
UML as an example. We wouldn’t wish to impose formal methods on practitioners against
their will in the way that Glass warns of [Glass, 2004 ], but aim to address some of the barriers
they face. Our experience [Mermet, 2004] has been that some practitioners, at least, would be
keen to use formal specification but are put off by the pre-requisite of having to work in a
completely new way. An advantage of formal UML is that it minimises the cost and risk of
adoption by integrating with existing methods. Automatic code generation from UML has
already set a precedent by enforcing a strengthening of UML semantics. Similarly,
automatically generating a formal specification from UML defines a rigorous semantics.

The B language [Abrial, 1996] is a state model-based, formal specification notation that has
strong structuring mechanisms and good tool support. B is designed to support formally
verified development through refinements from specification through to implementation. To
do this it provides tool support for generating and proving proof obligations at each stage of
refinement. Formal verification of proof obligations ensures that a specification is consistent
throughout its levels of refinement. There are two commercial proving tools for B, Atelier-B
[ClearSy, 2003] and the B-Toolkit [B-Core, 1996]. However, proof is a difficult step for
practitioners to take initially. A more accessible, automated form of verification is model
checking [Clarke, Grumberg and Peled, 1995]. A B model checker, ProB, has been developed
at the University of Southampton [Leuschel and Butler, 2003]. Equally important is
validation, which gives assurance that the specification is useful (i.e. the right specification).
Without proper validation there is a real danger of ending up with the wrong specification
even if it is fully proven to be consistent. Animation, which allows us to observe the
simulated behaviour of a specification, is a useful tool for performing validation. ProB
includes an animator for this purpose. To make large-scale development feasible, B provides
structuring mechanisms to decompose the specification and its subsequent refinements. These
B components are abstract machines, refinements and implementations. A B module consists
of a number of B components including at the most abstract level, a machine and possibly
several levels of refinement finishing, at the most concrete level, with an implementation. An
implementation may utilise other B modules by invoking the operations of their abstract
machines. B components allow an abstract state to be partitioned so that parts of the state can
be encapsulated and segregated, thus making them easier to comprehend, reason about and
manipulate. One component may include another machine. If a component, C, includes
machine M, the state of M is visible to C but only alterable via M's operations. Since machine
inclusion is intended to provide independently provable units shared write access is
disallowed. A B invariant is a property of the state which operations are expected to maintain.

The example in Figure 1 is a telephone book expressed as a B machine.



MACHINE phonebook

SETS NUMB ; NAME_SET
VARIABLES NAME , pbook
INVARIANT NAME e P(NAME_SET) A pbook e NAME — NUMB
INITIALISATION NAME =& | | pbook =g
OPERATIONS
add (numb) =

PRE numb e NUMB THEN
SELECT humb & ran(pbook) THEN
ANY name WHERE name e NAME_SET-NAME THEN

NAME = NAME u {name} | | pbook(name):=numb

END
END

END;
remove (name) =
PRE name € NAME THEN
NAME = NAME - {name} | | pbook = {name} < pbook
END;
numb «— lookup (name) =
PRE name € NAME THEN

numb := pbook(name)
END
END

Figure 1 — B specification of a telephone book

In the B notation, invariants are used to define the type of each variable. In this case, the
variable, NAME, represents the set of names that are currently in the phone book. NAME is
declared as belonging to the powerset’ of NAME_SET, the set of all possible names. The
variable, pbook, represents the phone book mapping names to numbers. pbook is declared to
be an injective’ function ensuring that numbers in the phonebook are unique. Initially, pbook
is empty. In the machine's operations, preconditions define the type of any arguments.
Additional ‘guards’ may be specified on the arguments or on state variables. For example, in
the add operation, numb must not belong to the range of pbook. Also in the add operation an
unused name is selected non-deterministically using an ANy selector and its corresponding
phonebook number is set, pbook(name):=numb, via indexed assignment. Operation
behaviour is defined via 'substitutions' that show how the final state of machine variables
depends on their initial state and the arguments. (Any state variables not defined in an
operation body are not altered by it). Operations may return values in which case, the
identifier(s) representing the return value(s) are defined at the beginning of the operation
signature (e.g. numb in operation lookup). Other symbols used in the example are: set union,
u, and domain subtraction®, <.

Semi-formal notations are notations that provide a set of symbols to represent specific roles in
the description of a system, but have a loosely defined semantics. The use of a syntactically
consistent notation generally brings a more formal feel to descriptions of systems than an
English language description would. This can be misleading as the lack of a precise semantics
leaves the description open to different interpretations. The Unified Modelling Language
[Rumbaugh, Jacobson & Booch, 1998] is a notation for use in modelling object-oriented
designs that is popular in industry. The UML has been criticised for lacking a formal

% the powerset, P(S) of a set, S, is the set of all subsets of S.

? an injective function is one in which each element of the range is mapped to by at most one element of the
domain

* domain subtraction removes all the maplets of a relation that emanate from the elements in the given set



semantics and hence being ambiguous. Allowing different users to apply their own semantic
interpretations may have been a factor in its growth and helped in its development by
allowing extensive experimentation. Now that UML is established, work is underway to
provide a stronger semantic underpinning for its next version, UML2.0. This will allow
rigorous verification and validation of UML models. A key feature of UML is its extensibility
mechanisms, which allow users to develop their own semantic profiles for particular
modelling domains. Perhaps the main driving force behind the adoption and development of
the UML has been its ability to handle complexity [Booch, 2002] and facilitate reuse. (In part
due to its object-oriented basis but also due to its modelling organisational facilities).
Encapsulation, abstraction, inheritance, polymorphism and dynamic binding are key factors in
this approach but introduce assurance and verification difficulties such as demonstrating
traceability of requirements and verifying valid inheritance properties. This is especially
important in safety critical application and has led to the formation of the OOTiA (Object-
Oriented Technology in Aviation) working group’ to address safety and certification issues
when object-oriented software is used in airborne applications. Integration of formal
techniques can solve some of these concerns by providing the necessary rigorous verification
[Crocker, 2003]. Although most use of UML so far seems to have been as a low-level design
tool (the trend has been for model-code integration tools) the OMG’s drive for model driven
development indicates that future trends will be for it to be used at higher levels supported by
transformations to the platform dependent level. For this to be workable platform independent
models will need to be precise and integration with formal specification will contribute
greatly.

1.1 Integrating Formal and Semi-Formal Notations

An integration of semi formal and formal notations may address the lack of formal semantics
of semi formal notations while making formal specification more approachable. In a survey of
industry, Craigen, Gerhart and Ralston [1995] found that better integration of formal methods
with existing software assurance techniques and design processes was commonly seen as a
major goal. They concluded, “Successful integration is important to the long term success of
formal methods”. Fraser, Kumar and Vaishnavi [1994] describe a framework for classifying
formal specification processes and choose the degree of transitional semiformal stages as
being the most significant distinguishing characteristic. Jackson [2000] has developed a
formal notation, Alloy and associated tool the Alloy Analyzer. The Alloy notation has a
partial graphical equivalent notation in which state can be expressed. This can then be
converted into the textual version of the notation where operations can be added and analyses
performed. Without tools to investigate the implications of different structures however, the
graphical format is limited to illustration of structure. The work of several research groups
that have developed integrations between UML and B are described later. The precise UML
group® is a collaborative effort to precisely define UML semantics via formalisation. The
UML already has its own formal constraint notation, OCL [Warmer and Klepp, 2003].
Despite its aim to be more approachable to practitioners by avoiding mathematical symbols, it
has not been very popular with practitioners. This may be due to the concentration on UML as
a visual code notation (when constraints aren’t useful). OCL has been criticised by some
formal methods users for being cumbersome and awkward to use compared to traditional set
based modelling notations [Vaziri and Jackson, 1999]. Our main reasons for not using OCL
are that it is designed as an annotation notation whereas we require a full textual specification
of the model elements for tool manipulation. Also, tool support for B is more mature than for
OCL although this is improving [Toval et.al. 2003].

3 http://shemesh.larc.nasa.gov/foot/

6 (http://www.cs.york.ac.uk/puml/maindetails.html).
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1.2 Difficulties translating from UML to B

At first glance it may seem that B has many features similar to UML, such as encapsulation of
operations with associated state variables. However, one soon finds that a simple translation
from classes to machines is problematic and other mappings are needed. This section
identifies features of the B language that make it difficult to map object-oriented models to B.
These features are, in general, due to the main purpose of B, which is to facilitate modular
proof of large systems. The main motivation for translating UML into B is to enable design
refinements to be formally proven. Therefore, for a translation to be useful it is important that
the B is reasonably natural and does not complicate the proof process.

