
Principles of Personalisation of Service Discovery

Juri Papay Simon Miles Michael Luck Luc Moreau Terry Payne

School of Electronics and Computer Science
University of Southampton

{jp, sm, mml, L.Moreau, trp}@ecs.soton.ac.uk

Abstract

We define personalisation as the set of capabilities that enables a user or an organisation to
customise their working environment to suit their specific needs, preferences and circumstances.
In the context of service discovery on the Grid, the demand for personalisation comes from indi-
vidual users, who want their preferences to be taken into account during the search and selection
of suitable services. These preferences can express, for example, the reliability of a service,
quality of results, functionality, and so on. In this paper, we identify the problems related to per-
sonalising service discovery and present our solution: a personalised service registry or View. We
describe scenarios in which personsalised service discovery would be useful and describe how
our technology achieves them.

1 Introduction

Scientists are starting to use distributed services to
automate their experiments, and to coordinate them
using workflow languages, to take full advantage of
the power and flexibility the Grid offers. The pool
of available services is constantly being increased,
so users cannot know all, or the best, that may be
used. In consequence, users, and the software tools
they employ, must discover services that will per-
form the tasks they require by querying registries of
service adverts. However, public service registries
advertise an increasingly large number of services,
from which only a small fragment will be relevant
for the individual user, project or organisation. Tai-
loring computational processes to individuals is per-
sonalisation, an idea that can be applied to service
discovery to increase the likelihood of the discov-
ery process resulting in a set of services relevant to
the individual, and matching their particular require-
ments.

Existing service registry frameworks, such as
UDDI [5], OWL-S[1] and BioMoby[7], are focussed
on providing public service discovery and thus do
not address the needs of personalisation. The re-
cently released UDDI version 3 [5] specification
moves a small step towards personalisation by al-
lowing clients to subscribe to notification of changes
in the content of the registry. By specifying the pa-
rameters of subscription the users are informed only
about those changes that match the specific parame-
ters. While useful, this does not actually personalise
the discovery process, as the same services will be

found by the same query to the UDDI registry by
any individual. However, despite the numerous lim-
itations, the above standards will continue to evolve
and be used by different communities so that, when
providing an alternative mechanism for service dis-
covery, existing standards should be extended rather
than new ones developed.

Personalised service discovery is service discov-
ery in which the personal preferences of the user
are taken into account. The most basic way to take
into account personal preferences would be to ask
the user every time a choice between services was
to be made, but this would be both impractical and
counter-productive. Our overall objective is to make
service discovery easier not just for humans but for
the machines as well, by making this process semi-
automatic. This involves recording user preferences
in a form that is accessible programmatically i.e. in
the form of metadata. Metadata represents addi-
tional information related to, and explicitly associ-
ated with, an existing piece of data. In the case of
service description, this metadata can, for example,
describe the functionality of the service, characterise
its reliability, cost, trust rating etc. The process of
adding metadata is called annotation, and the avail-
ability of metadata is of key importance, as it enables
filtering and ordering of the list of services generated
by a query according to the user’s personal prefer-
ences.

In this paper, we present our approach to per-
sonalisation of service discovery by describing the
design and implementation of a personalised ser-
vice registry, View, developed within the myGrid



project. myGrid [4] is a pilot project funded by the
UK e-Science programme [6], with the goal of de-
veloping a software infrastructure to provide sup-
port for bioinformaticians in the design and execu-
tion of in-silico experiments utilising the resources
of the Grid. The Grid is a truly heterogeneous envi-
ronment where the resources are geographically dis-
tributed and managed by a multitude of institutions
and organisations. Discovering services, workflows
and data in this fluid and ever-changing environment
is a real challenge that highlights the need for reg-
istries with reliable information content.

The specific technical contributions detailed in
this paper are the following:

1. A set of principles that must be followed to al-
low service discovery to become personalised.

2. A protocol that enables filtering and replication
of the information content of public registries,
and stores it in a personalised registry.

