
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Coalition Formation and Operation in

Virtual Organisations

by

Viet Dung Dang

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

December 2004

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Viet Dung Dang

The concept of Virtual Organisations (VOs) or Virtual Enterprises (VEs) is rapidly

emerging as an important topic in many areas of computing including e-commerce, grid

computing and the semantic Web. One reason for this interest is that VOs provide a

means of bringing together a number of autonomous stakeholders in a dynamic fashion

in order to address a specific problem or niche. These agents then work together for

some period of time and then disband when it is deemed appropriate to do so. There

are, however, many technical, social and economic issues associated with this VO life-

cycle (i.e. creation, operation, maintenance and dissolution) that need to be addressed

before VOs can be considered to be practicable. While previous technical work on VOs

has concentrated on providing tools to support different aspects of the VO lifecycle,

comparatively little work has focused on the mechanisms for automated VO creation,

operation and maintenance. To address this shortcoming, this research aims to study

and design mechanisms for the VO creation, operation and maintenance phases. In this

thesis, our approach is to use combinatorial auctions and coalition formation mecha-

nisms. In particular, novel algorithms for clearing multi-unit single-item and multi-unit

combinatorial auctions have been developed as a means of tackling VO creation and one

part of VO maintenance. A novel algorithm for coalition structure generation has also

been developed to address VO operation and another part of VO maintenance.

Contents

Acknowledgements vi

1 Introduction 1
1.1 Virtual Organisations . 2
1.2 Research Objectives . 5

1.2.1 The Creation Phase . 7
1.2.2 The Operation Phase . 9
1.2.3 The Maintenance Phase . 10

1.3 Research Contributions . 11
1.4 Thesis Structure . 12

2 Background 14
2.1 Virtual Organisations . 14
2.2 Partner Selection in Virtual Organisations 19

2.2.1 Auction Clearing with Demand/Supply Function Bids 21
2.2.2 The State of The Art in Clearing Algorithms 24

2.3 Task Distribution within Virtual Organisations 26
2.3.1 Coalition Structure Generation . 29
2.3.2 The State of The Art in Coalition Formation 30

2.4 Summary . 31

3 Polynomial Auction Clearing Algorithms 32
3.1 Multi-Unit Single-Item Auctions . 34

3.1.1 Proof of NP-completeness . 34
3.1.2 The Algorithm . 41

3.2 Multi-Unit Combinatorial Auctions . 48
3.3 Experimental Evaluation . 60

3.3.1 Multi-Unit Single-Item Auctions 60
3.3.2 Multi-Unit Combinatorial Auctions 65

3.4 Summary . 70

4 Optimal Auction Clearing Algorithms 72
4.1 Piece-wise Linear Supply/Demand Curve Bids 73

4.1.1 Multi-Unit Single-Items . 74
4.1.2 Multi-Unit Combinatorial Items 80

4.2 Monotonic One-Unit-Difference Supply/Demand
Functions . 84
4.2.1 Multi-Unit Single-Items . 84

ii

CONTENTS iii

4.2.2 Multi-Unit Combinatorial Items 90
4.3 Summary . 93

5 Coalition Structure Generation Algorithm 94
5.1 The Algorithm . 94
5.2 Performance Evaluation . 100
5.3 Summary . 106

6 Virtual Organisations in Operation 107
6.1 The Creation Phase . 108
6.2 The Operation Phase . 114
6.3 The Maintenance Phase . 119

6.3.1 Adding New Members into The VO 119
6.3.2 Re-organising The Work . 124

7 Conclusions 128

List of Figures

1.1 The VO lifecycle. 6

2.1 A demand (supply) curve for multi-unit single-item case. 22
2.2 A demand (supply) function for multi-unit combinatorial case. 23

3.1 The clearing algorithm for the multi-unit single-item case. 41
3.2 The clearing algorithm for the multi-unit combinatorial case. 53
3.3 The experimental result of our algorithm for multi-unit single-item for-

ward auctions (varying the number of bidders). 63
3.4 The experimental result of our algorithm for multi-unit single-item for-

ward auctions (varying the maximum number of segments). 63
3.5 The experimental result of our algorithm for multi-unit single-item reverse

auctions (varying the number of bidders). 64
3.6 The experimental result of our algorithm for multi-unit single-item reverse

auctions (varying the maximum number of segments). 64
3.7 The experimental result of our algorithm for multi-unit combinatorial

forward auctions (varying the number of bidders). 67
3.8 The experimental result of our algorithm for multi-unit combinatorial

forward auctions (varying the maximum number of segments). 68
3.9 The experimental result of our algorithm for multi-unit combinatorial

forward auctions (varying the number of items). 68
3.10 The experimental result of our algorithm for multi-unit combinatorial

reverse auctions (varying the number of bidders). 69
3.11 The experimental result of our algorithm for multi-unit combinatorial

reverse auctions (varying the maximum number of segments). 69
3.12 The experimental result of our algorithm for multi-unit combinatorial

reverse auctions (varying the number of items). 70

4.1 Clearing algorithm for multi-unit single-item case with piece-wise linear
supply function bids. 79

4.2 Clearing algorithm for multi-unit combinatorial case with piece-wise linear
supply function bids. 83

4.3 Clearing algorithm for multi-unit single-item case with monotonic one-
unit-difference demand/supply function bids. 88

4.4 Clearing algorithm for multi-unit combinatorial case with monotonic one-
unit-difference demand/supply function bids. 92

5.1 The coalition structure generation algorithm. 96
5.2 Comparison of the searching paths between our algorithm and Sandholm

et al.’s. 97

iv

LIST OF FIGURES v

5.3 Sandholm et al.’s algorithm. 101
5.4 The case n = 50. 103
5.5 The case n = 100. 104
5.6 The case n = 500. 104
5.7 The case n = 1000. 105

6.1 The searching steps of our coalition structure generation in the operation
phase of the scenario. 118

Acknowledgements

During the duration of my Ph.D., I have received lots of advice, support and help from

many people.

In particular, I would like to express my deepest appreciation and gratitude to my

supervisor Prof. Nicholas R. Jennings for his continuously great supervision and support.

His dynamism, experience and flexibility have also inspired, encouraged and taught me

in numerous ways.

I gratefully thank BT Exact for kindly financing my research. I would particularly

thank Dr. Simon Thompson for his advice and his support in my time in BT Exact

as well as throughout my Ph.D. Moreover, the research has been done in the scope of

the CONOISE project and I would also like to thank all CONOISE’s members for their

help.

I thank Dr David Parkes for giving me useful comments on my auction clearing paper.

The Intelligent, Agents, Multimedia group community has been extremely supportive of

me academically, technically as well as socially. I owe them all. Special thanks to Dr.

Stephan Chan, Dr. Alex Rogers, Dr. Royan Ong, Dr. Esther David, Rajdeep Dash,

Sarvapali (Gopal) Ramchurn and Steve Munroe for all your help.

I thank my parents and my sister for all the moral support that they have continuously

provided me remotely from Vietnam and France. I also thank them for giving me a

great environment to grow up in.

Last but certainly not least I thank my girlfriend Vinh Hanh Nguyen for all the help

and support she has given me during my Ph.D. time. Vinh made this time joy, more

meaningful and well-rounded. She has always been there for me. Thank you.

vi

This thesis is dedicated to my parents, Giang Huong and Hanh

Vinh.

vii

Chapter 1

Introduction

An increasing number of computer systems are being developed to operate in open, net-

worked environments such as the Internet and the Grid. Moreover, in many such cases,

these systems are populated with independent components that have been developed

by different stakeholders, each of which has their own aims and objectives. To achieve

these aims and objectives, the components invariably need to interact with one another

in flexible ways. In particular, a key form of interaction is when a number of initially

distinct components come together to form a temporary alliance (or virtual organisation)

to achieve a particular objective.

Against this background, this research develops new methods for forming, maintaining,

and managing virtual organisations (VOs). Specifically, the independent components

are viewed as autonomous agents that can act in flexible ways in order to provide and

deliver particular services [Jennings and Wooldridge, 1995]. Then, when the need for a

new VO is detected, these agents participate in online auctions in order to indicate what

contributions they are willing to make (if any) and under what terms and conditions.

Here these terms and conditions relate to the other services that the agent is contributing

to the VO and the quantity of its contribution of the various services (e.g. if an agent is

contributing many different services or a large number of a particular service then the

unit price for the service may be less than if it has a smaller role). However, developing

auctions that can express such relationships is a challenging task and has required the

development of new algorithms to determine which sets of agents and bids should be

1

Chapter 1 Introduction 2

selected1. Having determined the participants of the VO and their various contributions,

specific tasks need to be allocated to the individual participants. Again this is a complex

decision making task (because it needs to find an efficient allocation among a very large

number of possible allocations) and has required the development of new algorithms for

achieving this in an optimal fashion. Finally, in the types of environment in which VOs

are most useful, there is likely to be significant degrees of dynamism as new tasks are

added and existing ones are removed or modified. To cope with this, the aforementioned

algorithms have been developed in such a way that they can also re-configure the VO

once it is operational. In short, therefore, this thesis is concerned with developing

efficient mechanisms to automate the creation, operation and maintenance of the VO

lifecycle.

