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Abstract

The best measure quantifying FWL (finite word
length) stability is the one that bases on the largest
stable perturbation hypercube. But the computing
of this FWL stability measure has not been solved.
For second order digital systems, this paper devel-
ops an analytic computing method. Through solving
12 linear equations and 12 quadratic equations, the
measure value can be obtained exactly.

1 Introduction

The recent advances in digital system design meth-
ods have led to a need for the efficient and accu-
rate implementation of filters or controllers. Al-
though the number of filter/controller implementa-
tions using floating-point processors is increasing due
to their reduced price, for reasons of cost, simplic-
ity, speed, memory space, and ease-of-programming,
the use of fixed-point processors is more desirable
for many industrial and consumer applications. The
“robustness” of digital system stability under fil-
ter/controller parameter perturbations is critical is-
sue in fixed-point implementations. A designed, sta-
ble digital system may become unstable when the
“infinite-precision” filter/controller is implemented
using a fixed-point processor due to finite-word-
length (FWL) effects [1][2].

It is well known that a filter/control law can be ac-
complished with different realizations, and that these

different realizations possess different degrees of sta-
bility robustness to FWL errors. The FWL stabil-
ity measure υ addressed by Fialho and Georgiou [3]
is the best measure quantifying the FWL stability
character of a realization. Unfortunately, for a given
realization nobody know how to calculate the value
of υ. Since the computing of υ is very difficult, vari-
ous tractable FWL stability measures are addressed
to replace υ in some senses [4]–[9]. For second or-
der digital systems, this paper develops an analytic
method of computing υ explicitly. The remainder of
this paper is organized in the following way. Sec-
tion 2 introduces FWL stability and the measure υ.
Section 3 presents and analyzes an algorithm of com-
puting υ for second order digital systems. Numerical
examples are given in section 4 to demonstrate the
effectiveness of the proposed method, and the paper
concludes at section 5.

2 FWL Stability and Its Mea-
sure υ

Firstly, consider the discrete-time closed-loop con-
trol system consisting of a linear time-invariant plant
P (z) and a digital controller C(z). The plant model
P (z) is assumed to be strictly proper with a state-
space description

{
xP (t + 1) = AP xP (t) + BP u(t)
z(t) = CP xP (t) (1)
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where AP ∈ Rm×m, BP ∈ Rm×l and CP ∈ Rq×m.
The digital controller C(z) is described by

{
xC(t + 1) = ACxC(t) + BCz(t)
u(t) = CCxC(t) + DCz(t) (2)

with AC ∈ Rn×n, BC ∈ Rn×q, CC ∈ Rl×n and
DC ∈ Rl×q. Denote the realization of C(z) as

X
4
=

[
DC CC

BC AC

]
. (3)

Suppose that an initial realization of C(z)

X0
4
=

[
D0

C C0
C

B0
C A0

C

]
(4)

has been given by some controller synthesis method,
and all the realizations of C(z) form a set

SC
4
=

{
X : X =

[
I 0
0 T−1

]
X0

[
I 0
0 T

]}
(5)

where the transformation T ∈ Rn×n is an arbitrary
non-singular matrix, 0 and I denote the zero matrix
and the identity matrix of appropriate dimension re-
spectively. The stability of the closed-loop control
system depends on the eigenvalues of the closed-loop
transition matrix

A(X) =
[

AP + BP DCCP BP CC

BCCP AC

]

=
[

AP 0
0 0

]
+

[
BP 0
0 I

]
X

[
CP 0
0 I

]

4
= M0 + M1XM2. (6)

Secondly, a discrete-time filter system can be
viewed as the trivial case of closed-loop system (1)(2)
with P (z) = 0, m = 0 and C(z) represents the filter.
Accordingly, the stability of the filter system still de-
pends on A(X) with M0 = 0, M1 = I, M2 = I and
X = AC , i.e. A(X) = AC .

All the different realizations X in SC have exactly
the same set of poles if they are implemented with
infinite precision. Since the digital system has been
designed to be stable, all the eigenvalues λk(A(X)),
1 ≤ k ≤ m + n, are within the unit disk. When X
is implemented in fixed-point format of finite word
length, it is perturbed to X+∆. Each element of ∆
is bounded by ±ε, that is,

‖∆‖m ≤ ε (7)

where ‖∆‖m denotes the maximal absolute value of
all elements in ∆, and ε is the maximum represen-
tation error of the digital processor. With the per-
turbation ∆, λk(A(X)) is moved to λk(A(X + ∆)).
If an eigenvalue of

A(X + ∆) = A(X) + M1∆M2 (8)

is outside the open unit disk, the digital system, de-
signed to be stable, becomes unstable with the finite-
precision implemented X.