B is not object-oriented. A fundamental feature of object-orientated methods is the ability to
model classes of objects via abstract data types. B has an encapsulation mechanism
(machines) that allows variables to be grouped with the operations that act upon them. It is
also possible, via machine renaming, to instantiate several instances of a machine. However,
there is no mechanism to use the behaviour defined in this way to specify the behaviour of an
indeterminate or variable set of instances. For example, Z [Spivey, 1988] has ‘promotion’
which enables schemas to be used to define a behaviour that is then promoted and bound to a
set of instances at a higher level. This limitation is overcome by explicitly modelling the set
of instances within the B and modelling each class feature with a function whose domain is
the set of instances as will be described later.

Restrictions on B component and variable access. B contains restrictions on the way that
operations can be called between and within machines. These restrictions are necessary in
order to achieve composition of proof. The restrictions are as follows:

e A machine cannot have more than one other machine that makes calls to its
operations. This means that, if a class-machine mapping is used, only one other class
can access a class.

e There must not be any loops within the calling structure of a set of machines. This
means that, if a class-machine mapping is used, only hierarchies of navigable
associations can be translated and bi-navigable associations cannot be used.

e Operations cannot call other operations within the same machine. This can be avoided
by repeating the substitutions of the ‘called’ operation within the ‘calling’ operation
in place of the call. The disadvantages of repeating blocks of substitutions can be
avoided by using B definitions (a text substitution, macro facility).

e Simultaneous calls to several operations of another machine are not allowed. This
means that, if a one to one mapping between class methods and machine operations is
used, class methods that simultaneously modify multiple instances of another class
cannot be translated to valid B. This can be overcome by constructing a single
operation of the associated class that alters the attribute values for multiple instances
in a single substitution.

The majority of work in translating UML to B [LeDang and Souquieres, 2001, Lano et.al.
2004] has started with the aim of translating each class to a B machine adding various
strategies such as additional machines, to cater for the restrictions described above. This can
lead to a complicated machine structure, which, although syntactically correct, is difficult to
verify. In contrast, our approach concentrates on ease of proof. Initially we achieved this by
restricting the UML class structures to those that can be mapped into B machines without
contravening the restrictions mentioned above (i.e. only hierarchical tree structures of
unidirectional associations could be used). In order to allow unconstrained association
topologies, we have now developed a translation mapping, where a complete class diagram is
translated into a single B component. This is the approach presented in this paper. Structure is
provided by the UML rather than by B. Semantics is provided in the form of attached



constraints and action specifications and proof and refinement are achieved via translation to
B. Thus the limitations mentioned above are overcome.

1.3 UML-B

This paper introduces a profile of the UML called UML-B [Snook, Oliver and Butler, 2004],
illustrates its application through some small case studies and outlines how formal refinement
may be applied to UML-B models. UML-B is precise and semantically well defined via
equivalence to B. UML-B includes a condition and action language, uB, derived from B. A
translator tool, U2B [Snook and Butler, 2004], is available so that B verification and
validation tools can be used. To give a flavour of UML-B, consider the specification of the
telephone book in Figure 2. The classes, NAME and NUMB represent people and telephone
numbers respectively. The association role, pbook, represents the link from each name to its
corresponding telephone number. Multiplicities on this association ensure that each name has
exactly one number and each number is associated with, at most, one name. The table shows
uB conditions and actions for some of the operations. The add operation of class NAME has
the stereotype <<create>> which means that it adds a new name to the class. It takes a
parameter numb, which must be an instance of the class, NUMB, but not already used in a link
of the association pbook (see uB operation guard), and uses this as the pbook link for the new
instance (see uB operation action). This specification is equivalent to the B version
introduced in Figure 1.

NAME

+pbook NUMB

$<<create>> add(numb : NUMB)
$<<destroy>> remove() 0..1 1
Slookup() : numb

operation guard action

add numberan($pbook) pbook:=numb
remove - -

lookup - numb:=pbook

Figure 2 — UML model of a telephone book
2 Motivation

2.1 Barriers to formal specification

Our main goal is to overcome barriers to enable formal methods to be used in industry.
Through previous research [Snook and Harrison, 2001, 2004] and collaborative projects
MATISSE’ and PUSSEE® we have found that, given suitable training, software practitioners
have little problem with understanding and using the kinds of mathematical notations that
underpin current formal specification languages. We found that the main difficulty is in
abstracting. This manifests itself in two forms, layering models into levels of abstraction and
choice of coherent and useful abstractions within the levels.

7 Methodologies and Technologies for Industrial Strength Systems Engineering. IST-1999-11435
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Firstly, designers invariably launch straight in at a detailed level. They are primarily focused
on production and hence model their ideas for building a device. They then enhance the
model adding more and more detail in order to make it complete before generating code. The
problem with this approach is that the model is incomplete until a very late stage. Since one
of the main advantages to modelling is to verify and validate models at earlier stages (rather
than the traditional approach of waiting until the code is available to test) most of the
motivation for using formal models is lost. The solution to this problem may lie partly in
training but also, modelling notations and processes could be improved. For example, we
found that UML 1.4 lacks facilities for modelling in abstract-refinement layers (although
UML 2.0’s components and hierarchical classes may address this to some extent). If designers
are not used to abstract modelling with informal notations they are unlikely to be able to do so
with formal notations. The second problem is choosing a useful and coherent set of
abstractions to provide modelling entities. In order to investigate these difficulties in more
detail we used a framework for assessing notations and interfaces called cognitive dimensions
[Green, 1989]. Cognitive Dimensions provide a broad-brush qualitative tool for reasoning
about the relative merits of information systems with respect to particular types of tasks. The
cognitive dimensions framework consists of 14 terms that describe generalised facilities of
information systems, notations or artefacts. Here we summarise the main insights we gained
with respect to writing specifications in a formal notation. A fuller consideration is included
in [Snook, 2001]. The main problems in writing a formal specification are the need to commit
to abstractions at an early stage and the difficulty of subsequently altering these abstractions.
Abstractions are needed to achieve a closeness of mapping of concepts in the model with
those in the problem. Progressive evaluation would help ensure that the chosen abstractions
are good ones before too much reliance is placed on them (premature commitment). However,
formal verification is difficult even though it is provided via refinement. Improved animators
and model checkers would address this. This is compounded by the difficulty of visualising
abstractions in a mathematical notation. Considering that program design suffers from similar
problems leads us to the hypothesis that the solutions adopted for program design would
benefit formal specification in a similar way. A graphical design tool used to represent formal
models would provide better visibility of abstractions and how they interact to compose the
whole. This would be of value when assessing abstractions thereby alleviating premature
commitment. The tool would also decrease viscosity (the effort of changing abstractions)
since the diagrammatic symbols represent significant mathematical infrastructure and are
therefore much quicker to re-arrange.

2.2 Influence of industrial projects on the development of
UML-B

Our initial U2B translation was developed in response to the motivations described above and
used basic concepts of modelling class instances that had already been proposed by other
authors such as Meyer and Souquieres [1999]. We added behavioural modelling by state
charts with similarities to Sekerinski’s work [1998]. During the MATISSE project we
developed additional features to better support state chart modelling and refinement of state
chart models. We also added class instance modelling features that suit embedded systems
(which often have classes with a small number of pre-existing instances). During the PUSSEE
project we found our original approach to combining UML and B to be too restrictive and we
adopted an alternative modelling style where an entire package is translated into a single B
component. To support this style, we defined different package stereotypes for refinement and
to support model decomposition. We also developed additional modelling features and
alternative translation strategies so that the most appropriate mode can be adopted to support
verification proof. Praxis Critical Systems Ltd. evaluated UML-B on a case study. The case
study involved complex data modelling and as a result several new features for instance
modelling with inheritance were introduced.



3 The UML-B profile

The UML-B is a profile of the UML that defines a subset and specialisation of UML that has
a mapping to, and is therefore suitable for translation into B language.

e A subset of the UML - including packages, class diagrams and state charts
e Specialisations of these features via stereotypes and tagged values,

e Structuring mechanisms (systems, components and modules) based on specialisations
of UML packages

e UML-B clauses — a set of textual tagged values to define extra modelling features for
UML entities,

e puB - an integrated action and constraint language based on B,
e  Well-formedness rules

The UML-B profile uses stereotypes to specialise the meaning of UML entities, thus
enriching the standard UML notation and increasing its correspondence with B concepts. The
UML-B profile defines tagged values (UML-B clauses) that may be used to attach details,
such as invariants and guards, that are not part of the standard UML. Many of these clauses
correspond directly with those of B providing a ‘fallback’ mechanism for modelling directly
in B when UML entities are not suitable. Other clauses, having no direct B equivalent, are
provided for adding specific UML-B details to the modelling entities. UML-B provides a
diagrammatic, formal modelling notation. It has a well defined, formal semantics as a direct
result of its mapping to B. UML-B hides B’s infrastructure and packages mathematical
constraints and action specifications into small sections each being presented in the context of
its owning UML entity.