In more detail, this first chapter gives a brief overview of the virtual organisation research

area and sets the basic background for the research developed in this thesis. In particular,

section 1.1 introduces the field of virtual organisations and reviews some significant

projects that have been undertaken in this area. Building on this, section 1.2 states the

specific objectives of this research and section 1.3 details its main contributions. Finally,

section 1.4 outlines how the remainder of the thesis is organised.

1.1 Virtual Organisations

The concept of Virtual Organisations (VOs) is rapidly emerging as an important topic

of research in many areas of computing. It is becoming so important because ever more

open distributed systems are being developed and, in such cases, VOs provide a means

for related entities to band together to deliver services that no one single component

can provide. In particular, this thesis concentrates on the use of VOs in the context of

e-business, although the technologies developed in this work are more widely applicable

(see section 1.3 for more details).

In e-commerce, vigourous competition, as well as a fast-changing business environment,

forces companies to focus on their core competences, keep a high degree of flexibility,
1This kind of algorithm is called an auction clearing algorithm or a winner determination algorithm.

Chapter 1 Introduction 3

and collaborate with other companies to enhance their competitive advantages to ensure

their very survival [Beer et al., 1990]. Moreover, creating added value for the customer is

becoming an increasingly complex process that involves the combination of a great many

different types of knowledge that the separate organisations do not necessarily possess.

Therefore, many have come to understand that the key to competitive advantage is

to transform the way they function [Beer et al., 1990]. In particular, it is recognised

that firms should not operate in isolation, but, in fact, their success depends on the

relationships with different parties including competitors, complementors (horizontal

relationships) and buyers and suppliers (vertical relationships) [Porter, 1980].

Now, in a market characterised by rigorous competition, one way to succeed is to col-

laborate with these related parties to promote synergies via increasing market power,

lessening competition, specialisation and economy of scale (advantages gained from high

output production)) [Contractor and Lorange, 1988]. As a consequence of this, the

Virtual Organisation (VO) model — viewed as a “temporary consortium or alliance

of individual/organisations formed to share costs and skills and exploit fast-changing

opportunities” (adapted from [NIIIP, 1998]) — is becoming ever more important [NI-

IIP, 1998]. By means of an example, consider the situation in which a number of media

providers (e.g. news, movies and music providers), mobile operators, and mobile handset

manufacturers come together to make a VO to provide advanced customised multimedia

services for fourth-generation (4G) mobile phone users [Norman et al., 2003] [Norman et

al., 2004]. With this service, a mobile phone user can order a customised combination

of movies, news and music and get them sent to his/her mobile phone. This is valuable

because for the companies, they can increase their competitiveness by providing this

new service, while saving costs via specialisation.

In more detail, the VO model offers several potential superior advantages over the inde-

pendent organisation and traditional collaborative models (such as mergers, acquisitions

and joint ventures).

We will start with the traditional advantages of a collaborative relationship over the

independent organisation (as such, they apply both for the VO model and traditional

collaborative models). First, it offers opportunities to improve productivity, efficiency

Chapter 1 Introduction 4

and optimises resources through specialisation [NIIIP, 1998]. While these advantages are

typical of a collaborative relationship over an independent organisation, they are better

realised in the VO model because the VO members focus on their core competences

only [Sieber and Griese, 1998]. In the 4G mobile phone example above, for instance,

the mobile operators would be better off not manufacturing the mobile handsets by

themselves, but rather they should leave this to the handset manufacturer and concen-

trate on their core competences of providing mobile network coverage. Secondly, a VO

enables its members to provide new services that they themselves cannot deliver. For

example, none of the individual companies in the 4G mobile phone example can provide

the combined service (customised multimedia service) by itself. Thus, it allows com-

panies to access new markets with competitive solutions [Hardwick and Bolton, 1997].

This also increases the competitiveness of small and medium enterprises (SMEs) because

SMEs usually cannot provide a wide range of services as they have very limited resource,

compared to large multi-national companies. This is especially true given the current

situation in which SMEs are usually subcontracted by a large company, which makes

them very dependent on the contracting company [Neubert et al., 2001]. Meanwhile,

for customers, it means they can have combined services conveniently with one point of

contact — the VO — instead of having to contact different companies for different parts

of the combined services.

Beside the aforementioned traditional advantages of a collaborative relationship over

the independent organisation, the VO model also offers additional advantages over tra-

ditional collaborative models. First, it provides a great deal of agility in that the nature

of the VO can be continually adjusted according to the prevailing market context. Thus,

it enables a rapid response to changes and opportunities in the dynamic business en-

vironment [Sieber and Griese, 1998]. For example, in the 4G mobile phone scenario

above, the VO can adjust its structure (add/remove members) to cope with changes

in the business environment (for instance, they can add more members into the VO to

provide additional service when there is a demand for it). Second, the VO members

retain their entrepreneurial independence. For example, in the 4G mobile phone sce-

nario, the media providers, network coverage providers and handset providers are still

independent firms after joining the VO. This is different from mergers and acquisitions,

Chapter 1 Introduction 5

in which it is usually the case that the joining firms no longer exist as independent firms.

For example, after the HP - Compaq merger, Compaq no longer exists. Entrepreneurial

independence is desirable for a firm’s owners and/or managers, because they can keep

the control of their firm and the entrepreneurial identity is retained. Third, the VO part-

ners should be able to unite quickly without lengthy negotiations and disband without

any problems. Traditional collaborative models, for example, mergers and acquisitions

as well as joint ventures, require lengthy and very costly procedures (especially the costs

for financial adviser firms and legal adviser firms), for alliance creation and dissolution.

This is because, for example, in the case of mergers and acquisitions, firms are merged

permanently and so require a lot more time and cost in terms of legal and financial

advising.

To fully realise these benefits, however, it is necessary to make extensive use of a range

of information technologies. Thus there is starting to be considerable research in this

area (see chapter 2 for more details). However, although these projects provide a vari-

ety of tools to support different aspects of the VO lifecycle, the degree of automation

provided is still somewhat rudimentary. In particular, existing systems typically pro-

vide the available information to humans who are actually responsible for the decision

making. However this is a lengthy and time consuming process that could be made

significantly faster and more efficient if it was automated. Thus this research develops

various algorithms that will help automate the creation, operation and maintenance of

VOs.

1.2 Research Objectives

There are many technical advances that need to be made before the VO lifecycle can

be fully automated. These can be organised according to the VO lifecycle, which is

composed of creation, operation, maintenance2 and dissolution (see figure 1.1).

In more detail, the creation phase involves one or more of the entities coming to believe

that it might be worthwhile to create a VO. This entity then contacts a number of
2The maintenance phase is also called the “modification phase” in [Camarinha-Matos and Afsar-

manesh, 1999].

Chapter 1 Introduction 6

Figure 1.1: The VO lifecycle.

potential participants to determine whether they would be willing to join the VO, and,

if it is successful, this will establish a group that are willing to work together in the

context of the VO. The operation phase occurs once the VO has been created and is

concerned with the way tasks are decomposed and distributed between the participants.

The maintenance phase occurs when the VO structure (the members and the agreed task

distribution) need to be changed. This can happen for a number of reasons including the

failure in carrying out the contract of a VO member, or the bankruptcy of a VO member,

or some change in the business environment. Finally, the dissolution phase occurs when

the VO is disbanded because it is no longer deemed effective. This may happen because

the combined service that the VO provides is obsolete, no longer needed, or because the

VO is no longer making profit.

In the remainder of this section, the main research issues associated with each phase

are detailed and the particular focus of this thesis is given. The thesis does not deal

with the dissolution phase because the scope for automation in this phase is somewhat

limited. In particular, this phase mostly concerns legal aspects or a technical analysis

of the VO’s performance and VO members’ performance.

Underpinning all the phases, however, is the view that the distinct entities in the system

are represented as software agents [Jennings and Wooldridge, 1995]. Here a software

agent can be viewed as an autonomous software entity that is capable of acting flexibly

Chapter 1 Introduction 7

in a changing environment [Jennings and Wooldridge, 1995]. These agents are capable

of providing one or more services in the VO and in so doing each agent is assumed to

be interested in maximising their individual gain (when it wants to join the VO) or the

VO gain (when it is a member of the VO). Software agents were chosen as the basic

representation because they are well-suited for environments that are open, changeable,

complex, with decentralised control [Jennings and Wooldridge, 1995] — which is the

type of environment that VOs operate on.

1.2.1 The Creation Phase

In the creation phase, the main research issues are identification of needs, enterprise

capability representation, partner search and partner selection mechanisms (see section

2.1 for more details). This research will focus on partner selection mechanism issue

because it is arguably the most important step in this phase.

Partner selection occurs once the VO initiator has identified the task that needs to

be solved, as well as the skills and capacities needed from the prospective members of

the VO. In this context, the key issue is to determine what mechanism should be used

to select the best partners for the VO. This is arguably the most critical step in the

creation phase because choosing the appropriate partners is central to the success of

the VO, while making the wrong choice can lead to a poorly performing VO. There are

several requirements that need to be met by this process:

• The most suitable set of partners from those that are available should be selected.