It is therefore critical, for a realization X ∈ SC ,
to know how many degree of FWL error will cause
closed-loop instability. This means that we would
like to know the largest open “hypercube” in the
perturbation space within which the digital system
remains stable. The size of this perturbation hyper-
cube quantifies the FWL stability characteristics of
X and therefore Fialho and Georgiou [3] addressed
the FWL stability measure

υ(X)
4
= inf{‖∆‖m : A(X + ∆) is unstable}. (9)

From the definition of υ(X), it is easy to see

Theorem 1 A(X + ∆) is stable if ‖∆‖m < υ(X).

The above theorem implies that the larger υ(X) is,
the larger FWL errors the realization X can tolerate.

3 Computing υ(X) for 2 × 2
A(X)

Although υ(X) is a pretty measure characterizing
FWL stability, its computing is still an open prob-
lem. In other words, for a given X, one does not
know

υ(X) = sup{|η| : ‖∆‖m ≤ |η|,A(X + ∆) is stable}.
(10)

This paper will discuss computing υ(X) for 2 × 2

A(X). It is supposed A(X) =
[

a0 c0

d0 b0

]
∈ R2×2.

Noticing that ∆ has the same dimension as X and

that X =
[
DC CC

BC AC

]
lying in R2×1, R1×2 or R

hardly makes sense in filter/controller analysis and

synthesis, we assume that ∆ =
[

δ1 δ3

δ4 δ2

]
∈ R2×2,

[
BP 0
0 I

]
=

[
bP 0
0 1

]
∈ R2×2 and

[
CP 0
0 I

]
=

[
cP 0
0 1

]
∈ R2×2 with bP 6= 0 and cP 6= 0. Briefly,

in the remainder of this paper,

A(X + ∆)

=
[

a0 c0

d0 b0

]
+

[
bP 0
0 1

] [
δ1 δ3

δ4 δ2

] [
cP 0
0 1

]

=
[

a0 + bP cP δ1 c0 + bP δ3

d0 + cP δ4 b0 + δ2

]
∈ R2×2. (11)

Let

a
4
= a0 + bP cP δ1, (12)

b
4
= b0 + δ2, (13)

c
4
= c0 + bP δ3, (14)

d
4
= d0 + cP δ4. (15)
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It can be seen that, for η ∈ R, the set

Pη
4
=





[ a b c d ]T :

−|η| ≤ δ1 ≤ |η|
−|η| ≤ δ2 ≤ |η|
−|η| ≤ δ3 ≤ |η|
−|η| ≤ δ4 ≤ |η|





(16)

forms a hyper-cuboid in R4. Clearly, each
edge of Pη is parallel to the a, b, c or
d axis, and Pη has 16 vertices expressed as
[ a0 ± bP cP η, b0 ± η, c0 ± bP η, d0 ± cP η ]T . It is well

known that
[

a c
d b

]
is stable if and only if all the

roots of the polynomial λ2− (a + b)λ + ab− cd lie in
the open unit disk. For a second order polynomial,
Jury [10] gave a necessary and sufficient condition to
check whether all its roots lie in the open unit disk
as

Lemma 1 all the roots of α2λ
2 +α1λ+α0 (α2 6= 0)

lie in the open unit disk if and only if |α0| < |α2| and
|α0 + α2| > |α1|.
Then the following lemma is from Lemma 1 directly.

Lemma 2
[

a c
d b

]
is stable if and only if these in-

equalities hold

ab− cd− 1 < 0, (17)
(a + 1)(b + 1)− cd > 0, (18)
(a− 1)(b− 1)− cd > 0. (19)

Based on Lemma 2, we obtain an useful result as

Theorem 2
[

a c
d b

]
is stable for any

[ a b c d ]T ∈ Pη if and only if that
[

a c
d b

]
is

stable at all the 16 vertices of Pη.