3.1 uB - as an action and constraint language

The UML initially concentrated on modelling the structural features of a software design.
Notations were provided for expressing functional behaviour at a requirements level and state
charts were available at lower levels, but the notations for expressing the behaviour of classes
were incomplete. OCL can be used for expressing constraints on variable values within the
model but a fully defined action notation is only now being introduced as part of UML 2.0.
Many users were content to have incomplete models prior to the addition of code to
implement behaviour. For our modelling however, we required a complete behavioural
model. We therefore use a notation, uB (micro B) that borrows from B’s abstract machine
notation (AMN). uB has the following differences from AMN:- An object-oriented style dot
notation is used to show ownership of entities (attributes, operations) by classes. When
attached to an entity belonging to a class, the context of an instance of the class is implicitly
assumed. The symbol $ preceding any entity name means a class—wide reference to the entity
(rather than the implied self.entity). The reserved word ‘self’ refers to the current contextual
instance. (when uB is translated into B, self is translated into this<classname>, where
<classname> is the name of the class). uB can be used to construct expressions which can
then be used in predicates or substitutions based on the context of the containing class.
Expressions can be used to evaluate an arithmetic, set, relation or function value. Some
examples of expressions are:-

S U T, the union of sets S and T,
R <, the relation r restricted to only the set R as its domain (domain restriction)

Variables used in an expression can represent owned features of class instances (such as
attributes, association or state diagrams). The owning instance is specified using the dot
notation. For example ii.var refers to the value of the variable var belonging to instance ii. The



owning instance for the current contextual instance may be omitted. For example, if ii is
omitted in the above, var refers to the value of the variable var belonging to the current
instance (self).

Predicates may use logic operators, such as conjunction, disjunction, implication and
quantification, set predicates such as membership and subset, and number predicates such as
greater and less than. For example the following predicate, attached to a class, C, tests an
attribute, a, of the current instance to see whether it is less than the attribute, b, of all the
linked instances in an association, s, to the class, D.

Vx.(xeDAaxe sAa<xb)

Since this constraint is specified in the context of a class, it is implicitly a constraint applied
to all instances of the class and during translation will be elaborated to the following form.

vthisC . (thisC € C A VX« (x e D A x € 5(thisC) A a(thisC) < b(x) ) )

Expressions may also be used to construct substitutions that are used to specify actions. Some
examples of substitutions are,

att := FALSE, which sets the value of a boolean attribute of the current instance,

ANY yy WHERE P THEN att:=yy END selects any value of yy that satisfies the predicate P and sets
the value of the attribute, att, belonging to the current instance, to this value.

Some of the commonly used elements of uB are summarised in Table 1.

Substitutions

ST 132 Parallel composition - ST and S2 occur simultaneously

S1:82 Sequential composition —S1 occurs followed by S2 (only
allowed in refinements)

x:=E Assignment — after the substitution the value of x is the

same as the expression E

SELECT P THEN S1 END

Guarded — if predicate, P, is true then S1 occurs

ANY X WHERE P THEN S1 END

Local variable, X, is given a value so that P is true and then
S1 occurs

Predicates

- P not

P1 A P2 conjunction

P1v P2 disjunction

VX . P universal quantification
Ix.-P existential quantification

Basic Predicates

E1 =E2

The expressions E1 and E2 have the same value

El e E2

The expression E1 is a member of the set expression E2

Table 1 - Summary of commonly used pB elements

3.2 UML-B clauses

UML-B clauses provide a way to add extra modelling information to the UML model that
cannot be expressed diagrammatically. Each clause is a tagged value that can be attached to



relevant entities. The UML-B profile defines the clauses that can be used via tagged values in
this way. Any valid B clause (except OPERATIONS) has a corresponding meaning in UML-B
although not all clauses are applicable with all modelling entities. For example, we use this
method to specify invariants of a class. In addition to the usual B clauses, UML-B includes
some clauses that extend UML to make alternative translation options available. The
additional clauses are described later.

3.3 UML-B model architecture

Initially our strategy was to convert each class to a separate B component (i.e. machine,
refinement or implementation) and to represent a B module (i.e. a machine and its
refinements and implementation) as a UML package As previously mentioned the restrictions
on class association topologies imposed by this class-component translation method became
problematic for many industrial cases studies. One possibility is to address these problems by
collating features of classes into high level (controlling) machines where necessary but
maintaining a class-machine translation as far as possible. However, for provability and
traceability, we wished to keep a simple mapping from classes to B components so that the
correspondence remained obvious and to avoid creating translation artefacts (such as
controllers) in the B. We chose packages as an alternative UML entity to represent a B
component. The UML ‘package’ represents a collation mechanism for grouping class diagram
modelling entities (such as classes and other packages) into a namespace. Packages, therefore,
control visibility of other entities, without introducing additional semantics. In many ways
packages are similar to the concept of B components, possibly more so than classes. We
therefore use packages in our UML models to represent model structural groupings. The top-
level package represents a complete system containing all its levels of detail. Packages
contained within the top-level package can represent either a B module (a module package) or
a B component (a component package). To distinguish the intended meaning of a package we
attach stereotypes to packages as shown in Table 2. Stereotypes used to control the
interpretation of dependencies between packages are also shown in Table 2.
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Tag Name Applies to Description

module Package The package represents a B module.

machine Package The package represents a B machine component.

refinement Package The package represents a B refinement component.

implementation Package The package represents a B implementation component.

machine Class The class represents a B machine component.

refinement Class The class represents a B refinement component.

implementation Class The class represents a B implementation component

includes Dependency | The supplier component is included in the client

imports Dependency | The supplier component is imported in the client

sees Dependency | The supplier component is seen in the client

refines Dependency | The client component refines the supplier component. (For
notation the UML realises arrow is used).

Table 2. UML-B stereotypes for model structuring and interrelationships

4 Class Diagrams

This section describes the translation of basic class diagram features from UML-B to B
including the representation of class instances, class data features and relationships between
classes, assuming a package-component based translation as described above. The complete
class diagram content of a package is translated into a single B component. Each class is
represented by B sets, constants, variables and operations and assembled into a single B
component (i.e. machine or refinement, depending on the package stereotype). For example
the model of a cellphone’ and its translation into B is shown in Figure 3.

? This example is a simplified version of a model developed with Ian Oliver of Nokia Research Centre, Helsinki.
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<<machine>>
cellphone
PHONE +ourrent CELL
ES<<constant>> threshold : INT 0..* 0.1 |EBpowerlewvel : INT
0.* 1
0.* 0.*
+channels +cellChannels
CHANNEL
Ebroadcasting : BOOL

MACHINE cellphone
SETS PHONE_SET ; CELL_SET ; CHANNEL_SET ; ...
DEFINITIONS

type_invariant ==
(PHONE e P(PHONE_SET) A CELL € P(CELL_SET) A
CHANNEL € P(CHANNEL_SET) A ...);

invariant == (type_invariant)
VARIABLES PHONE, CELL, CHANNEL, ...
INVARIANT invariant

INITIALISATION PHONE:=Z | | CELL:=Z | | CHANNEL:=Z | | ...

Figure 3 Cellphone - example of UML-B model and its translation in B.

The current set of instances of each of the three classes is represented by the variables PHONE,
CELL and CHANNEL. These variables are defined in the type invariant as subsets of deferred
sets (PHONE_SET, etc) that represent the set of all possible instances for each class. The current
instances sets are used as instance identities when referring to and manipulating the features
(such as attributes) owned by a particular instance. Initially, no instances exist and hence the
current instances sets are empty. (Note that we use B’s macro facility, definitions, to structure
the invariant. This is useful so that we can refer to parts of the invariant in predicates as well
as for ensuring that the invariant is constructed in a valid order).