In this context, most suitable means the ones with the lowest cost of providing

the services. The cost here does not only mean the monetary value of the services

but may be a combined rating value, calculated from monetary value and other

attributes of the services offered by the partners (e.g. delivery time) so that the cost

can be considered more accurately and thoroughly. For example, in the 4G mobile

phone example, the cost of the network coverage service provided by a mobile

operator does not mean monetary value but may be calculated by combining this

value with the quality rating of the network coverage.

Chapter 1 Introduction 8

• The selection should occur within a computationally reasonable time frame so that

the market niche can be exploited as it becomes available. For example, the VO in

the 4G mobile phone example needs to be setup quickly before other competitors

recognise the niche.

• The potential partners should be able to vary their potential involvement in the

VO. This is because this flexibility will allow more potential partners to join the

selection process and so should lead to a better formed VO. Thus, for example, a

partner may be willing to complete services more cheaply if it has a high degree of

involvement in the VO (because the intrinsic costs can be depreciated over many

instances). In contrast, if an agent has a comparatively small involvement then

the unit cost may be much higher. For example, in the 4G mobile phone example,

media providers should be able to vary the number of services, as well as the

quantity of each service, that they will potentially provide for the VO.

There have been several approaches to this problem (e.g. using auctions or utilising

mobile agents). However, they either do not provide a sufficient degree of automation

or they do not give the VO’s potential partners enough flexibility to vary their potential

involvement in the VO (see subsection 2.1.1 for more details). Thus, given the open and

competitive nature of the environment, we believe this creation process is best achieved

using some form of marketplace structure, in particular, using some form of auction (an

auction is a market institution with an explicit set of rules determining resource alloca-

tion and prices on the basis of bids from the market participants [McAfee and McMillan,

1987]). Markets are chosen because they provide a highly effective structure for allo-

cating resources in situations in which there are many self-interested and autonomous

stakeholders.

There are, however, many different types of auction (see [Wurman, 2001] for a classifi-

cation) but in this work it was decided to adopt a combinatorial auction approach. A

combinatorial auction is a sophisticated type of auction where multiple units of multiple

(potentially inter-related) items are traded simultaneously (if there is only a single unit

of each type of item, the auctions are called single-unit combinatorial auctions, whereas

Chapter 1 Introduction 9

if there are multiple units of each type of item, the auctions are called multi-unit combi-

natorial auctions [Sandholm et al., 2002]). This particular type of auction is suitable for

this problem because it provides the potential partners with a high degree of flexibility

in expressing their requirements. Thus, in the 4G mobile scenario, for example, media

providers can vary the number of services, as well as the quantity of each service that

they intend to provide for the VO, in their bids. For instance, a media provider can

make a bid of providing 10 movies/month and 5 songs/day for a total price of 50. No

other type of auction allows such flexibility.

However, the main disadvantages of combinatorial auctions stem from the lack of com-

putationally tractable clearing algorithms, that is, algorithms for determining the

prices, quantities and trading partners as a function of the bids made.3 Without such

algorithms, combinatorial auctions are not really practicable because the time it takes

to determine the winners is exponential [Sandholm et al., 2002]. This means there may

be unacceptable delays for auctions that have only a medium number of participants or

items. Thus, a large portion of the research is devoted to developing tractable clearing

algorithms for combinatorial auctions that determine the set of winners in a sub-optimal

way (e.g. the solution is within a finite bound of the optimal) 4. However, for auctions

those have a small number of participants and a small number of items, it is possible

to determine the optimal set of winners even with exponential algorithms.5 Thus, the

thesis also develops optimal clearing algorithms for combinatorial auctions that apply

for wide classes of bidding functions.

1.2.2 The Operation Phase

In the operation phase, the main research issues are task distribution mechanism and

partner collaboration support tools(see section 2.1 for more details). This research will

focus on task distribution mechanism because although it is one of the deciding factors

for the success of the VO, it has been largely neglected in the literature.
3The clearing problem in auctions is also called the winner determination problem [Sandholm et al.,

2002] or the bid evaluation problem [Eso et al., 2001].
4It has been shown that it is impossible for a polynomial (e.g. tractable) algorithm to determine the

optimal set of winners, unless P = NP [Sandholm and Suri, 2001].
5Appropriate figures for these are around 20 - 30 for the number of participants and 10 - 20 for the

number of items.

Chapter 1 Introduction 10

In particular, the focus is on what mechanism can be used to automate the distribution of

tasks in order to cope with the unexpected conditions of the environment and the flexible

nature of VOs. For example, in the 4G mobile scenario, once the VO has been formed,

a mechanism is needed to automate the distribution of mobile phone users’ requests for

personalised media services. Generally speaking, this problem has been largely neglected

in the literature; most of the work related to this phase has concentrated on the IT

infrastructure needed for coordinated resource sharing and problem solving between the

VO members (again, see chapter 2 for more details). In this thesis the approach is

to use techniques from coalition formation, a branch of multi-agent systems research

[Sandholm et al., 1999] based on game theory [Rapoport and Kahan, 1984] that provides

solutions to partition a set of agents into various subsets in order to maximise some

criteria of efficiency and/or stability. This approach is chosen because it provides a

provably optimal way to distribute tasks to sub-groups of the VO members.

While there has been an extensive amount of work in coalition formation (see section

2.3 for more details), one of the main problems that hinders the wide spread adoption

of this technology is the computational complexity of coalition structure generation.

That is, once a group of agents has been identified, how can it be partitioned into sub-

groups in order to maximise the social payoff for the group? This problem has been

shown to be NP-hard and even finding a sub-optimal solution requires searching an

exponential number of solutions [Sandholm et al., 1999]. Thus, this research concentrates

on developing more efficient coalition structure generation algorithms.

1.2.3 The Maintenance Phase

In the maintenance phase, the main research issues are how to add new members into

the VO and how to distribute or redistribute the necessary tasks between the members

of the new structure. In particular, in a dynamic environment, there are two main

situations that may arise:

• The situation changes, but the members remain unchanged. This means that

the work distribution between VO members needs to be reorganised. Again, this

Chapter 1 Introduction 11

research uses coalition formation algorithms to partition a VO’s members into

various subsets working on various activities to seek maximal efficiency.

• Some members fail or withdraw from the VO: in such cases, the VO will have to

find the substitutes. In order to do this, the research applies similar mechanisms

to those that are used in the creation phase. The main difference is, in this case,

only some members of the VO need to be substituted. For instance, in the 4G

mobile phone example, when a mobile network operator withdraws from the VO,

we use the auction mechanism to select the additional operators to replace this

operator.

1.3 Research Contributions

The research described in this thesis makes significant contributions to the state of the

art in the areas of auction clearing algorithms and coalition structure generation.

In more detail, the contributions to auction clearing algorithms are as follows:

• Novel polynomial clearing algorithms were developed for multi-unit single-item

and multi-unit combinatorial forward and reverse auctions with demand/supply

function bidding that satisfies discount and free disposal properties [Dang and

Jennings, 2002] [Dang and Jennings, 2004b]. No previous polynomial algorithms

exist for this broad class of auctions. And although multi-unit single-item auctions

are not our main target case, our algorithms for this setting still represents a

contribution in its own right. While Sandholm and Suri’s algorithms target the

same environment as this, they are only applicable in the specific case where the

supply curves are linear [Sandholm and Suri, 2001]. In contrast, our result is

applicable to the more general case; that is, discount, free disposal supply curves.

Moreover, the algorithms are shown to produce a solution that is within a finite

bound of the optimal. Finally, our empirical results show for realistic settings, their

solutions are within a much smaller bound (than the proved theoretical bound) of

the optimal.

Chapter 1 Introduction 12

• Novel optimal clearing algorithms were developed for multi-unit single-item and

multi-unit combinatorial forward and reverse auctions with demand/supply func-

tion bidding [Dang and Jennings, 2003]. This was carried out for two sets of

bidding functions6: piece-wise linear and monotonic one-unit-difference.7 This

set of algorithms is necessarily not polynomial, but is guaranteed to produce the

optimal allocation.8 Again no previous optimal algorithms existed for this class of

auctions.

The contributions to the area of coalition structure generation are as follows:

• A novel anytime algorithm for coalition structure generation was developed that

can produce solutions within a finite bound from the optimal [Dang and Jennings,

2004a]. This algorithm is anytime — it can be interrupted at any time, and it

establishes a monotonically improving bound from the optimal. Most previous

work in this area cannot give such guarantees for its solutions (see section 2.3 for

more details). The only other algorithm that can establish a worst-case bound

from the optimal is [Sandholm et al., 1999] and our algorithm was shown to be

significantly faster. For example, with bound 3, our algorithm is more than 107

times faster for n = 50, more than 1023 times faster for n = 100, more than 10171

times faster for n = 500, and more than 10379 times faster for n = 1000.

1.4 Thesis Structure

The remainder of the thesis is organised as follows.

The next chapter gives a more in depth analysis of existing approaches to virtual organ-

isations. Specifically, first, it explains the problem of partner selection in VOs. In this

context, it discusses the use of auctions to solve this problem, and explains the need for
6Bidding functions are the functions that specify the relation between the quantity of the items and

the price in the bids
7piece-wise linear bidding functions are those in which the demand/supply curves for each individual

commodity are composed of many linear segments, while monotonic one-unit-difference functions are
those in which the function indicating the price for adding one more single unit into a package is
monotonic (non-increasing or non-decreasing).