3. The design and implementation of a person-
alised service registry that follows the princi-
ples we have established.

The paper is structured as follows. First, in Sec-
tion 2, we present several scenarios that illustrate
the role of personalisation in the bioinformatics con-
text. Section 3 then describes the key features of
the View, while Section 4 examines in detail the
message-passing architecture enabling personalisa-
tion. Then, Section 5 discusses the scope of related
work, and Section 6 draws conclusions and outlines
further work.

2 Personalisation Scenarios

In this section, we describe three scenarios of in-
creasingly complex requirements for personalisation
in service discovery, and show how our View tech-
nology solves this.

2.1 Personal View

In the most basic scenario, a user would like service
discovery to be conducted over the most up-to-date
adverts for published services but only for those ser-
vices that are classified as applicable to them. They
also want to be able to annotate the service adverts
with opinions and other forms of extra information
that should then be used in the discovery process.

A user can set up a View which will pull entries
from a set of service registries. For each registry, the
user specifies a query to provide the initial data ex-
tracted from that source. Changes in the sources that

affect the outcome of the queries will cause notifica-
tions to be sent to the View. By default, any changes
are be reflected in the View by an automatic update
mechanism (which is discussed further below). The
user can manually edit the View by editing the meta-
data attached to entries or by deleting entries and, by
default, any manually edited data will not be over-
written by the automatic update mechanism.

2.2 Lab View

Moving to the next level of complexity, multiple
users in an organisation may want to perform dis-
covery that takes account of the expert information
on services that they have collectively built up, but
they may want that information to be managed only
by reliable organisation members.

Control over the content of a View can be shared
by a members of an organisation. For example, a
biology lab can have a View that contains metadata
relevant to the members of the lab but with one (or
more) designated curator(s) authorised to change the
entries and configuration. Then, if a PhD student
joins the lab, they are given access to the lab View
containing the relevant services. In the training pe-
riod, the student will only be given read access to the
View but, at a later stage, they can have a private View
created by the curator. Only metadata can be added
to the private View, but no other modifications are al-
lowed. Later, the View’s authorisation policy can be
changed to allow the student more control, such as
modifying metadata and adding/removing services.
Eventually, the PhD student graduates and can be-
come the curator of the lab View.

2.3 Multiple Views

In the final scenario, different users wish to share
experience, and draw on the experience of the most
knowledgable organisation members as before, but
they wish to perform some filtering of metadata and
add extra information that is particular to their use of
services.

To achieve this, multiple Views can exist and in-
teract. Figure 1 illustrates the scenario in which the
expert scientist in an organisation has a personalised
registry, View 1, which copies the service adverts
published in one or more public registries (Registry
1 to N). The expert then adds a trust value as meta-
data to each service advert, indicating how reliable
they have found that service. By contrast, a novice
in the same organisation also has a personalised reg-
istry, View 2, which copies the content of the ex-
pert’s registry, but only where the trust value of a
service is higher than a particular defined constant.
This copying is triggered by a notification from View



1 indicating that an update has occurred. The novice
is the only user allowed to edit the metadata in View
2. This means that when the novice discovers ser-
vices, they are only provided with services that the
expert has judged as trustable.

3 Principles of Personalised Ser-
vice Discovery

In this section, we detail the ideas underlying our
personalised service registry. In particular, the fol-
lowing principles were taken into account in design-
ing our middleware.

1. Service discovery should be based on the ser-
vice adverts currently available in public reg-
istries. Service providers should not have to
publish services multiple times for users to take
advantage of personalised service discovery.

2. While aggregating the contents of public ser-
vice registries may aid the user in discovering
what they need, there are many services that
will not be applicable to their requirements, so
filtering must take place before, as well as dur-
ing, discovery.

3. User annotations of service adverts should be
taken into account in discovery. However, users
may not want their annotations to be publicly
accessible, so metadata should be stored locally
and access controlled.

The following subsections describe the mechanisms
by which the above are achieved in our personalised
service registry.

3.1 Metadata attachment

An essential element in personalised service discov-
ery is the ability to augment service descriptions
with additional information, i.e. metadata. Service
providers may adopt various ways of describing their
services, access polices, contract negotiation details,
etc. However, many resource consumers also im-
pose their own selection policies on the services they
prefer to use, such as quality of service and rep-
utation metrics. A significant contribution of the
View middleware is also to allow third parties to
add metadata to service descriptions, so that infor-
mation about a service can be built up rapidly and
used in discovery. Furthermore, it is useful to add
such metadata not only to service descriptions, but
also to any other concept that may influence the dis-
covery process, such as supported operations, types
of arguments, businesses, users.