4.1 Attributes

In object-oriented notations, a class represents a set of instances and class features, such as
attributes, are implicitly replicated for each instance of the class. Since B is not object-
oriented, this fundamental characteristic of object-oriented systems must be explicitly
modelled. Hence, attributes are translated into variables whose type is a function from the
instances set to the attribute type. The value of an attribute belonging to a particular instance
can then be obtained by function application. For example, if x is an attribute of type T in class
C, x is represented in the B model by a function mapping C to T and the value for an instance,
i, belonging to the class is given by x(i). Attribute types may be any uB set expression. This
includes predefined types (such as NAT, NAT1, BOOL and STRING), functions, sequences,
powersets, instances of another class (referenced by the class name), and enumerated or
deferred sets defined in a UML-B SEgTs clauses.
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For example, the attributes of the cellphone example (Figure 3) are translated into B as
follows.

MACHINE cellphone
CONSTANTS threshold
PROPERTIES threshold e PHONE_SET — INT
DEFINITIONS
type_invariant == (... A

powerlevel e CELL — INT A
broadcasting e CHANNEL — BOOL - ...);

invariant == (type_invariant)
VARIABLES .... powerlevel, broadcasting
INVARIANT invariant
INITIALISATION ... || powerlevel .= & | | broadcasting =@ | |

The attributes, powerlevel and broadcasting are represented by variables of type function, and
are initially empty as there are no instances in their domains. The attribute threshold is
stereotyped as a constant (a stereotype defined in the UML-B profile). It is translated into a
constant function from the possible instances set to its type. The values of constants are
therefore pre-ordained for all future instances of the class but may be different for each
instance.

4.2 Associations

Associations are translated to functions in a similar manner to attributes except that the range
of the function is based on the instances of the class at the supplier end of the association.
Only associations that are navigable in one direction are used in UML-B. In UML,
multiplicity ranges constrain associations. The multiplicities are equivalent to the usual
mathematical categorisations of functions: partial, total, injective, surjective and their
combinations. Note that the multiplicity at the target end of the association (class B) specifies
the number of instances of B that instances of the source end (class A) can map to and vice
versa. The multiplicity of an association determines its modelling as shown in Table 3. We
use functions to subsets of the target class instances (e.g. P(B)) to model multiplicities with
multiple targets. When the target multiplicity is at least one, P1 is used to ensure the subsets
are non-empty.
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Association Representations in B for Different Multiplicities

Ai and Bi are the current instances sets of class A and B respectively and f'is a function representing the
association (i.e. the role name of the association with respect to the source class, A).

disjoint(f) is defined in B as:

val,a2.(al e dom(f) A 02 e dom(f) A alz02 = f(al) nf(a2) =)

UML association

Informal description of B representation

B invariant

multiplicity
0.*>0..1 partial function to Bi Ai — Bi
0.*> 1.1 total function to Bi Ai — Bi
0.%>0..* total function to subsets of Bi Ai — P(Bi)
0.%>1.* total function to non-empty subsets of Bi Ai — P1(Bi)
0.1 >0..1 partial injection to Bi Ai >+ Bi
0.1>1..1 total injection to Bi Ai > Bi
0.1>0.* total function to subsets of Bi which don’t Ai — P(Bi) A
- h intersect disjoint(f)
total function to non-empty subsets of Bi Ai — P1(Bi) A
0.1>1.* . ay S
which don’t intersect disjoint(f)
1.*>0.1 partial surjection to Bi Ai —» Bi
L.*> 1.1 total surjection to Bi Ai — Bi
L+ 0 total function to subsets of Bi which cover | Ai — P(Bi) A
’ ' Bi union(ran(f))= Bi
total function to non-empty subsets of Bi Ai — P1(Bi) A
L*>1.%* . . . .
which cover Bi union(ran(f))= Bi
1.1>0.1 partial bijection to Bi Ai>» Bi
1.1>1.1 total bijection to Bi Ai>> Bi
total function to subsets of Bi which Al = P(BI) A
110 otal function to subsets of Bi which cover union(ran(f))= Bi A
Bi without intersecting o
disjoint(f)
total function t ysubsets of Bi | P18
" otal function to non-empty subsets of Bi . .
L1211 which cover Bi without intersecting Ub{or](ron(f) J=Bia
disjoint(f)

Table 3 - How associations are represented in B for each multiplicity constraint

For example, the associations of the cellphone example (Figure 3) are translated to the

following B:
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MACHINE cellphone

DEFINITIONS

disjoint(ff)==val,02 . ( ale dom(ff) A 02 e dom(ff) A al=a2 = ff(al) n ff(a2)=0 );
type_invariant == (... A

current e PHONE — CELL A

dspChannels e PHONE — P(CHANNEL) A

cellChannels e CELL — P(CHANNEL) A ...);
CELL_invariant == (disjoint(cellChannels) A union(ran(cellChannels)) =CHANNEL);
invariant == (type_invariant A CELL_invariant)

VARIABLES ... current, dspChannels, cellChannels
INVARIANT invariant
INITIALISATION ... | lcurrent =& || dspChannels:=J | | cellChannels ;= &

The association, current, links a phone (but not all phones) with a single cell and is therefore
a partial function. The other associations both link to zero or more channels and hence a total
function to subsets of CHANNEL is used. For cellChannels, all channels are linked from exactly
one cell and hence additional invariants are needed to ensure the sets of channels in the range
are disjoint and cover all channels.

As for attributes, the stereotype, <<constant>> may be attached to an association. If the
stereotype <<constant>> is attached to a class, it is equivalent to attaching it to all the
attributes and associations of the class. A stereotype <<static>> may be attached to an attribute
or association. This means that the attribute or association belongs to the class rather than a
specific instance of the class and the instance mapping is suppressed giving a simple variable
instead.

4.3 Translation of uB

Constraints and actions expressed in uB throughout the model must be translated to reflect the
translation of state modelling features from object-oriented constructs into the set based
constructs available in B. We refer to this translation as T, where T(u) is the translation of the
uB expression u into B.

If a uB expression contains a reference to a class feature, a, belonging to a specified instance,
x, this would be written x.a in uB. As described in the previous section, the relationship
between instances and the values of their features are represented in the corresponding B
model by functions. Hence x.a is translated into the function application, a(x). If a is an
association with a multiplicity greater than one at the target (supplier) end, then x is associated
with a set of values. However, since the association is translated to a function from client
instances to subsets of supplier instances, the translation to function application is still valid.
The features of an instance of an associated class may also be referenced using the dot
notation transitively through a sequence of association links. For example if an instance, x of
the current class is linked with an instance of another class via an association, a and that class
has a feature, b, then the value of b for the instance associated with x can be referenced as
x.a.b in uB. This is translated by applying the function application translation twice, first for
the feature, b and then for the feature, a. Hence x.a.b is translated via b(x.a) to b(a(x)). Note
however, that this is only valid if o returns a single instance, i.e. if the association a has a
multiplicity less than or equal to one. When the multiplicity allows zero target instances it is
important to ensure x has a link in the association (i.e. x:dom(a)) otherwise a(x) is undefined.

In uB, (following the usual object-oriented style), the instance identifier (x in the above
example) may be omitted from a reference to the value of a class feature. The reference has
two different meanings, depending on where it occurs. When the reference is within an
operation of the class, it refers to the value belonging to the instance for which the operation
has been called (self). In the B model, a parameter, this<class_name>, of type, <class_name>,

15



is added as a parameter of the operation and the reference is translated to a(this<class_name>).
When the reference is not associated with an operation, for example in an invariant attached
to the class, the reference is implicitly generic for all instances of the class. In this case the
same translation, a(this<class_name>), of a reference, a, is used and the complete expression
is enclosed within a universal quantification for all instances of the class. For example if the
uB expression, u contains such a reference to a feature of the class, C.

VthisC - (thisC e C = T(u))

4.4 Behaviour

Behaviour is embodied in the specification of class operations and invariants using uB. This
is illustrated in the examples below.

4.4.1 Invariant

Invariants are specified using pB in UML-B INVARIANT clauses, which may be attached to
various modelling entities. Invariants are generally of two kinds, instance invariants
(describing properties that hold between the attributes and relationships within a single
instance) and class invariants (describing properties that hold between two or more instances
of a class). For instance invariants, the explicit reference to self may be omitted. The
translation will add universal quantification over all instances of the class automatically. For
class invariants, the quantification over instances is an integral part of the property and must
be given explicitly. The presence of explicit quantification is detected during translation. For
example, if bx e NAT is an attribute of class B, then the following invariant could be attached
to the class:

bx <100 A
Vb1,b2. ((ble BAb2eB Ablzb2)= (bl.bxzb2.bx)

The first part, bx<100, is an instance invariant because it applies to the attribute value for each
and every instance of the class whereas the second part is a class invariant because it
expresses a property that holds between the instances of the class. The invariant would be
translated to:

vihisB - (this e B = (bx(thisB) < 100))
Vb1,b2. (bl e B A b2eB A blzb2)= (bx(b1)zbx(b2)))

The translation has added a universal quantification, vthisB, over all instances of B in the first
part of the invariant. It is not used in the second part where the invariant already explicitly
references instances of class B.