Proof: Necessity is obvious.
Sufficiency can be shown in the following man-

ner. In the ab plane grained with curves ab = ω
(−∞ < ω < ∞), observe a closed rectangle block K
with 2 edges parallel to the a axis and the other 2
edges parallel to the b axis. It is seen easily that
wherever K is placed in the ab plane, max

[a,b]T∈K
ab

is achieved at one vertex of K while min
[a,b]T∈K

ab is

achieved at another vertex of K. Fig. 1 displays 3
rectangle blocks at different places in the ab plane.
For K1, max

[a,b]T∈K1

ab is achieved at the upper-right

vertex while min
[a,b]T∈K1

ab is achieved at the lower-left

vertex. For K2, max
[a,b]T∈K2

ab is achieved at the lower-

left vertex while min
[a,b]T∈K2

ab is achieved at the upper-

left vertex. For K3, max
[a,b]T∈K3

ab is achieved at the

lower-left vertex while min
[a,b]T∈K3

ab is achieved at the

lower-right vertex. This observation make it under-
stood, for any [ a b c d ]T ∈ Pη, that the value
ab is bounded from both upper and lower sides re-
spectively by two of the values (a0 + bP cP η)(b0 + η),
(a0 + bP cP η)(b0 − η), (a0 − bP cP η)(b0 + η) and
(a0 − bP cP η)(b0 − η), as well as that the value cd
is bounded from both upper and lower sides respec-
tively by two of the values (c0 + bP η)(d0 + cP η),
(c0 + bP η)(d0 − cP η), (c0 − bP η)(d0 + cP η) and
(c0− bP η)(d0− cP η). Without loss of the generality,
here we suppose that

ab ≤ (a0 + bP cP η)(b0 + η), (20)
(c0 − bP η)(d0 − cP η) ≤ cd. (21)

Then

ab− cd

≤ (a0 + bP cP η)(b0 + η)− (c0 − bP η)(d0 − cP η). (22)

Noticing that

[ a0 + bP cP η, b0 + η, c0 − bP η, d0 − cP η ]T

is a vertex of Pη at which

(a0 + bP cP η)(b0 + η)− (c0 − bP η)(d0 − cP η)− 1 < 0
(23)

holds, we arrive at ab−cd−1 < 0. Similarly, one can
prove (a+1)(b+1)−cd > 0 and (a−1)(b−1)−cd > 0.

Hence,
[

a c
d b

]
is stable for any [ a b c d ]T ∈ Pη.

Let

f1([ a b c d ]T ) = ab− cd− 1, (24)

f2([ a b c d ]T ) = (a + 1)(b + 1)− cd,(25)

f3([ a b c d ]T ) = (a− 1)(b− 1)− cd.(26)

Theorem 2 offers a way of finding the largest open

hyper-cuboid in which
[

a b
c d

]
is stable. That is,

beginning by η = 0, to enlarge Pη until a ver-
tex of Pη touches one of the curved hyper-surfaces
fi([ a b c d ]T ) = 0, i ∈ {1, 2, 3}. With the
change of η, the 16 vertices of Pη move along 8
curves inR4 (each pair of vertices symmetrical about
[ a b c d ]T are contained in the same curve).
The 8 curves include

p1(η) =




a0 + bP cP η
b0 + η

c0 + bP η
d0 + cP η


 ,p2(η) =




a0 − bP cP η
b0 + η

c0 + bP η
d0 + cP η


 ,

p3(η) =




a0 + bP cP η
b0 − η

c0 + bP η
d0 + cP η


 ,p4(η) =




a0 + bP cP η
b0 + η

c0 − bP η
d0 + cP η


 ,

p5(η) =




a0 + bP cP η
b0 + η

c0 + bP η
d0 − cP η


 ,p6(η) =




a0 − bP cP η
b0 − η

c0 + bP η
d0 + cP η


 ,

1595



p7(η) =




a0 − bP cP η
b0 + η

c0 − bP η
d0 + cP η


 ,p8(η) =




a0 − bP cP η
b0 + η

c0 + bP η
d0 − cP η


 ,

η ∈ R.

For computing υ(X), it is needed to know the val-
ues of η at which pj(η), j ∈ {1, · · · , 8} intersects
fi([ a b c d ]T ) = 0, i ∈ {1, 2, 3}. This actu-
ally requires to solve the equation fi(pj(η)) = 0.
Appendix lists totally 24 equations fi(pj(η)) = 0,
i ∈ {1, 2, 3}, j ∈ {1, · · · , 8} consisting of 12 linear
equations and 12 quadratic equations. By solving
these 24 equations, we obtain the set

Q 4
= {η : ∃i ∈ {1, 2, 3}, j ∈ {1, · · · , 8}, fi(pj(η)) = 0}.