Such metadata may be structured according to
published ontologies, facilitating unambiguous in-
terpretation by multiple users, especially in the case
of a public registry; alternatively, such metadata may
also be raw and unstructured, in the case of a per-
sonal registry used by a single user. The result is
an extremely flexible service registry that can be the
basis of a sophisticated semantically-enhanced ser-
vice discovery engine, an essential component of a
Semantic Grid.

3.2 Notifications of Change

In order for a personalised service registry to repli-
cate the contents of public registries without the need
for re-publishing, there must be a mechanism for de-
termining when a service advert has been added to
or updated. Following the approach taken by UDDI
version 3 and others, the View can send notifications
whenever changes to its content take place, which
may be useful to a variety of clients. The View
can also subscribe to receive notifications from other
registries, and update its contents according to theirs.

Different kinds of update may occur in a View be-
cause different parts of an advert can be added, up-
dated or removed. Of these, clients performing dis-
covery will be particularly interested in changes to
the service advert as a whole, the metadata annota-
tions to the advert and the service interface defini-
tions (which are registered as WSDL).

To provide the most information for filtering, and
to be as useful as possible to other clients, View noti-
fications are classified into topics, including the fol-
lowing.

ServiceAdded indicates that a new service has been
advertised;

ServiceRemoved indicates that a service advert has
been removed from the View;

ServiceUpdated indicates that an existing service
advert has changed;

MetadaDataAdded indicates that new metadata
has been attached to a service description or a
business entity;

MetadaDataUpdated indicates that metadata at-
tached to a service description or a business en-
tity has changed;

MetadaDataRemoved indicates that metadata at-
tached to a service description or a business en-
tity has been removed;

WSDLAdded indicates that a new WSDL file has
been registered.



View1


Registry1
 RegistryN


View2

Notification message


View1 pulls information

from multiple registries


The information in View1 is

curated: a curator is adding a


trust ratings to advertised

services


Query for details


N

o


t
i

f
i

c

a


t
i

o

n


 
P

o


r
t



N

o


t
i

f
i

c

a


t
 i

o


n

 
P


o

r
t




...


Results


Selecting services with a

rating > X


Query for details


Results


Notification message


Figure 1: A deployment scenario

WSDLUpdated indicates that a WSDL file advert
has been changed or a metadata attached to a
part of WSDL file has changed.

WSDLRemoved indicates that a WSDL file advert
has been removed.

3.3 Example Interaction

Based on metadata annotation and the provision of
notifications, we can see how this applies to the Mu-
tiple Views scenario discussed in Section 2.3 above.
The sequence diagram in Figure 2 illustrates the in-
teraction between public registries and Views in this
scenario. Initially, a service provider publishes a ser-
vice in one of the public registries, and the public
registry sends out a notification message to all sub-
scribers about the new entry. The incoming message
is processed by View 1, which can query the pub-
lic registry for service details and, after downloading
the information, store it locally. Once the service de-
tails have been stored in View 1, they can be curated
by an expert who can add additional information by
attaching metadata. In our example, the expert adds
ratings to individual entries. During the startup time,
View 2 registers with View 1 by subscribing to a par-
ticular topic. Upon storing a new entry in View 1,
each subscriber (in this case there is only one) re-
ceives a NewServiceRegistered message. On arrival

of the message, View 2 queries View 1 for more ser-
vice details and metadata. Then, after obtaining all
requested data, View 2 performs a selection proce-
dure, the outcome of which determines whether to
replicate the service description locally or to discard
it. In our example, this selection is based on check-
ing the value of the rating and, if the rating is higher
than a threshold, then the service description and the
associated metadata is stored in View 2. Otherwise it
is ignored. This simple example illustrates how the
content of View 2 can be personalised according to
the value of a single type of metadata.