The invariant is constructed as a set of definitions so that it, or parts of it, can be re-used in
predicates, for example in the initialisation described later. The definitions also enable the
type definitions to be collated so that they occur before any usage in a constraint and provide
some traceability to the UML entity to which they are associated.

4.4.2 Operation specification

Operation signatures may contain a list of typed parameters, which will be translated into the
equivalent form in B. UML includes provision for specifying the type of a value returned by
the operation. This is not needed in UML-B, since B infers the type of an operation return
value from the body of the operation. Instead, a list of identifiers that represent operation
return values is needed. The string entered in the return type field for the operation will be
used as the operation return signature in the B machine representing the class. In a similar
way to attributes and associations, class operations (unless <<static>> or <<create>>) are
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implicitly performed using the data that belongs to a particular instance of that class. Hence
operations need to know which instance of the class they are to work on. Since B is not
object—oriented, operations must be explicitly associated with a particular instance of the class
by adding a parameter, thisCLASS, of type, CLASS, (where CLASS is the class name) to each
operation. This is used as the instance parameter in each reference to an attribute or
association of the class. The instance parameter is inserted prior to any explicit parameters
belonging to the operation. Details of operation behaviour are specified textually in uB guards
and actions attached to the operation. Hence, an operation, o, with parameters, p1,p2,....on of
types T1,12,...,Tn and return variables r1,r2,..,/n will result in the following format B operation.

r1,r2,..m « o(thisCLASS,p1, p2.....pn) =
PRE thisSCLASS € CLASS A p1 e T1 A P2 € T2 A...A PN € TN THEN

SELECT <<guard>> THEN <<actions>> END
END

The guard is a uB predicate involving any of the variables in the package. The action is a uB
substitution that updates the values of variables (attributes, associations etc.) of the class via
substitutions as described in Table 1.

In Figure 4, PHONE has an operation startCall that attempts to start a call on the channel tt and
returns a boolean representing its success. The call is successful if the channel is not already
in use.

PHONE +channels CHANNEL
BfinUse : BOOL = FALSE

SstartCall(tt : CHANNEL) : success 0.* 0.*

Figure 4- - example of operation specification

The operation, startCall, has a guard, ttechannels, to ensure that the parameter, tt, is a channel
associated with the phone. Its action tests the inUse attribute of that channel:

IF tt.inUse = FALSE THEN tt.inUse := TRUE | | success ;= TRUE
ELSE success ;= FALSE END

The operation is translated into the following B by U2B:

success « startCall (thisPHONE,1t) =
PRE thisPHONE € PHONE A tt € CHANNEL THEN
SELECT 1t e channels(thisPHONE) THEN

IF inUse(tt) = FALSE THEN inUse(tt) := TRUE | | success := TRUE

ELSE success ;= FALSE END
END
END

4.4.3 Initialisation

Initial values of variable class features may be specified either as specific values or as
predicates to constrain a non-deterministic initialisation. The initial value field of attributes
may be used to specify their initialisation. For other entities, such as associations, the UML-B
clause, INITIALISATION Or INITIALISATION_PREDICATE, may be attached to the association or
owning class. For example, an integer attribute x could be initialised to 0 by attaching the
clause, INITIALISATION x:=0, or initialised to any value less than 10 by INITIALISATION_PREDICATE
x<10. For the latter case a convenient form of non-deterministic substitution is provided in B:

vars e(predicate) where vars is a comma separated list of variables
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This is equivalent to a substitution that sets all of the variables in vars so that the predicate is
true. It was found that this form of substitution was useful for U2B translation of initialisation
constraints. If no initial values are specified the non-deterministic initialisation,
vars e(invariant) is provided by default. If any constraints on the initial values are provided in
UML-B INITIALISATION_PREDICATE clauses, these are conjoined with the predicate:

vars e(invariant A constraints)

4.4.4 Constructors and destructors

The <<create>> stereotype can be attached to an operation of a variable instance class to
indicate that the operation is a constructor for the class. The operation will select an unused
instance, initialise it as specified in the operation body (or on an attached state chart if it has a
transition from the initial state with a matching event name) and return the instance. This
allows parameterised constructors to be modelled. Any of the class’ variables (e.g. attributes,
associations, state charts) may be initialised in the create operation, overriding any
initialisation values defined elsewhere in the class (such as attribute initial values or initial
transitions on state charts)

The <<destroy>> stereotype can be attached to an operation of a variable instance class to
indicate that the operation is a destroyer for the class. The instance will be removed from the
current instances set of the class and all maplets from that instance will be removed from the
functions representing the variables of that class.

4.4.5 Subroutines

The use of the package-component translation (i.e. all classes from a class diagram in a single
B machine or refinement) was found to be more usable than the original class-component
translation but meant that there could be no method calling in the model. While this was
found to be acceptable at an abstract level, as more detailed behaviour is added it is
increasingly cumbersome to have to repeat common behaviour wherever it is needed. Also
the design principles of encapsulation become more significant as the design progresses. To
combat this limitation, the stereotype <<subroutine>> for class methods was introduced.
Methods with this stereotype are translated into parameterised B definitions. Definitions are a
literal, text substitution (macro) facility provided in B. Before a B component is type checked,
each definition call is literally replaced by the definition body after substitution of the actual
parameters. Since this is equivalent to repeating the behaviour, definitions can be instantiated
wherever needed. (The alternative stereotype <<definition>> gives the same result for those
that prefer a B style). The use of definitions in this way (which could become quite extensive
if complex calling structures are modelled) has been found to be very effective. For example,
in the cellphone model, a cell may need to initiate broadcasting on a particular one of its
cellChannels. This could be achieved (Figure 5) by calling a subroutine, startBroadcast, which
sets the attribute broadcasting to TRUE.

CHANNEL

CELL X
1 0.." |EHbroadcasting : BOOL

Efpowerewl : INT

+cellChannels| i< <subroutine>> startBroadcast()

SbroadcastOn(ch : CHANNEL) ®<<subroutine>> endBroadcast()

Figure 5 — Example of use of subroutines

The following B definition would be produced to represent the subroutine. Also shown is an
example of an operation using the subroutine.
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DEFINITIONS
startBroadcast (thisCHANNEL) == BEGIN broadcasting(thisCHANNEL):=TRUE END;

OPERATIONS
broadcastOn (thisCELL,ch) =
PRE thisCELL € CELL A ch e CHANNEL THEN

SELECT ch e cellChannels(thisCELL) THEN startBroadcast(ch) END
END ;

4.5 Inheritance

Inheritance represents subtyping of a class. The instances of the subclass are also instances of
the superclass. Hence the subclass instances retain all the variables (attributes, associations
and state variables) of the superclass but may add new variables that are only available to that
subclass. Operation behaviour is retained by default but may be overridden (i.e. re-defined) in
a subclass. For example, the cellphone model is further developed in Figure 6 using
inheritance. A channel is one of three sub classes: an ACCESS channel, a TRAFFIC channel or a
CBCH channel. TRAFFIC defines a new attribute, callkind, which is only relevant to TRAFFIC
channels. It is assumed that instances belong to one and only one subclass and hence, sets of
subclass instances are disjoint. If the superclass is abstract (i.e. doesn’t have instances other
than those of its subclasses) then the subclass instances sets cover the set of super class
instances. If B and C are subclasses of the abstract class A then their instances would be
modelled as BcA A CcA A B n C=@ A BUC=A.