(27)
Comment: For some values of a, b, c, d, bP and

cP , it possibly happens that any linear fi(pj(η)) = 0
has no solution or any quadratic fi(pj(η)) = 0
has no real-value solution. As an example, when
a0 = b0 = c0 = d0 = 0 and bP = cP = 1,
f1(p1(η)) = 0 expressed as −1 = 0 has no solu-
tion and f1(p4(η)) = 0 expressed as 2η2 + 1 = 0 has
no real-value solution. This means neither p1(η) or
p4(η) intersects f1([ a b c d ]T ) = 0. Of course,
Q is not empty, otherwise υ(X) is infinitely large
that never be true.

By Q, one can compute υ(X) according to

Theorem 3 υ(X) = min
η∈Q

|η|.

Proof: Without the loss of generality, suppose that
η1 = min

η∈Q
|η| and f1(p1(η1)) = 0. Firstly,

[
a0 + bP cP η1 c0 + bP η1

d0 + cP η1 b0 + η1

]

=
[

a0 c0

d0 b0

]
+

[
bP 0
0 1

] [
η1 η1

η1 η1

] [
cP 0
0 1

]
(28)

is unstable and hence υ(X) ≤ η1. Secondly, if
υ(X) < η1, there exists η2, δ1, δ2, δ3 and δ4 such

that |η2| < η1 and
[

a0 + bP cP δ1 c0 + bP δ3

d0 + cP δ4 b0 + δ2

]
∈ Pη2

is unstable. From Theorem 2, this is equivalent to

that
[

a c
d b

]
is unstable at one vertex of Pη2 . In

other words, one of the 3 inequalities (17)–(19) is
not satisfied at one vertex pj(η2) of Pη2 . We as-
sume f2(p2(η2)) ≥ 0 without the loss of general-
ity. Noting that f2(p2(η)) is a continuous function

and that
[

a0 c0

d0 b0

]
is stable, i.e. f2(p2(0)) < 0,

there is η3 such that |η3| ≤ |η2| and f2(p2(η3)) = 0
from the Intermediate Value Theorem [11]. Further
f2(p2(η3)) = 0 leads to η3 ∈ Q and |η3| ≤ |η2| leads
to |η3| < η1. The results η3 ∈ Q and |η3| < η1

clearly contradicts the fact η1 = min
η∈Q

|η|. Therefore,

υ(X) = η1.

Now, the analytic algorithm of computing υ(X)
for 2× 2 A(X) is summarized as

Step 1 Construct 24 equations fi(pj(η)) = 0, i ∈
{1, 2, 3}, j ∈ {1, · · · , 8} according to Appendix.

Step 2 Solve the 24 equations, obtain the set Q.

Step 3 υ(X) = min
η∈Q

|η|.

4 Numerical Example

An initial realization Xini of a second order digital
filter is given by

ACini =
[−1.0061e− 2 9.8327e− 1
−9.9386e− 1 1.6731e0

]
,

BCini =
[−1.1380e− 2

9.9980e− 1

]
,

CCini = [−2.2420e− 3 2.4713e− 1 ] ,
DCini = 6.7500e− 2.

Then

A(Xini) =
[

a0 c0

d0 b0

]

=
[−1.0061e− 2 9.8327e− 1
−9.9386e− 1 1.6731e0

]
,

[
bP 0
0 1

]
=

[
1 0
0 1

]
,

[
cP 0
0 1

]
=

[
1 0
0 1

]
.

Our algorithm produces the solution υ(Xini) =
1.0814e − 2. Li [4] addressed a FWL measure υ̃ ap-
proximating υ. In order to compare υ̃ and υ, we
compute υ̃(Xini) = 5.2463e− 3 by the method given
in [4]. Obviously, υ̃(Xini) is more conservative than
υ(Xini). For the digital filter, an approach given in
[1] can be used to maximize υ̃ within SC and obtain
an optimal realization Xopt whose

ACopt =
[

8.3152e− 1 5.1863e− 1
−5.1863e− 1 8.3152e− 1

]
,

BCopt =
[−9.4809e− 1

1.6686e0

]
,

CCopt = [ 1.1853e− 1 2.1544e− 1 ] ,
DCopt = 6.7500e− 2.

With Xopt, we have υ̃(Xopt) = 1.0000e − 2 and
υ(Xopt) = 1.4509e − 2. υ̃(Xopt) is also more con-
servative than υ(Xopt).