8It will be shown that an algorithm that produces the optimal allocation cannot be polynomial unless
P = NP (see chapter 3 and 4 for more details).

Chapter 1 Introduction 13

clearing algorithms for combinatorial auctions with demand/supply function bids. Our

auction setting is then described in details that will be solved in chapter 3 and 4. It also

gives an extensive review of existing work in auction clearing. Second, it explains the

problem of task distribution within VOs, formalises the problem of coalition structure

generation that will be solved in chapter 5, and gives a literature review of the area.

Chapter 3 presents polynomial clearing algorithms that are applicable for a broad class of

bidding function that satisfies discount and free disposal properties. First, it presents the

algorithms for multi-unit single-item and multi-unit combinatorial cases. The algorithms

are proved to generate solution that is within a finite bound of the optimal. Second, it

presents our benchmark test and the empirical results reveal that in realistic settings,

the bound of the optimal can be even smaller than that in the theoretical worst-case

analysis.

In contrast to chapter 3, chapter 4 presents optimal clearing algorithms that are guar-

anteed to produce the optimal allocation, but which are not polynomial. Two sets of

algorithm are presented for two broad classes of bidding functions: piece-wise linear and

one-unit-difference.

Chapter 5 presents our novel coalition structure generation that can be disrupted any-

time and is guaranteed to produce solutions that are within a finite bound of the optimal

(the longer we run the algorithm, the smaller the bound is). It is then benchmarked

against the only other algorithm by [Sandholm et al., 1999] that is also guaranteed to

produce solutions that are within a finite bound of the optimal. The benchmark results

shows that our algorithm to be considerably faster than its alternative.

Finally, chapter 6 concludes and presents future work.

Chapter 2

Background

This chapter gives an introduction and a literature review on the area of virtual organi-

sations. In particular, this review focuses on the main problems that we are tackling in

this thesis; namely partner selection and task distribution in VOs. Specifically, section

2.1 outlines the main research issues in VOs in general and gives a detailed analysis of

some of the main existing projects on VOs. Section 2.2 then focuses on the problem

of partner selection in VOs. It discusses, in detail, the use of auctions to solve this

problem and explains the need for clearing algorithms for combinatorial auctions with

demand/supply function bids. The state of the art of this area is then analysed and the

shortcomings against our requirements are identified. Section 2.3 follows by focusing on

the problem of task distribution within VOs, and formalises the problem of coalition

structure generation that will be solved in chapter 5. Here, again, the existing litera-

ture in this area is reviewed and the shortcomings with respect to our requirements are

identified.

2.1 Virtual Organisations

As noted in chapter 1, virtual organisations (VOs) are becoming an ever more important

research area because they offer a number of potential advantages over the independent

organisation and traditional collaborative models. However, there are still a number

of key research challenges that need to be overcome in order to make the VO vision a

14

Chapter 2 Background 15

practical reality. The challenges, discussed below, can be organised according to the VO

lifecycle (as per figure 1.1).

• Creation phase: in which one or more of the entities comes to believe that it

might be worthwhile to create a VO. This agent contacts a number of potential

participants to determine whether they would be willing to join the VO, and, if it

is successful, this will establish a group of agents that are willing to work together

in the context of the VO. The main issues in the creation phase are:

– Identification of needs: the VO initiator needs to be able to identify the

task the VO will be doing, decompose the task, then identify the skills and

capacities needed from members of the planned VO.

– Enterprise capability representation: agent capabilities (descriptions of the

services that each agent provides) need to be well-defined using some rich rep-

resentation and standardised to support inter-operability that facilitates the

activities of searching for partners. Specifically, partners need to be search-

able based on multiple attributes such as the services that they provide, their

geography of operation, and the quality of service they provide. This is nec-

essary as the VO initiator may not only look for companies that provide

specific services, but may also need to know the quality of the services that

they provide, as well as their geography of operation, to ensure the success

of the future VO.

– Partner selection mechanism: the mechanism to select from among the candi-

dates those that will be the most appropriate ones to actually form the VO. In

this context, the most appropriate could be the ones who can provide specific

services with the lowest costs, the highest quality, or the greatest reliability.

• Operation phase: in which the tasks that need to be carried out are determined

and it is decided which members of the VO will be responsible for which of these

various tasks. Here the key issues are:

Chapter 2 Background 16

– Task distribution mechanism: the means by which the flow of incoming tasks

are assigned to the members of the VO in order to maximise the efficiency of

the overall collective.

– VO partners collaboration support tools: the tools that facilitate the collab-

orative activities between the members of the VO, for example, secure data

exchange and data sharing, group planning and scheduling, and other VO

management tools.

• Maintenance phase: in which the VO structure (in terms of its members or the

task distribution) needs to be changed because of member failure or changes in the

environment. The main issues in this phase are how to add new members into the

VO and how to distribute or redistribute the necessary tasks between the members

of the new structure. The former case is similar to the partner selection mechanism

part of the creation phase (but not identical to it, as here we don’t want to build

the VO from scratch, but rather build on what is already there), while the latter

case is similar to the task distribution mechanism part of the operation phase.

• Dissolution phase: in which the VO is disbanded because it is no longer effective.

Here the main issues relate to how the VO’s performance is measured and assessed,

the mechanism that is put in place to enable the collective to disband and to absolve

itself of any remaining commitments.

While a number of projects have now started in this area, each tends to deal with a

specific aspect of the VO lifecycle. Moreover, in many of the existing projects, the

degree of automation of the VO lifecycle is limited.

For example, the NIIIP project (National Industrial Information Infrastructure Proto-

cols) [NIIIP, 1998] and the PRODNET II project [Camarinha-Matos and Afsarmanesh,

1999] are concerned with the development of IT and cooperation platforms for VOs.

The former was developed by the NIIIP Consortium [NIIIP, 1998] which is a U.S. In-

dustry/Government initiative to develop a software technology that will enable Virtual

Enterprise Computing. Specifically, it exploits core technologies defined by: Internet and

related communications facilities and services; the Object Management Group (OMG)1

1Object Management Group, http://www.omg.org.

Chapter 2 Background 17

and related object technology; and The Standard for the Exchange of Product Model

Data (STEP) 2 and related information modelling technologies, and develops additional

technology to integrate these technologies for work and knowledge management of VEs.

The three main areas that it concerns are: communication (based on Internet and object

technology by OMG), data and information exchange (based on STEP) and knowledge

and task management (based on work by the Workflow Management Coalition (WfMC)).

As such, it lacks any significant degree of automation in any of the key phases of the

VO lifecycle.

PRODNET II, on the other hand, aims to develop an open and highly flexible support

infrastructure for virtual enterprises that is particularly suited to the needs of small and

medium enterprises (SMEs). PRODNET II’s basic platform facilitates the exchange of

commercial data (EDIFACT), the exchange of technical product data (STEP), order

status monitoring, quality related information exchange and information management

supporting administrative information about the virtual enterprise. It also incorporates

a coordination module that handles all cooperation related events (execution of a local

work flow), a component that allows the definition and parametrization of the virtual

enterprise and the behaviour of each particular enterprise and a component that manages

incompletely and imprecisely specified orders (along their life cycle). Within this project,

the main supported phases in the VO lifecycle are creation and operation. In the former

case, the project utilises private supplier lists or some public directories to search for

potential partners. In the latter case, the project develops coordination and workflow

management tools that help the VO members to cooperate effectively. Thus, it also

lacks a significant degree of automation in partner selection and task distribution of the

VO.

Other projects in this area tend to address particular aspects in a specific phase of

the lifecycle. For example, AVE (Agents in Virtual Enterprises) [Fischer et al., 1996]

concentrates on using agents in the formation of a VO (creation phase). In particular, the

project uses auctions mechanism to form the VO. However, it uses only simple auction

mechanisms (such as English, Dutch, first-price sealed bid and second-price sealed-bid
2The Standard for the Exchange of Product Model Data (STEP), ISO 10303, http://www.nist.gov.

Chapter 2 Background 18

auctions) and so cannot allow the potential partners to vary their potential involvement

in the VO, and thus, may not be able to select the most suitable set of partners either.

MASSYVE (Multiagent Manufacturing Agile Scheduling Systems for Virtual Enter-

prises) [Rabelo et al., 1998] focuses on agile scheduling (the operation phase). In partic-

ular, it addresses task distribution by using software agents that utilise the Contract Net

Protocol 3 to assign tasks among agents. Specifically, the procedure is to announce a task

(an enterprise activity) through the MAS network and then make the agents exchange

information about it with other agents until one of them is selected to perform the task.

However, this approach only deals with distributing one task at a time. Thus it is likely

to be slow when multiple such tasks need to be assigned. Moreover, such sequential

allocation may lead to sub-optimal outcomes because it ignores the inter-dependencies

that may almost invariably exist between tasks.