TRAFFIC
Ecallkind : CALLKIND ACCESS

CBCH

CHANNEL
E¥broadcasting : BOOL = FALSE

Figure 6 — example of inheritance

When the sub classes are translated into B, possible instances sets are not needed. Instead the
current instances variable is defined as a subset of the superclass’ current instances. Invariants
are automatically added to ensure that the intersection between each pair of current subclass
instances is empty.
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REFINEMENT cellphonel

REFINES cellphone
SETS CALLKIND={voice,data,other}
DEFINITIONS

type_invariant == (... A

CHANNEL e P(CHANNEL_SET) A

CBCH € P(CHANNEL) A

TRAFFIC € P(CHANNEL) A

ACCESS € P(CHANNEL) A ... A

callkind e TRAFFIC — CALLKIND ) ; ...
package_invariant == (

CBCH N TRAFFIC =& A

CBCHNACCESS =0T A

TRAFFIC n ACCESS =0 ) ;
invariant == (type_invariant A ... A package_invariant)

VARIABLES .... CHANNEL, CBCH, TRAFFIC, ACCESS, ..., callkind

INVARIANT invariant

INITIALISATION ... | | CHANNEL:=Z | | CBCH:=Z | | TRAFFIC:=Z | | ACCESS:=J | |
... || callkind =&

5 Behavioural Specification by Statechart

For some behaviour models a statechart representation is useful. A statechart can be attached
to a class to describe its behaviour via a set of one or more state diagrams. The behaviour
expressed in the statechart is combined with any uB operation specification. Hence operation
behaviour can be defined either in uB or in a statechart or in a combination of both. The name
of the statechart model represents a state variable. The collection of states in the statechart is
an enumerated set that provides the type of the state variable. The state variable is equivalent
to an attribute of the class and may be referenced elsewhere in the class and by other classes.
State transitions define which operation changes the value of the state variable from the
source state to the target state. This means that an operation is only available when the state
variable equals a state from which there is a transition associated with that operation. To
associate a transition with an operation, the transition’s event name must be given the same
name as the operation. Substates are currently not supported but will be considered in future
work.

If there is a transition from the initial state on the state chart, the target state of this transition
is the initialisation value for the state variable. If there is a named transition from the initial
state on the state chart, the state variable will be initialised in a <<create>> operation of that
name attached to the class. Similarly, named final transitions will result in <<destroy>>
operations which remove the instance from the instance set.

Additional guard conditions (defined in uB) can be attached to a transition to further constrain
when it can take place. All transitions cause the implicit action of changing the state variable
from the source state to the target state. Additional actions (also defined in uB) can be
attached to transitions. The translator finds all transitions associated with an operation and
compiles a guarded substitution of the following form:

SELECT statevar=sourcestatel a transition1_guards
THEN statevar:=targetstatel | | fransition1_actions
WHEN statevar=sourcestate2 A fransition2_guards
THEN statevar:=targetstate2 | | fransition2_actions
etc

END | |
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The guarded substitution generated from the state chart is composed with the operation
precondition and body uB specification (if any). If Po is the uB predicate in the operation
guard, So the substitution from the operation actions and Gs the guarded substitution
composed from the statechart, then the translator will produce the following operation:

SELECT Po THEN Gs | | SO END

Hence the puB guard is on the overall operation and, if false, the operation will not be enabled.
In guarded simultaneous substitutions, the substitution cannot occur unless each simultaneous
branch is enabled. This means that the textual operation semantics, although not associated
with any particular state transition, is only enabled when at least one of the state transitions is
enabled. Actions should be specified on state transitions when the action is specific to that
state transition. Where the action is the same for all that operation's state transitions, it may be
specified in the operation body uB specification.

5.1 State dependant Invariants

For many of our case studies we found that we needed to specify invariants concerning the
value of attributes and associations while an instance of a class was in a particular state of a
state chart. In many cases the state chart model is an abstract view of behaviour that is
gradually replaced by a collection of other variables. During these refinements the
correspondence of states to the values of the other variables must be indicated by such
invariants. The INVARIANT clause may be used on a statechart state to specify a predicate that
should hold while an instances state variable is equal to that state. The hypothesis
(statevar=state) is automatically added to form the sequent. (Quantification over all instances
will also be added as before). Hence, for a class CC, with state model sv, if the clause,
INVARIANT pp, is attached to a state ss, then the following invariant would be generated in the
B model:-

vthisCC - (thisCC e CC = ( sv(thisCC)=ss = (T(pp)) ) )

where T(pp) is the translation of pp from uB into standard B.

An example of the use of invariants on states is shown in the example below.

5.2 Example of state chart behaviour specification

The example in Figure 7 illustrates how a statechart can be used to guard operations and
define their actions and how common actions can be defined in the operation semantics
window.

inc / bx:=bx+1

inc / bx:=bx+10

non_zero

dec] bx=1]
dec] bx>1]

Figure 7 — Example of UML-B state chart
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The statechart has two states, zero and non_zero. The implicit state variable, b_state (the
name of the statechart) is treated like an attribute of type B_STATE = {zero,non_zero}. Invariants
bx=0 and bx=0 are attached to the states zero and non-zero respectively (not shown). When an
instance is created its b_state is initialised to zero because there is an initial transition to the
zero state. This state diagram results in the following B.

MACHINE BB_CLASS
SETS BB_SET; B_STATE={zero, non_zero}
DEFINITIONS

invariant == (

BB e P(BB_SET) A b_state e BB — B_STATE A bx € BB — NAT A

VthisBB - (thisBB € BB = ((lb_state(thisBB)=zero = (bx(thisBB)=0)) )) A
VthisBB - (thisBB € BB = ((b_state(thisBB)=non_zero = (bx(thisBB)=0)) ))
)

VARIABLES BB, b_state, bx

INVARIANT invariant

INITIALISATION BB:=¢ || b_state:= T | | bx =&
OPERATIONS

Return «— newBB =
ANY thisBB WHERE thisBB € BB_SET-BB THEN
BB := BB u {thisBB} | |
Return := thisBB | |
b_state(thisBB) := zero | |
bx(thisBB) := 0
END
END

Operation inc can occur in either state. Its action is different depending on the starting state
and hence actions have been defined on transitions and are combined with the state change
action. This results in the following B operation:

inc (thisBB) =
PRE  thisBBeBB THEN
SELECT b_state(thisBB)=zero
THEN b_state(thisBB):=non_zero | | bx(thisBB):=lbx(thisBB)+10
WHEN b_state(thisBB)=non_zero
THEN bx(thisBB) := bx(thisBB)+1
END
END

Operation dec has two guarded alternatives when in state non_zero but does not occur while
in state zero. Since the action, bx := bx-1 is the same for both transitions it has been defined in
the operation’s uB actions specification rather than on a state transition. This results in:

dec (thisBB) =

PRE  thisBBeBB THEN
SELECT b_state(thisBB)=non_zero A bx(thisBB)=1
THEN b_state(thisBB):=zero
WHEN b_state(thisBB)=non_zero A bx(thisBB)>1
THEN skip
END | |
bx(thisBB):=bx(thisBB)-1

END

5.3 State Chart Decision Points

As a result of modelling examples using state charts it was found that guard conditions
describing actions can become overly complicated and are often partially repeated in several
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alternative transitions. To mitigate this we introduced the use of decision pseudo-states and
use them to structure sets of partially related transitions from a common source state as shown
below. As shown in Figure 8 each decision point generates a SELECT substitution whose

branches correspond to the outgoing transitions.

[G2]/A2
E1[G1]/A1

[G3]/A3
[GH]/A4

[GB]/A5

S2

S3

E1 = SELECT state=S1 A G1 THEN Al | |

SELECT G2 THEN A2 | | state :=S2

WHEN G3 THEN A3 | |
SELECT G4 THEN A4 | | state :=S3
WHEN G5 THEN AS | | state .= 54
END

END

END

Figure 8 — Ilustration of state chart decision points and translation into B

Decision pseudo states can also be used to merge several transitions (Figure 9) and events
may be attached to the final transitions instead of the initial transition so that each merged tree

is translated to different operations.

[GG]/AA :

E8 = SELECT G8 THEN state:=S8 | | A8 | |
SELECT GG THEN AA | |
SELECT state=S5 A G5 THEN A5
WHEN state=Sé6 A G6 THEN Ab
END
END
END ;
E7 = SELECT G7 THEN state:=S7 | | A7 | |
SELECT GG THEN AA | |
SELECT state=S5 A G5 THEN A5
WHEN state=Sé6 A G6 THEN Ab

END
END
END

Figure 9 — Illustration of state chart merge point
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5.4 An alternative semantics for UML-B state charts

While working on the PUSSEE project, an example was discovered where the state chart
translation was cumbersome and difficult to verify with the B tools. This led us to provide an
optional alternative translation for state charts'’. Each state gives rise to a set containing the
instances currently in that state. A transition is enabled (subject to other guards) if the current
instance is a member of the starting state. The transition removes the instance from the
starting state and adds it to the target state. Initially the initial state contains all the instances
of the class and the other states are empty. The state chart in Figure 10 produces two
variables, S1 and S2, that are both of type P(C) (where C is the name of the class to which the
state chart belongs). The invariant, S1 n S2={} A S1 U S2 = C, ensures that the two sets are
always disjoint. Initially, S1 contains all the instances, S1:=C | | $2:={} . The transition event, e,
is shown in Figure 10.

e -~ T 7

e (thisC) =
PRE thisC € C THEN
SELECT thisC € ST A G THEN
S1:=S1-{thisC} | | S2:=S2u {thisC} | | A

END
END

Figure 10 — Illustration of ‘petri’ style state chart translation

Although the change of state is slightly longer (involving changing two variables instead of
one), with this semantics it is easier to express guards that depend on the state of other
instances. For example, S1={self} would enable the transition only when there are no other
instances in S1. On the other hand, it can be more cumbersome to determine the current state
of a given instance since this involves testing the membership of the instance against each
state set. This alternative semantics should be used when you need to refer extensively to the
set of instances in particular states in an invariant or guard.