5 Conclusions

An interesting fact is that the stability of
[

a b
c d

]
for

any [ a b c d ]T ∈ Pη is equivalent to the stability

1596



of
[

a b
c d

]
at Pη’s vertices. Based on this observa-

tion, an analytic method has been proposed to com-
pute the FWL stability measure υ for second order
digital systems. As the “vertex result” does not hold
in the systems of order higher than two, the proposed
method can not be extended to those systems.

Appendix

e1
4
= a0b0 − c0d0 − 1

e2
4
= a0b0 − c0d0 + a0 + b0 + 1

e3
4
= a0b0 − c0d0 − a0 − b0 + 1

f1(p1(η)) = g11η + e1 = 0
g11 = a0 + b0bP cP − c0cP − d0bP

f1(p2(η)) = h12η
2 + g12η + e1 = 0

h12 = −2bP cP

g12 = a0 − b0bP cP − c0cP − d0bP

f1(p3(η)) = h13η
2 + g13η + e1 = 0

h13 = −2bP cP

g13 = −a0 + b0bP cP − c0cP − d0bP

f1(p4(η)) = h14η
2 + g14η + e1 = 0

h14 = 2bP cP

g14 = a0 + b0bP cP − c0cP + d0bP

f1(p5(η)) = h15η
2 + g15η + e1 = 0

h15 = 2bP cP

g15 = a0 + b0bP cP + c0cP − d0bP

f1(p6(η)) = g16η + e1 = 0
g16 = −a0 − b0bP cP − c0cP − d0bP

f1(p7(η)) = g17η + e1 = 0
g17 = a0 − b0bP cP − c0cP + d0bP

f1(p8(η)) = g18η + e1 = 0
g18 = a0 − b0bP cP + c0cP − d0bP

f2(p1(η)) = g21η + e2 = 0
g21 = a0 + b0bP cP − c0cP − d0bP + bP cP + 1

f2(p2(η)) = h22η
2 + g22η + e2 = 0

h22 = −2bP cP

g22 = a0 − b0bP cP − c0cP − d0bP − bP cP + 1

f2(p3(η)) = h23η
2 + g23η + e2 = 0

h23 = −2bP cP

g23 = −a0 + b0bP cP − c0cP − d0bP + bP cP − 1

f2(p4(η)) = h24η
2 + g24η + e2 = 0

h24 = 2bP cP

g24 = a0 + b0bP cP − c0cP + d0bP + bP cP + 1

f2(p5(η)) = h25η
2 + g25η + e2 = 0

h25 = 2bP cP

g25 = a0 + b0bP cP + c0cP − d0bP + bP cP + 1

f2(p6(η)) = g26η + e2 = 0
g26 = −a0 − b0bP cP − c0cP − d0bP − bP cP − 1

f2(p7(η)) = g27η + e2 = 0
g27 = a0 − b0bP cP − c0cP + d0bP − bP cP + 1

f2(p8(η)) = g28η + e2 = 0
g28 = a0 − b0bP cP + c0cP − d0bP − bP cP + 1

f3(p1(η)) = g31η + e3 = 0
g31 = a0 + b0bP cP − c0cP − d0bP − bP cP − 1

f3(p2(η)) = h32η
2 + g32η + e3 = 0

h32 = −2bP cP

g32 = a0 − b0bP cP − c0cP − d0bP + bP cP − 1

f3(p3(η)) = h33η
2 + g33η + e3 = 0

h33 = −2bP cP

g33 = −a0 + b0bP cP − c0cP − d0bP − bP cP + 1

f3(p4(η)) = h34η
2 + g34η + e3 = 0

h34 = 2bP cP

g34 = a0 + b0bP cP − c0cP + d0bP − bP cP − 1

f3(p5(η)) = h35η
2 + g35η + e3 = 0

h35 = 2bP cP

g35 = a0 + b0bP cP + c0cP − d0bP − bP cP − 1

f3(p6(η)) = g36η + e3 = 0
g36 = −a0 − b0bP cP − c0cP − d0bP + bP cP + 1

f3(p7(η)) = g37η + e3 = 0
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g37 = a0 − b0bP cP − c0cP + d0bP + bP cP − 1

f3(p8(η)) = g38η + e3 = 0
g38 = a0 − b0bP cP + c0cP − d0bP + bP cP − 1
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Figure 1: Rectangle blocks in the ab plane grained
with ab = ω.
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