Following a related approach, [Rocha and Oliveira, 1999] develop a system in which a

market agent (VO broker) sends invitations to the potential partners corresponding to

each of the VO’s sub-tasks. Interested enterprise agents then formulate bids according

to their own capabilities and send bids back to the VO broker. The market agent then

uses a multi-criteria function to evaluate bids, and uses constraint satisfaction techniques

to resolve any incompatibility between them. However, bids are made for each of the

sub-tasks, thus this approach cannot take into account any relationship/interdependence

that may exist between the sub-tasks. In [Daviddrajuh and Deng, 2000], mobile agents

are sent by the VO creator to collect data from potential partners. Then an assessment

on the potential partners about their suitability to the prospective VO is made, based

on the collected data. However, there is a clear question made about whether potential

partners will expose their true private information to the VO creator’s mobile agents.

The VEGA project [Stephens, 1999] develops an information infrastructure to support

the technical and business operations of VOs using groupware tools and distributed

architectures (the operation phase). Specifically, the VEGA platform supports people

in information sharing (data exchange, distributed user access, distributed database,
3FIPA Contract Net Interaction Protocol Specification: http://www.fipa.org/specs/fipa00029/.

Chapter 2 Background 19

concurrent user access) and managing group activity. However, it does not provide an

automated task distribution mechanism.

As can be seen, these projects typically provide tools to support different aspects of the

VO lifecycle. However, they rarely provide efficient mechanisms to automate the various

phases. This is particularly true when it comes to partner selection mechanisms in the

creation phase, task distribution in the operation phase and adding/removing partners

and task redistribution in the maintenance phase. Given this, this thesis seeks to start

addressing this shortcoming by developing efficient mechanisms for partner selection and

task distribution in VOs. The next two sections will detail our approach in solving these

problems. Specifically, section 2.2 focuses on the problem of partner selection, while

section 2.3 concentrates on the problem of task distribution.

2.2 Partner Selection in Virtual Organisations

As discussed earlier, it was decided that this research will use combinatorial auctions to

tackle the partner selection problem (the reasons and rationale for this choice are given

in subsection 1.2.1). Specifically, this means that an agent, after detecting a market

opportunity (niche), will determine the capabilities or services that need to be present

in order to deliver the functionality of the new virtual organisation. This agent will

then send out requests for proposals to all interested parties, who will reply with bids

indicating the services and associated capacities they are willing to offer. The initiating

agent (acting as the auctioneer) will then use the clearing algorithms to determine the

best set of agents, services and capacities to constitute the new virtual organisation.

Here best can be most efficient, lowest cost, or best quality. A similar method can then

also be used in the maintenance phase for adding new members to the VO. The difference

is that in this case the requests for proposals only concern the additional services and/or

capacities needed. For more detail, see chapter 6 where the techniques developed in this

thesis for partner selection are applied into a concrete scenario.

However, existing clearing algorithms cannot be taken off-the-shelf for this problem

because they only consider atomic proposition bids (that is, bids are either accepted

Chapter 2 Background 20

in their entirety or rejected) (see subsection 2.2.2 for more details). This, in turn, has

the disadvantage of limiting the choice, and hence the potential profit, available to the

auctioneer. For example, consider the case where there are only two bids: x1 units of

one good at price p1 and x2 units at price p2, and the auctioneer wants to trade less

than x1 + x2 units of the good. In this case, the auctioneer has no choice other than

selecting one or other of the two bids. This may prevent the auctioneer from maximising

its payoff. For example, the auctioneer may find it more beneficial to accept both bids

partially; that is, trade y1 (y1 < x1) units with bidder 1 at price y1

x1
· p1 and trade y2

(y2 < x2) units with bidder 2 at price y2

x2
· p2.

Moreover, if the bids are expressed in terms of the correlation between the quantity of

items and the price (rather than the simple linear extrapolation above4), there will be

even more choice for the auctioneer, and, consequently, even more chance of maximising

its payoff. When viewed from the bidder’s perspective, the atomic nature of bids and the

inability to explicitly relate price and quantity means that opportunities for trade are

lost because the auctioneer may not want the entire package being offered, even though

elements of it may be acceptable. Although nearly all the aforementioned work permits

XOR (exclusive-or) bids5, and, in theory, the correlation function between the quantity

and the price may be expressed using XOR atomic proposition bids to specify points;

in practice, it is nearly impossible as the number of points on the graph of the function

could be exponential. For example, let us suppose a bidder wants to trade 1000 units

with unit price 10 if the quantity is less than 100, and with unit price 9 if the quantity

is in the range between 100 and 1000. With XOR bidding, the bid has to be expressed

as XOR of 1000 atomic proposition bids, in which each atomic bid is a pair of quantity

and price for every quantity from 1 to 1000. This is clearly inefficient.

To overcome the aforementioned shortcomings associated with atomic propositions,

Sandholm and Suri consider the case in which agents can submit bids that correspond
4In many cases, linear extrapolation does not work because bidders may value bundles of items

non-linearly.
5An XOR bid is one in which a bidder submit an arbitrary number of atomic proposition bids with

the condition that it is willing to obtain at most one of these bids [Sandholm, 1999]. For an overview
on atomic-related bidding languages see [Nisan, 2000].

Chapter 2 Background 21

to a demand or supply curve depending on whether it is an auction or a reverse auction6

respectively [Sandholm and Suri, 2001]. Thus, bids are expressed in terms of a curve

which correlates the quantity with the price of an item. For example, an agent may

express the bid as q = 2 ∗ p + 1, which means that the agent is willing to trade up to

q = 2 ∗ p + 1 units if the unit price equals p.7 Unfortunately, their work is limited to

multi-unit single-item auctions8 and does not deal with the combinatorial case. This

means their algorithm cannot explicitly cope with any interdependencies that may exist

between the purchasing of multiple items.

In the next two chapters, we develop clearing algorithms for both forward and reverse

auctions that remove the shortcomings associated with the atomic proposition nature of

previous combinatorial clearing algorithms and the non-combinatorial nature of Sand-

holm and Suri’s demand/supply curve functions. Specifically, we consider multi-unit

single-item and multi-unit combinatorial forward auctions and reverse auctions in which

bids contain an agent’s demand/supply function. This is necessary when applying auc-

tions to VO creation as the expressiveness of auctions with demand/supply function

bids and the potential benefit they bring make them highly suitable for VO efficient

formation. To this end, the next subsection formalises the problem of clearing auctions

with demand/supply function bids, before subsection 2.2.2 analyses the state of the art

in this area in more detail.

2.2.1 Auction Clearing with Demand/Supply Function Bids

This subsection formalises the problem of clearing in multi-unit combinatorial forward

(reverse) auctions. Assume there are m items (goods/services): 1, 2, ...,m and n bidders

a1, a2, ..., an. The auctioneer has a supply (demand) (q1, q2, ..., qm), in which qj is the

quantity of item j that the auctioneer is willing to sell (buy).9 Let uj
i be the maximum

6In an auction (forward auction), there is one seller and multiple buyers; while in a reverse auction,
there is one buyer and multiple sellers.

7Their price function calculates the quantity from the unit price. However, in our work, the price
function will calculate the unit price from the quantity, because we find the later more natural.

8By single item we mean that there is only one type of good/service for trading in the auction.
9In the remainder of this thesis, when describing forward and reverse auctions, the first word deals

with the forward case and the word in brackets applies to the reverse case. But since both cases are not
simply the inverse of one another in general way, sometimes we need to show things separately for the
forward and for the reverse case.

Chapter 2 Background 22

quantity of item j that ai is able or willing to buy (sell) (if ai is not willing to buy (sell)

an item j, then uj
i = 0). Let N be the set of natural numbers and Q∗ be the set of

non-negative rational numbers.

The demand (supply) function is the price function of the items that each bidder is

willing to buy (sell). The demand (supply) function of bidder i is:

Pi : (N ∩ [1, u1
i]) × (N ∩ [1, u2

i]) × ... × (N ∩ [1, um
i]) → Q∗

where Pi(r1, r2, .., rm) is the price offered by bidder i for the package of items (r1, r2,

..., rm) and rj is the quantity of item j, rj ∈ N, 0 ≤ rj ≤ uj
i , ∀ 1 ≤ j ≤ m. For example,

suppose that m = 3, then P1(1, 3, 2) will be the price agent 1 offers for a package which

is composed of 1 unit of item 1, 3 units of item 2 and 2 units of item 3 altogether. In the

single-item case, the graph of a demand (supply) function will be a curve (figure 2.1),

while in the combinatorial case, it will be a surface (figure 2.2).

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

Quantity

P
ric

e

Figure 2.1: A demand (supply) curve for multi-unit single-item case.

Having determined the demand function, we now consider the supply allocation which

is the amount that the auctioneer trades with each bidder.

Chapter 2 Background 23

0
2

4
6

8
10

0

2

4

6

8

10
1

2

3

4

5

6

7

8

9

10

Quantity 1
Quantity 2

P
ric

e

Figure 2.2: A demand (supply) function for multi-unit combinatorial case.

Definition 2.1. A supply allocation is a tuple 〈rj
i 〉, 1 ≤ i ≤ n, 1 ≤ j ≤ m such that the

auctioneer sells (buys) rj
i units of item j to (from) each agent ai.10

Given the definitions of the demand (supply) function and the supply allocation, the

problem of forward (reverse) auction clearing is then to find a supply allocation 〈αj
i 〉, 1 ≤

i ≤ n, 1 ≤ j ≤ m that:

• Satisfies the supply (demand) constraint

n∑
i=1

αj
i ≤ qj, ∀1 ≤ j ≤ m (forward case) (2.1)

n∑
i=1

αj
i ≥ qj, ∀1 ≤ j ≤ m (reverse case) (2.2)

That is, the quantity of each item that the auctioneer sells (buys) to (from) all

bidders is not bigger (less) than the auctioneer’s supply (demand) for that item.