4 Internal architecture

During the design of View, the following software
design principles have been taken into account:

Modularity The code is divided into separate mod-
ules. In the design of View, each module repre-
sents a protocol, enabling users to query, up-
date and annotate the content of the person-
alised registry. At present, the View provides
supports for the following protocols: UDDI,
DAML-S, BioMoby, metadata attachment and
WSDL. The modular design enables concep-
tual seperation, flexible configuration, extensi-
bility and code upgrade.



View1
 View2


Query for service details and

metadata


Send notification

 NewServiceRegistered


Public Registries


Publish service


M

e


s
s

a

g


e

H


a

n


d

l
e


r


Service details


Selection based on

expert’s metadata

if rating > X then

save_service


Register as a subscriber


Service Provider


Send notification


M

e

s
s


a

g


e

H


a

n


d

l
e


r
Query for service details and

metadata


Service details


save_service


Expert


Add metadata

(rating)


Figure 2: Interaction between multiple Views



Generality and Abstraction The whole design is
based on interfaces. The API is separated
from its implementation, which enables several
deployment-time configurations for processing
operations in different ways.

Extensibility The View should be extensible so that,
as new protocols, and new versions of proto-
cols, arise, it can be augmented to be able to
process new queries over the existing service
advertisements and metadata.

The software is structured in a very modular man-
ner, with the API organised in a series of ports, for
publishing and querying, for both service descrip-
tions and metadata. Internally, a message-passing
metaphor is adopted, by which messages encode re-
quests and responses of the UDDI and metadata-
related APIs. Messages of a given port are handled
by so-called “handlers”, which either interact with
the persistent storage, or produce other messages
to be processed by other handlers. These handlers
adopt the visitor design pattern [3], to ensure static
type checking, completeness of the implementation,
and consistent error handling. Handlers can be com-
posed in different ways in order to achieve different
behaviours (replication, tunnelling, etc.) Thus, mul-
tiple configurations of the registry can be achieved
at deployment time, by identifying handlers to deal
with specific sets of messages. Such modularity al-
lows us to explore alternative implementations that
we can test and deploy in separate handlers.

Figure 3 illustrates the APIs, handlers, sequence
of method calls, and messages that can occur in a
View. Each API corresponds to a particular proto-
col and the implementations of those APIs gener-
ate internal messages that can be processed in mul-
tiple ways. For example, following the steps origi-
nating from the save service method call shown in
the figure, the UDDIPublishServer API generates a
SaveService message that is processed by the UD-
DIPublishHandler. The UDDIPublishHandler saves
the service advert as per the UDDI business logic,
then calls the newServiceRegistered method of the
RegistryEvent API, which generates the NewSer-
viceRegistered message. In turn, this message is
processed by the RegistryEventHandler, which cre-
ates a notification message and sends it to the outside
world in SOAP format.

The incoming notification is processed by the
RegistryEventHandlerIncoming handler of the re-
ceiving View, which may involve querying the pub-
lishing View for more details about the service. As a
result of this operation, the service details are down-
loaded from the publishing View. After obtaining the
service details and metadata, a selection operation is
used to determine whether to store the service advert

locally or to discard the downloaded information. In
this way, the contents of the publising View can be
fully or partially replicated into a subscribing View.

5 Related work

In this section, we examine other service discovery
technologies, including service registries, protocols
and service capability description languages. For
each, we determine how well it can be utilised in
personalised service discovery, and describe how our
approach differs.

The UDDI service directory (Universal Descrip-
tion, Discovery, and Integration) [5] has become the
de-facto standard for service discovery in the Web
Services community. Service queries are typically
white or yellow pages based: services are located
based on a description of their provider or a spe-
cific classification (taken from a published taxon-
omy) of the service type. Service descriptions in
UDDI are composed from a limited set of high-level
data constructs (Business Entity, Business Service,
etc.) that can include other constructs following a
rigid schema. While UDDI provides ways to attach
a form of metadata to a service advert through the
use of tModels, these are neither personal, in that
they are set by the service providers, nor used in ser-
vice discovery, as a tModel is a reference to an exter-
nal technical specification requiring an independent
mechanism for reasoning. UDDI version 3 does,
however, provide notifications for change, making
it ideal as a source of adverts to be personalised in a
View.