6 Refinement

The B method is based on a hierarchical stepwise refinement and decomposition of a
problem. After initial informal specification of requirements, an abstraction is made to
capture the most essential properties of a system. For example, these could be the main safety
properties in a safety critical system. This abstract specification is made more concrete and
detailed in steps, which are of two types. The specification can be refined by changing the
data structures used to represent state information or the operations that act upon these data
structures. Alternatively, the specification can be decomposed into subsections via an
implementation step that binds the previous refinement to one or more abstract machines
representing the interfaces of the subsections. In a typical B project many levels of refinement
and decomposition are used to fully specify the requirements. Once a stage is reached when
all the requirements have been formally expressed, further refinement and decomposition
steps add implementation decisions until a level of detail is reached where code can be
generated. At each refinement or decomposition step, proof obligations are generated and
must be discharged in order to prove that the outputs of the step are a valid refinement of the
previous level. At each step when more detailed requirements are introduced or
implementation steps are taken, it is proved that they respect all the previous levels. This

' The alternative translation was suggested by Stefan Hallerstade of Keesda.
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method ensures that the developed program obeys the properties expressed in all the levels of
specification from which it is derived. Such proof is not always easily achieved. While the
tool automatically discharges most proof obligations, typically some 20% require human
interaction [ClearSy, 2000] and this interactive proof requires expertise and effort. The form
and style of the formal B specification can greatly affect the ease of achieving these proof
obligations. Hence ease of proof rather than any design paradigm becomes the primary
criterion for developing specifications in B. This is why refinement and decomposition are the
significant mechanisms in building a B specification. A mechanism for structuring a
specification within a refinement level is provided (INCLUDES). This can be useful for
segregating and encapsulating state data and its associated behaviour to aid understanding but
contributes less to ease of proof.

6.1 Refinement in UML-B

Since our aim is to reflect the B method in our UML-B notation, we must cater for
abstraction-refinement concepts in our UML-B models. Since we have purposely maintained
a simple correspondence between UML entities and B components this is easily achieved.
The stereotypes (‘machine’, ‘refinement’ and ‘implementation’) used to control the
translation, identify the UML entities (packages) that are involved in the refinement structure.
The entity refined by a refinement is indicated by a UML-B REFINES clause. There are several
differences in the translation of refinements from those of machines. For example, the
heading generated in the B component is different, a REFINES clause is added, and variables
with the same names as those in the abstraction are assumed to have the same type. For
example, in Figure 11, the cellphone model of Figure 3 is refined by a more detailed model in
a new package cellphonel.

*‘ REFINES ﬁ *‘

<<machine>> <<refinement>>
< - [

cellphone cellphone1

Figure 11 — Using a package to indicate refinement

The refinement (Figure 12) uses inheritance to introduce three subclasses of the CHANNEL
class. The class is split into the subclasses CBCH, TRAFFIC and ACCESS, which will be
represented by subsets of the CHANNEL instances set as discussed in the section on
inheritance. This inheritance results in a corresponding refinement to the associations,
channels and cellChannels, that previously linked PHONE and CELL to the CHANNEL class
in the abstract package. These associations are each refined by three new associations that
link to the three new subclasses.
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CELL

PHONE | 0.* 0..1
+ourrent Epowerlewel : INT
N 1 1 1
+TRChannels +cellTRChann
reRchemnd cellGBChanne +ASChannels| | +cellASChannels
0104 0.7 0. 0.4\ |4
CBCH TRAFFIC

ACCESS

Efcallkind : CALLKIND

S~ T

CHANNEL
Ebroadcasting : BOOL = FALSE

REFINEMENT cellphonel
REFINES cellphone

DEFINITIONS
type_invariant == (...) ;
PHONE invariant == (...) ;
CELL_invariant == (...) ;
package_invariant == (...) ;
invariant ==
(type_invariant A PHONE_invariant A CELL_invariant A package_invariant);
refinement_relation == (
VthisPHONE . (thisPHONEePHONE = (dspChannels(thisPHONE)=
{dspCBCH|thisPHONE)} u dspTrafficChannels(thisPHONE) u
dspASChannels(thisPHONE) )) A
VthisCELL . (thisCELLeCELL = ( cellChannels(thisCELL)=
{cellCBCH(thisCELL)} u cellTrafficChannels(thisCELL) u
cellASChannels(thisCELL) )) )
VARIABLES
INVARIANT  invariant A refinement_relation

Figure 12 — Class diagram and B model for refinement, cellphonel

In a B refinement, part of the invariant describes the relation between the variables of the
refinement and those of the abstraction that they refine. This relationship is a special kind of
invariant in addition to the internal constraints of the component itself. In UML-B, it is useful
to distinguish the refinement relation from the rest of the invariant by providing a separate
UML-B clause called REFINEMENT_RELATION. There are translation motivations for separating
the refinement relation. The invariant may be used in an initialisation predicate whereas the
refinement relation should not be used in this way. (This is because the variables of the
abstraction are not visible anywhere other than in the B INVARIANT clause). For the
cellphonel example, the refinement relation, shown in Table 4, specifies that, for each phone,
the set of channels given by the abstract association channels, is formed from the sets of
subclass instances given by the three new associations, CBChannels, TRChannels and
ASChannels. Since CBChannels has multiplicity 0..1 it is enclosed in set brackets to make the
single instance into a set.
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Class REFINEMENT_RELATION

PHONE channels = {CBChannel} u TRChannels u ASChannels

CELL cellChannels = {cellCBChannel} u celllRChannels u cellASChannels

Table 4 — Refinement relation for cellphonel

7 Discussion and experience

In this paper we have described the translation of operation pre-conditions to B’s SELECT
substitution. In fact this models the condition as a guard rather than a pre-condition.
Intuitively, the difference is that an operation is ‘blocked’ or not available if its guard is false;
whereas it is available, but not reliable, if its pre-condition is false. For our modelling of
abstract action systems [Walden and Sere, 1998] where operations represent events that are
observed to occur under certain conditions, we find guards more useful than pre-conditions.
For modelling the subsequent development of programs, where operations are called by some
external entity, UML-B provides an alternative modelling style where pre-conditions are
translated into B pre-conditions and operations do not block.

UML-B was used successfully to formally develop the safety requirements for a real-time
control system using an action systems approach [Snook, Tsiopolis, Walden, 2003]. This
example concentrated on the refinement of statechart models using the transition decision
points to refine transitions. The case study was successfully proven using the AtelierB prover
throughout several levels of refinement as the system model was decomposed in subsystems.
The case study also highlighted how sub states could be used as a natural form of refinement
of state data.

Our experience has been that there is an encouraging level of interest in UML-B from
industry. The interest is mainly from companies that are investigating formal methods but not
using them. Their reaction is that they would probably not use B in its current (textual) form
but they may consider using UML-B as it becomes more mature and usable. They view the
UML basis of UML-B as providing a more understandable and visible route into using formal
specifications. Several of our industrial contacts are keenly participating in ongoing research
into the development of UML-B and U2B.

During the PUSSEE project, one of our industrial contacts, that had developed a B model
with guidance from B experts, reported that, although they knew their B specifications were
consistent (because they had proved it), they were unable to validate the specification. We
transformed the B specification into UML-B and they said that they could now see what the
model did. Since the B was changed slightly by re-modelling, we also translated back into B
and proved the new model to make sure that it was no more difficult to verify.

There has been a mixed reaction from industry that already uses formal notations. Most see
some benefit in the greater accessibility for novices that UML-B provides. Some thought that
the UML-B version would be useful as documentation for customers but viewed B as the
primary design notation. (Hence they were interested in a translation the other way). Others
viewed UML-B as the primary design notation. Our view is that the initial modelling should
be performed in UML-B, for the reasons discussed in motivation, but that it would be useful
for small adjustments made during verification to be reflected back from B to UML-B.