10Because the auctioneer sells (buys) items at the price that the bidders offer, it may well be the case
that the auctioneer will sell (buy) the same package from two different bidders at different prices. That
is, the auctions have discriminatory pricing [Sandholm and Suri, 2001].

Chapter 2 Background 24

• Optimise the auctioneer’s total revenue:

n∑
i=1

Pi(α1
i , α

2
i , ..., α

m
i) is maximal (minimal). (2.3)

That is, the total price of all the units of all the items supplied by the auctioneer

(bidders) should be as big (small) as possible.

However, the auction clearing problem has been shown to be NP-complete, even for

the simplified case of single-items with piecewise linear supply curves [Sandholm and

Suri, 2001] 11. Thus, it is impossible to find a polynomial algorithm whose solution is

guaranteed to be the optimal allocation, unless P = NP.

2.2.2 The State of The Art in Clearing Algorithms

As stated in subsection 2.2.1, most of the previous work on clearing algorithms for

combinatorial auctions has been based on atomic proposition auctions. In particular,

Sandholm et al. have categorised and analysed the complexity of various kinds of atomic

proposition types (e.g. auctions, reverse auctions, and exchanges, which are then cat-

egorised as single or multiple units, with or without free disposal) [Sandholm et al.,

2002]. In this line of work, they showed that clearing combinatorial atomic proposition

auctions is NP-complete, even for the case of single-units. Thus, heuristic methods are

typically used to tackle this problem.

In more detail, Nisan used Linear Programming to investigate the single-unit combina-

torial case [Nisan, 2000]. He showed that Linear Programming can produce the optimal

solution in a reasonable time in some specific cases (e.g. linear order bids12, mutual
11The proof of NP-completeness in [Sandholm and Suri, 2001] is not directly applicable to our specific

auction setting in chapter 3 (because the demand/supply function in their proof is not compatible with
this setting). Thus we will present a proof of NP-completeness for our specific setting in chapter 3.
Their proof, however, can be applied to our auction settings in chapter 4 (because in this case, the
demand/supply function in their proof is compatible with our setting).

12This means the set of items can be linearly ordered G = {g1...gn} such that all bids S are for a
consecutive sub-range S = {gk...gl} of items [Rothkopf et al., 1998].

Chapter 2 Background 25

exclusion bids13 and substructure bids.14) He then suggested using greedy and Branch-

and-Bound algorithms based on Linear Programming for the other cases. His greedy

algorithm is computationally efficient (polynomial complexity), but cannot guarantee to

produce the optimal solution, while his Branch-and-Bound algorithm provably produces

the optimal solution, but cannot guarantee to run in polynomial time.

Other researchers such as Gonen and Lehmann and Leyton Brown et al. have further

investigated the use of Branch-and-Bound techniques to solve the clearing problem [Go-

nen and Lehmann, 2000] [Leyton-Brown et al., 2000]. Both of their algorithms build up

a partial allocation one bid at a time, while using a depth-first search with backtracking

to cover the whole search space. Although these Branch-and-Bound algorithms cannot

guarantee to produce the optimal solution in polynomial time, they presented various

methods to speed up the algorithms. In more detail, Leyton Brown et al. designed a

function for computing upper bounds for the optimal outcome, tailored specifically to

the multi-unit combinatorial auction problem. Dynamic programming techniques, tech-

niques for pre-processing and caching, and heuristics for determining search orderings

are also used to further improve their algorithm. Gonen and Lehmann discussed various

methods of bounding from above (linear programming, projections, average price con-

sideration) and for choosing the most promising bid (ordering the bids by price, average

unit price, normalised average unit price) [Gonen and Lehmann, 2000].

However, as stated above, all of the above work has been based on atomic proposi-

tion auctions. So by removing this restriction, our algorithms produce more efficient

allocations.

In contrast to the above, however, [Sandholm and Suri, 2001] considered multi-unit

single-item auctions with bids in the form of supply/demand curves. By limiting these

curves to a specific type (linear and piecewise linear curves15), they were able to analyse
13This means the bid is presented in the OR-of-XORs language, where each atomic bid is for a singleton

set [Nisan, 2000].
14This means the auction is a “sum” of other auctions for which Linear Programming can produce

optimal solutions.
15Their concepts of linear and piecewise linear curves are different from ours, as they consider the unit

price function, not the total price function. Thus, when they speak of a linear unit price function, this
means a quadratic total price function.

Chapter 2 Background 26

the complexity and suggest an algorithm for clearing.16 However, as discussed in section

2.2, this work does not deal with the multi-unit combinatorial case.

Other researchers such as Davenport et al. and Eso et al. have further considered multi-

unit combinatorial reverse auctions with supply curves [Davenport and Kalagnanam,

2001] [Eso et al., 2001]. They showed that in the case where the supply curves are

piecewise linear, the clearing problem can be modeled as a Linear Program and solved

using Linear Programming techniques. However, in this work, bidders submit separate

supply curves for different items, and it is assumed that the price of a package of items is

equal to the sum of all the prices of the separate items.17 This means that these auctions

are not truly combinatorial in nature as the correlation between items is ignored.

2.3 Task Distribution within Virtual Organisations

In this thesis, the problem of task distribution within virtual organisations is tackled

using coalition formation techniques developed in the field of multi-agent systems (see

section 2.3.2 for a review of the state of the art in this area). Now, in this context, the

coalition formation process can be viewed as being composed of three main activities

[Sandholm et al., 1999]:

1. Coalition structure generation: forming coalitions of agents such that those within

a coalition coordinate their activities, but those in different coalitions do not. This

primarily involves partitioning the set of all agents in the system into exhaustive

and disjoint coalitions.18 Such a partition is called a coalition structure. For

example, in a multi-agent system composed of three agents {a1, a2, a3}, there exist

seven possible coalitions:

{a1}
{a2}
{a3}
{a1, a2}

16They provided an algorithm for the linear case only, not for the piecewise linear case.
17This property is called additive separability in [Eso et al., 2001].
18Some research also considers non-disjoint coalitions (see subsection 2.3.2 for details).

Chapter 2 Background 27

{a1, a3}
{a2, a3}
{a1, a2, a3}
and five possible coalition structures:

{{a1, a2, a3}}
{{a1}, {a2, a3}}
{{a2}, {a3, a1}}
{{a3}, {a1, a2}} {{a1}, {a2}, {a3}}.

2. Optimising the value of each coalition: pooling the resources and tasks of the

agents in a given coalition to maximise the coalition value. For example, given the

coalition structure {{a1}, {a2, a3}}, each of the two coalitions {a1} and {a2, a3}
will try to optimise its value.

3. Payoff distribution: dividing each coalition’s value among its members. For ex-

ample, if the coalition {a2, a3} produces a payoff of X then this value needs to be

divided between a2 and a3 according to some scheme (e.g. equality or stability).

Although these activities are distinct and, in a sense, conceptually sequential, it is also

clear that they interact. For example, in a competitive environment, the coalition that

an agent wants to join depends on the payoff that it is likely to receive (activities 1 and 3).

However, in cooperative environments, where the agents work together to maximise the

social welfare, payoff distribution is less important, and coalition structure generation

that maximises the social welfare is the dominant concern. In the context of this work,

the VO operation phase can be considered a cooperative environment because once the

members of the VO are established, their aim is to work together to maximise the payoff

of the VO as a whole. Thus, the focus of this thesis is in developing new algorithms for

coalition structure generation.

Classically, game theoretic work on coalition formation is mainly concerned with coali-

tion structure generation and payoff distribution [Rapoport and Kahan, 1984]. However,

it is static in nature, and while it addresses the question of which coalition structure

should form, it does not address the question of how to generate the coalition structure

that maximises the social welfare.

Chapter 2 Background 28

Much work on coalition formation considers super-additive environments (meaning any

two disjoint coalitions are better off by merging together) [Ketchpel, 1994] [Rapoport

and Kahan, 1984] [Shehory and Kraus, 1995] [Zlotkin and Rosenschein, 1994]. In such

cases, coalition structure generation is trivial because all agents are better off by forming

the grand coalition (i.e. the coalition that contains all the agents). Moreover, it has

even been argued that almost all environments are super-additive because, at worst, the

agents in the composite coalition can use solutions as if they are in separate coalitions

[Rapoport and Kahan, 1984]. However, this assumption is not valid for many real-world

problems, including those that drive our work, because of the cost of forming coalitions

and the cost of coordination between members in the same coalition.