BioMOBY [7] is a service discovery architecture
based on a definition of a service as an atomic pro-
cess or operation that takes a set of inputs and pro-
duces a set of outputs. The service, inputs and out-
puts can all take semantic types; inputs and outputs
also have syntactic types. While there is more scope
for metadata in BioMOBY than in UDDI in that se-
mantic descriptions can be added for services and
used in discovery, it cannot have general extension
of service descriptions, such as the attachment of
quality of service ratings. As with UDDI, it is cen-
tralised and offers no support for personalisation.

The OGSA Registration port type [2] is intended
to support Grid Service registration and discovery,
with change monitoring via service data query and
the OGSA Notification port types. As with UDDI
version 3, an OGSA registry is suited to becoming a
source for adverts that can be personalised, but does
not provide personalised service discovery in itself.



Figure 3: Sequence of messages in a View

6 Conclusions and Future Work

In this paper we have investigated the importance of
personalisation in the context of service discovery.
The problem was investigated in the bioinformatics
setting in which service discovery is of key impor-
tance, but the results of this research are also appli-
cable to other problem domains.

We have identified the key requirements of per-
sonalised service discovery and analysed to what ex-
tent these requirements are met by the existing stan-
dards. Existing and widely-used service registries
and specifications such as UDDI provide little sup-
port for personalisation. In response, our research
has led to the implementation of a personalised ser-
vice registry, or View, which is a service registry that
allows service adverts in other registries to be fil-
tered for applicability to an individual, and then for
those adverts to be annotated with extra metadata.
These personalised adverts can then be used in dis-
covery, meaning that the results of discovery will be
those most useful to the individual.

In developing the View, we followed three prin-
ciples to ensure that users would have personalised
service discovery over the most up-to-date services
available.

1. Service discovery should be based on the ser-
vice adverts currently available in public reg-
istries. Service providers should not have to
publish services multiple times for users to take
advantage of personalised service discovery.

2. While aggregating the contents of public ser-
vice registries may aid the user in discovering
what they need, there are many services that
will not be applicable to their requirements, so
filtering must take place before, as well as dur-
ing, discovery.

3. User annotations of service adverts should be
taken into account in discovery. However, users
may not want their annotations to be publicly
accessible, so metadata should be stored locally
and access controlled.

In future work, we will develop policies that al-
low those creating and deploying Views to more flex-
ibly choose how services from other registries are
filtered, and to control access to service adverts and
personal metadata in a View. We are also testing the
View rigorously to ensure that it has adequate scal-
ability and performance for deployment in high de-
mand domains.

7 Acknowledgement

This research is funded by EPSRC myGrid project
(reference GR/R67743/01). We acknowledge Carole
Goble, Phillip Lord and Chris Wroe for their contri-
butions to discussion on the work presented in this
paper.



References

[1] DAML-S Coalition:, A. Ankolekar,
M. Burstein, J. Hobbs, O. Lassila, D. Mc-
Dermott, D. Martin, S. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, and K. Sycara. DAML-
S: Web Service Description for the Semantic
Web. In First International Semantic Web Con-
ference (ISWC) Proceedings, pages 348–363,
2002.

[2] Ian Foster, Carl Kesselman, Jeffrey M. Nick,
and Steven Tuecke. The Physiology of the Grid
— An Open Grid Services Architecture for Dis-
tributed Systems Integration. Technical report,
Argonne National Laboratory, 2002.

[3] Erich Gamma, Richard Helm, Ralph Johnson,
and Vlissides. Design Patterns. Addisson-
Wesley, 1995.

[4] myGrid - directly supporting the e-scientist.
http://www.mygrid.org.uk/, 2001.

[5] Universal Description, Discovery and Integra-
tion of Business of the Web. www.uddi.org,
2003.

[6] The UK Research Councils e-Science
Core Programme. http://www.research-
councils.ac.uk/escience/, 2001.

[7] MD Wilkinson and M. Links. Biomoby: an
open-source biological web services proposal.
Briefings In Bioinformatics, 4(3), 2002.