Some experienced B users commented that UML-B hides information that would be in the B
text. There are two reasons why this might be said. Firstly, formal methods champions seem
to inherently dislike diagrammatic symbols. Perhaps their view is that the diagrams do not
present information in a useful way. Our view is that UML-B diagrams can be clearer, better
structured, but just as precise as B. The semantics of UML-B are just as well defined as they
are for B (via the translation). For example the nature of an association (relationship) between
two classes (sets) defined by its multiplicities is more readily envisaged. (This isn’t to say that
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it is easy to envisage the translation, which is actually quite difficult). The juxtaposition of
classes and associations is clearly displayed so that the intention of the model constructs is
more easily deduced. However, we can only go so far with the diagrams. They model the data
structure (class diagrams) and the main changes of state made by operations (state charts) but
textual specification is needed for details of constraints and actions. When actions and
constraints are expressed textually in puB they are made more visible by hiding B
infrastructure allowing their significance and context to be highlighted. A second reason why
UML-B might be said to hide information is that UML structures a model into a hierarchical
system of views. While this is often useful to aid clarity it is sometimes true that bits of
information are difficult to locate or remember. For example it would be useful to be able to
see invariants on diagrams. We agree that sometimes it is useful to be able to look at the B to
get a more complete mathematical view. We do this less as we become more familiar with
UML-B’s semantics but it is at least true that the B view has uses during learning stages and
occasionally when the complete picture needs to be understood. We have taken to annotating
class and state diagrams using notes to make textual constraints attached to diagram entities
more visible. This makes the diagram more complete. It is not an ideal solution, however,
because the notes are not part of the model and must be manually maintained to reflect the
actual tagged values. An interim solution might be to write a tool to update these notes
automatically but ideally we would like a UML drawing tool that allows tagged values to be
displayed on the diagram.

Since the verification tools are currently B based (rather than UML-B based) it is important
that the B view is available and is readable. Many people have commented on this fact and
asked how the corrections can be traced back to the UML-B. In practice we have not found
this to be a problem at all. If you are familiar with the UML-B model, the structure of the
corresponding B is so similar that it is easy to locate the relevant components in the UML-B.
This vindicates the aim of our approach, which is to maintain a simple mapping from UML
components to B components in order to ensure that the B-based verification tools are
practically usable. Several organisations, industrial and academic have indicated agreement
with this philosophy compared with the approaches of others working on UML to B
translation who may not have emphasised the importance of ease of proof sufficiently. The
overall lesson is that proof is not easy (even with the current state of the art in semi-automatic
provers) and if it is to be achieved, consideration must be given to provability in generating
the models (whether writing B by hand or translating from UML-B).

Proof is an important issue and, in the future, we hope that the verification tools will be
integrated better with UML-B. Ideally, the tools would work directly on the UML-B model
and provide error and proof information in terms of this model. An intermediate stage that
would be more easily achievable is for the tools to work with B but provide feedback into the
UML-B to illustrate the errors. For example, the model checker might provide trace
information as sequence diagrams. In the meantime we manually translate results back into
corresponding changes in the UML-B model. We have not found this a problem with small to
medium scale case studies. If traceability becomes an issue with large-scale projects,
references could be embedded into the B using comments.

In summary, we have found indications that formal methods novices from industry are more
positive about using UML-B than B. On the other hand, B has a proven track record of
successful use in industry whereas UML-B is untried in this respect. There has been
resistance to UML-B from some (but not all) experienced B users, both industrial and
academic, but this is diminishing. One of the reasons for the change of mind may be the
realisation that if industry is more inclined to accept formal methods via UML-B, that is a
good enough reason to support it and more significant than other reservations. Another reason
may be our attention to B principles such as provability and the provision of translation
modelling options that allow the modeller a good degree of control over the style of B
produced. In the extreme the UML-B profile permits the modeller to write ‘straight’ B as a
textual attachment to UML entities. While this misses the advantages of UML-B it does
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provide a fallback mechanism when UML-B does not provide suitable constructs or a new
modelling area is being investigated.

8 Other Work on Translating to B

Several groups have proposed translations from object-oriented notations to B. As well as
those discussed below, see earlier work by Nagui-Raiss [1994] and Shore [1996]. The
suggestions for modelling the static class data structure and relationships are similar to each
other and were originally the basis for our own approach. However, due to the difficulties
discussed above, of representing an object-oriented model these approaches generally result
in B that is unnatural and this may damage our goal of providing usable validation and
verification. Our approach differs because our aim is to provide a UML based formal
modelling notation that facilitates verification by proof. Whereas most groups attempt to
accommodate all valid class structures without interfering with the UML representation, we
provide a profile that allows the modeller to control the translation.

Lano, Clark and Androutsopoulos [2004] describe translation of UML-RSDS specifications
into B. They use OCL as the constraint language whereas we use uB. Using OCL means that
the specification is more ‘UML’ but its procedural style is somewhat cumbersome to use and
the translation gap is bigger than for uB. Another major difference is in the mapping from
classes to B machines. They arrange a structure of machines using the INCLUDES and USES
constructs to cope with interclass interactions. In our experience such structures make
verification more difficult. We have removed support for USES and moved away from
machine inclusion by translating a complete class diagram into a single machine.

Facon, Laleau & Nguyen [1996] provide a mapping of static class diagram features into B
machines. Their work has concentrated on Information systems and database applications that
are data-centric [Facon, Laleau, Nguyen and Mammar, 1999]. These types of systems involve
a high degree of data modelling but only simple operations. Consequently, our use of
behaviour modelling would be largely redundant. Their approach is to automatically generate
basic operations according to class properties such as mutability and multiplicity. Class
statecharts are then used to define how external events invoke the basic operations of the class
according to state and guard conditions. Collaboration diagrams define which class events
occur in response to system transactions. Use case transactions are described with functional
sequence diagrams (i.e. a sequence diagram involving users and the system). Each step on a
functional sequence diagram is a transaction message that is further described by a simplified
collaboration diagram identifying a system level operation and its implementation in terms of
events at the class statechart level. Thus, the hierarchy of system behaviour is represented in
layers made up of different UML modelling notations (collaboration, state and class) rather
than by reflecting hierarchy in the model as we do. This approach is more suited to data
intensive systems whereas our approach is more suited to process intensive systems.

Meyer & Souquieres [1999] propose a method for transforming OMT diagrams (on which
UML class diagrams are based). Classes are provided with basic operations and a class
statechart adds functionality by defining events and state transitions under which these basic
operations are used. The statechart layer is represented as operations within the class machine.
To avoid calling operations within the same machine, basic operations are translated to
definitions rather than operations. The resulting structure of B machines consists of a top-
level system machine, a machine for each class (including subclasses and aggregate
components) and a machine for each unfixed (or attributed) association. A disadvantage is
that some class behaviour is elevated to the top-level machine in order to obtain write access
over association links. In further work by Ledang and Souquiéres [2001] the calling sequence
defined in a collaboration diagram is used to construct a structure of B machines with one
machine for each layer except at the bottom layer where there is one machine for each class.
Implementations and imports are used to overcome operation calling restrictions.
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Sekerinski [1998] describes how reactive systems can be designed graphically using
statecharts [Harel, 1987] and how these designs can be converted to B for analysis and
refinement to code. The treatment differs from ours in that statecharts, although similar to
UML state machines, are treated as an independent form of design notation rather than as a
sub-notation to class diagrams. Hierarchical statecharts (i.e. states may have sub-states) and
concurrency (i.e. states may have groups of sub-states which may progress independently and
concurrently) are included. These are areas that we are currently addressing. Operations are
treated as procedures with conditional substitutions rather than guarded actions.

9 Conclusions

We have found that UML-B can be used to model a variety of problem types at different
levels of abstraction using its different modes and semantic options. We have found our
strategy that converts the contents of a complete package into a single B component, to be
more useful than the previous class-component translation. For example, the cellphone model
in Figure 3 could not have been translated using the class-component translation. This
strategy has allowed us to create useful UML-B models that can be translated into B in a style
that is amenable to the proof tools. We have validated our approach on a variety of non-trivial
industrial problems in cooperation with industrial partners. We have yet to test its scalability
on very large problems but our expectation is that it will scale in the same way that B scales
through refinement and decomposition. A key to achieving this will be robust tool support
with rich functionality. In future work we will continue to develop UML-B in close
cooperation with industrial partners and with ongoing developments in the B language.
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