In non-super-additive environments, coalition structure generation is a major concern

(because of the exponential size of the set of all possible coalition structures). In such

cases, the desirable goal is usually to maximise the social welfare. However, it has been

shown that this problem is NP-hard and, moreover, even finding a sub-optimal solution

requires searching an exponential number of solutions [Sandholm et al., 1999]. To tackle

this problem, several researchers have proposed algorithms for coalition structure gen-

eration. However, most of the existing algorithms cannot establish a worst-case bound

from the optimal. This is clearly undesirable because it means the solutions they gen-

erate can be arbitrarily bad. To overcome this drawback, Sandholm et al. developed

an anytime algorithm that can establish a worst-case bound (until our algorithm it was

the only one that could do this) [Sandholm et al., 1999]. However, as their algorithm’s

computational complexity is exponential, it is desirable to see if its complexity can be

reduced in order to make it usable in practical applications. Specifically, reducing its

complexity is essential if it is to be applicable in the VO operation phase.

Against this background, chapter 5 will develop a novel coalition structure generation

algorithm that is shown to be significantly faster than its alternative in our benchmark

tests (for an example of the algorithm’s application in VO task distribution, see chapter 6

where the algorithm is applied into a concrete scenario). To this end, the next subsection

formalises the problem of coalition structure generation.

Chapter 2 Background 29

2.3.1 Coalition Structure Generation

This subsection formalises the problem of coalition structure generation. Let A be the set

of agents, and n be the number of agents in A (i.e., |A| = n). As is common practice in

the literature (e.g. [Ketchpel, 1994] [Rapoport and Kahan, 1984] [Sandholm et al., 1999]

[Shehory and Kraus, 1996]), we consider coalition formation in characteristic function

games (CFGs). In such settings, there is a value v(S) for each and every subset S of

A, known as the value of coalition S, which is the utility that members of S can jointly

attain. Fundamentally, this means each coalition’s value is independent of the actions

of agents that are not members of the coalition. Although, in general, the value of a

coalition may depend on non-members’ actions, CFGs can be applied in many real-world

multi-agent problems [Sandholm et al., 1999].

As in [Sandholm et al., 1999], we assume that every coalition’s value is non-negative:

v(S) ≥ 0,∀S ⊆ A (2.4)

This assumption is not very restrictive, because if there exist some negative coalitional

values, and if all coalitional values are bound from below (i.e., they are not infinitely

negative), they can always be normalised by subtracting from each of them a value

minS⊆A v(S).

A coalition structure CS is a partition of A into disjoint, exhaustive coalitions. That is,

each agent belongs to exactly one coalition. The value of a coalition structure, V (CS),

is expressed in terms of its social welfare. That is:

V (CS) =
∑

S∈CS

v(S) (2.5)

Also, we define the size of a coalition structure as the number of coalitions that it

contains and L as the set of all coalition structures.

Chapter 2 Background 30

Given the above terms, the problem of coalition structure generation is then to find a

coalition structure CS∗ that maximises the social welfare. That is:

CS∗ = argmaxcs∈LV (CS) (2.6)

However, the problem of coalition structure generation is computationally complex.

Sandholm et al. [Sandholm et al., 1999] showed that the number of coalition structures

(i.e. |L|) is exponential, specifically, O(nn) and ω(nn/2), and that the problem is NP-

hard. Moreover, they showed that for any algorithm to establish any bound from the

optimal, it must search at least 2n−1 coalition structures.

2.3.2 The State of The Art in Coalition Formation

As mentioned above, most of the existing work in coalition formation in game theory

[Rapoport and Kahan, 1984] has focused on coalition structure generation and payoff

distribution. In this context, many solutions have been proposed based on different

stability concepts (e.g. the core, the Shapley value, the kernel, the stable set, and

the bargaining set). Transfer schemes have also been developed to transfer non-stable

payoff distributions to stable ones (while keeping the coalition structure unchanged) (e.g.

transfer schemes have been developed for the bargaining set and the kernel).19

Recently, however, researchers in multi-agent systems have paid more attention to the

problem of coalition structure generation. As mentioned above, [Sandholm et al., 1999]

developed an anytime algorithm that guarantees to produce solutions within a finite

bound from the optimal. However, as we will demonstrate in chapter 5, this algorithm is

significantly slower than ours. On the other hand, [Shehory and Kraus, 1998] consider a

somewhat broader environment, where the coalitions can overlap. In this work, however,

they reduce the complexity of the problem by limiting the size of the coalitions. They

then develop a greedy algorithm that guarantees to produce a solution that is within a

bound from the best solution possible given the limit on the number of agents. However,
19For a comprehensive review on stability concepts and transfer schemes in game theory, see [Rapoport

and Kahan, 1984].

Chapter 2 Background 31

this best solution can be arbitrarily far from the actual optimal solution (without the

limit on the size of the coalitions).

Some other researchers address both coalition structure generation and payoff distri-

bution in competitive environments. Specifically, [Ketchpel, 1994] presents a coalition

formation method with cubic running time in the number of agents, but his method

can neither guarantee a bound from the optimal nor stability. Shehory and Kraus’s

protocol guarantees that if the agents follow it, a certain stability (kernel-stability) is

met [Shehory and Kraus, 1996]. In the same paper, they also present an alternative

protocol that offers a weaker form of stability with polynomial running time. However,

in both cases, no bound from the optimal is guaranteed.

More recent research in coalition formation area has also begun to pay attention to

dynamic environments, where agents may enter or leave the coalition formation process

and many uncertainties are present (e.g. the coalition value is not fixed, but it is

context-based [Klusch and Gerber, 2002]). However, to date, no algorithm with bound

guarantees has been developed for this environment.

2.4 Summary

This chapter has outlined the background for the problems that will be addressed in

the remainder of this thesis. Specifically, it gives a literature review on the general

area of virtual organisations, as well as formalising the problems of auction clearing and

coalition structure generation. It also highlights the need to develop new algorithms

for both of these problems so that the ensuing solutions can be made applicable to

partner selection and task distribution within VOs. Against this background, the next

three chapters will present our algorithms for these problems. Specifically, chapter 3

presents our novel polynomial algorithms for clearing multi-unit combinatorial auctions,

while chapter 4 presents our optimal algorithms for clearing multi-unit combinatorial

auctions. Finally, chapter 5 details our novel coalition structure generation algorithm.

Chapter 6 then follows to draw the algorithms developed in these three chapters together

by demonstrating how they can be applied in a VO lifecycle in a scenario.

Chapter 3

Polynomial Auction Clearing

Algorithms

This chapter develops polynomial algorithms for clearing multi-unit single-item and

multi-unit combinatorial forward and reverse auctions 1. Specifically, we consider set-

tings where bidders submit their bids in the form of a demand/supply function and the

auctions have sub-additive pricing with free disposal. The algorithms are based on a

greedy strategy and they are shown to be of polynomial complexity. Furthermore, the

solutions they generate are shown to be within a finite bound of the optimal.

In more detail, we consider settings where the price function satisfies two properties:

• Discount: ∀ 0 ≤ rj, sj ≤ uj
i ,

Pi(r1 + s1, r2 + s2, ..., rm + sm)

≤ Pi(r1, r2, ..., rm) + Pi(s1, s2, ..., sm) (3.1)

That is, the price of any combination of two packages altogether is always cheaper

than or equal to the price of these two bundles separately. For example, buying

10 units of item 1 and 12 units of item 2 is always cheaper than buying 5 units of
1Forward and reverse auctions are not simply the converse of each other in this context; they have

different properties and so require different proofs.

32

Chapter 3 Polynomial Auction Clearing Algorithms 33

item 1 and 6 units of item 2 twice. In game-theoretic terms, this property is also

called sub-additive [Tennenholtz, 2000].

• Free Disposal: if ∀ j : 0 ≤ rj ≤ sj ≤ uj
i , then:

Pi(r1, r2, ..., rm) ≤ Pi(s1, s2, ..., sm) (3.2)

That is, if one package has no fewer units of each item than another package, the

former is not less expensive than the latter. For example, 10 units of item 1 and

20 units of item 2 is always cheaper than 15 units of item 1 and 25 units of item 2.

The above assumptions are needed for the subsequent analysis of our algorithms and,

moreover, we believe they are applicable to a wide range of applications. The free

disposal property is a standard assumption that is adopted in most of the aforementioned

work on auction clearing (section 2.2). The sub-additivity assumption is less frequently

used but, we believe, is still reasonable in many situations. In particular, in our VO

scenario, this would mean, for example, the price of a package of movies and news

provided by a media provider is cheaper or equal to the total price of the two equivalent

packages being provided separately by the same media provider. Thus, their adoption

does not significantly limit the scope of our results.2

To this end, section 3.1 presents our algorithm for the single-item case (i.e. where

m = 1), including the proof of NP-completeness of the clearing problem. Then we

will deal with the combinatorial case as a generalisation in section 3.2. Section 3.3 will

present our benchmark test of the algorithms provided. This empirical results show that

for the cases we considered, the bounds from the optimal of our algorithms’ solutions

are considerably smaller than the theoretical results proved in sections 3.1 and 3.2.
2There are domains where these assumptions do not hold, for example, in nuclear electric industry,

where it is costly to dump nuclear waste away.

Chapter 3 Polynomial Auction Clearing Algorithms 34

3.1 Multi-Unit Single-Item Auctions

This section will first present the proof of NP-completeness of the problem of clearing

forward and reverse multi-unit single-item auction with the free disposal and the discount

properties (subsection 3.1.1). Then it will present our clearing algorithms and analyse

their properties.

3.1.1 Proof of NP-completeness

Using the notation of the previous section, the multi-unit single-item forward (reverse)

auction case can be formulated as follows: Let n be the number of bidders. Let q be the

supply (demand) of the auctioneer and ui be the maximum quantity of the item that ai

is willing to buy (sell). The demand (supply) function (in the single-item case it can be

drawn as a curve, so we can call it the demand (supply) curve) is the price function of

the item:

Pi : N ∩ [1, ui] → Q∗

where N and Q∗ are the sets of natural numbers and non-negative rational numbers,

respectively, and Pi(r) is the price bidder i offers for r units altogether.

For mathematical convenience, in this subsection we will use the unit price function

instead of the price function. The unit price function for each bidder i is:

pi : N ∩ [1, ui] → Q∗

where pi(r) is the unit price bidder i offers for r units altogether. That is,

pi(r) =
Pi(r)

r

As before, we consider settings where the demand (supply) curve satisfies the following

properties:

Chapter 3 Polynomial Auction Clearing Algorithms 35

• Discount (the more units that are sold, the less the unit price is):

pi(r) ≥ pi(s),∀ 0 ≤ r ≤ s ≤ ui (3.3)

• Free Disposal (the more units of the item that are sold, the more the total price

is):

r · pi(r) ≤ s · pi(s),∀ 0 ≤ r ≤ s ≤ ui (3.4)

The clearing problem is then one of finding a supply allocation 〈αi〉, 1 ≤ i ≤ n, i.e., the

auctioneer will sell (buy) αi units to (from) agent ai, such that:

• The quantities the auctioneer sells (buys) to the bidders satisfy the supply (de-

mand) constraint:
n∑

i=1

αi ≤ q (forward case) (3.5)

n∑
i=1

αi ≥ q (reverse case) (3.6)

• Optimise the auctioneer’s total revenue:

n∑
i=1

Pi(αi) is maximal (minimal). (3.7)

This is an optimization problem. Thus, in order to analyse the complexity according to

NP-completeness, we need to convert it into a decision problem. The decision problem

is, given a set of bids and the auctioneer’s supply (demand), is there a supply allocation

that will give the auctioneer a revenue exceeding a certain value?

First of all, we show that the clearing problem is NP-complete.

Theorem 3.1. Consider a multi-unit single-item auction with free disposal and discount

bidding functions. Then the problem of clearing the auction is NP-complete, even for

the simple case when the bidding function is composed of linear segments (i.e. piece-wise

linear).

Chapter 3 Polynomial Auction Clearing Algorithms 36

Proof. First of all, it is trivial that the problem is in NP, because given a supply allo-

cation, we can calculate the revenue it gives the auctioneer in polynomial time. Thus

we just need to show that the problem is NP-hard which we do by reducing it to the

knapsack problem (as in [Sandholm and Suri, 2001]).

[Forward auction case]

As in [Sandholm and Suri, 2001], we reduce the knapsack problem [Martello and Toth,

1990] to our auction problem.

Let {(s1, v1), (s2, v2), ..., (sn, vn), c} be an instance of the knapsack problem, that is, c

is the knapsack capacity, si and vi are the size and the value of item i, respectively.

We then create an instance of the multi-unit single-item auction with free disposal and

discount bidding functions as follows.

Let the supply of the auctioneer be: q = n + c.

Let the maximum quantity that bidder i is willing to trade be: ui = si + 1.

Let K be a number such that K satisfies the two following inequations:

K > max
1≤i,j≤n,i�=j

vi/vj (3.8)

K > max
1≤i≤n

si (3.9)

Then, let the price function of bidder i be:




Pi(r) = K ∗ vi, ∀1 ≤ r ≤ si

Pi(ui) = (K + 1) ∗ vi

With the above definitions, we can show that these price functions satisfy both the

discount and the free disposal property:

• Discount: As we have pi(r) = K ∗ vi/r for all 1 ≤ r ≤ si, we just need to show

that pi(si) ≥ pi(si + 1).

Chapter 3 Polynomial Auction Clearing Algorithms 37

We have:

pi(si + 1) = (K + 1) ∗ vi/(si + 1)

⇒ pi(si + 1)
pi(si)

=
(K + 1) ∗ vi/(si + 1)

K ∗ vi/si

⇒ pi(si + 1)
pi(si)

=
Ksi + si

Ksi + K

⇒ pi(si + 1)
pi(si)

< 1 (because of (3.8))

⇒ pi(si + 1) < pi(si)

• Free Disposal: it is trivial that Pi(r) satisfies the free disposal property.

The goal of the clearing algorithm is then to find a supply allocation 〈αi〉 such that:

• The quantity the auctioneer sells to the bidders satisfy the supply constraint:

n∑
i=1

αi ≤ q = n + c (3.10)

• Optimise the auctioneer’s total revenue:

n∑
i=1

Pi(αi) is maximal. (3.11)

This leads to the following lemma.

Lemma 3.2. Suppose 〈αi〉 is the optimal allocation. Then αi > 0, for all 1 ≤ i ≤ n.

Proof. We prove by contradiction. Suppose there exists k such that αk = 0.

Consider the two possible cases.

• Case 1:
∑n

i=1 αi = q:

As q > n, there must exist l such that αl > 1.

Now consider the following supply allocation {〈βi〉}n
i=1 such that:

Chapter 3 Polynomial Auction Clearing Algorithms 38




βi = αi,∀1 ≤ i ≤ n, i �= k, i �= l

βk = 1

βl = αl − 1

With the above definition, as
∑n

i=1 βi =
∑n

i=1 αi, and βi ≤ ui, ∀1 ≤ i ≤ n, we can

see that {〈βi〉}n
i=1 is a valid allocation.

We have:

n∑
i=1

Pi(βi)

=
n∑

i=1

Pi(αi) + Pk(1) + Pl(αl − 1) − Pl(αl)

=
n∑

i=1

Pi(αi) + K ∗ vk + K ∗ vl − Pl(αl)

≥
n∑

i=1

Pi(αi) + K ∗ vk + K ∗ vl − Pl(ul)

=
n∑

i=1

Pi(αi) + K ∗ vk + K ∗ vl − (K + 1) ∗ vl

=
n∑

i=1

Pi(αi) + K ∗ vk − vl

>
n∑

i=1

Pi(αi) (because of inequation (3.9))

This leads to contradiction, as 〈αi〉 is the optimal allocation.

• Case 2:
∑n

i=1 αi < q:

Let us consider the following supply allocation {〈βi〉}n
i=1 such that:




βi = αi,∀1 ≤ i ≤ n, i �= k

βk = 1

With the above definition, as
∑n

i=1 βi =
∑n

i=1 αi +1 ≤ q, and βi ≤ ui, ∀1 ≤ i ≤ n,

we can see that {〈βi〉}n
i=1 is a valid allocation.

Chapter 3 Polynomial Auction Clearing Algorithms 39

We have:

n∑
i=1

Pi(βi)

=
n∑

i=1

Pi(αi) + Pk(1)

=
n∑

i=1

Pi(αi) + K ∗ vk

>

n∑
i=1

Pi(αi)

This also leads to contradiction, as 〈αi〉 is the optimal allocation.

Thus, as both cases lead to contradiction, we have αi > 0, for all 1 ≤ i ≤ n.

From the above lemma, we can see that finding a supply allocation 〈αi〉 (such that 〈αi〉
satisfies the supply constraint and optimises the auctioneer’s revenue) is equivalent to

finding a tuple 〈α′
i〉 (α′

i = αi − 1) such that:

• ∑n
i=1 α′

i ≤ q − n = c, and

• ∑n
i=1 P ′

i (α
′
i) is maximal, where P ′

i (r) = Pi(r+1)−Pi(1) (it is because, as
∑n

i=1 P ′
i (α

′
i) =

∑n
i=1 Pi(αi)−

∑n
i=1 Pi(1), we have

∑n
i=1 Pi(αi) is maximised if and only if

∑n
i=1 P ′

i (α
′
i)

is maximised).

Also, as P ′
i (r) = Pi(r) − Pi(1), this means P ′

i (r) = 0, ∀1 ≤ r ≤ si − 1 and P ′
i (si) =

vi. Thus, finding the optimal allocation 〈αi〉 is equivalent to optimising the instance

{(s1, v1), (s2, v2), ..., (sn, vn), c} of the knapsack problem. As the latter is NP-complete,

so is the problem of finding the optimal allocation of our auction.

[Reverse auction case]

Again, as in [Sandholm and Suri, 2001], we reduce the knapsack problem to our reverse

auction problem.

Chapter 3 Polynomial Auction Clearing Algorithms 40

Let {(s1, v1), (s2, v2), ..., (sn, vn), c} be an instance of the knapsack problem. We then

create an instance of the multi-unit single-item reverse auction with free disposal and

discount bidding functions as follows.

Let the maximum quantity that bidder i is willing to trade be ui = si.

Let T be the total number of units in all the bids, that is, T =
∑n

i=1 si.

Let the demand of the auctioneer be q = T − c.

Let the price function of bidder i be Pi(r) = vi, ∀1 ≤ r ≤ si.

It is trivial that these price functions satisfy both the free disposal and the discount

property.

The goal of the clearing algorithm is then to find a supply allocation 〈αi〉 such that:

• The quantity the auctioneer sells to the bidders satisfy the demand constraint:

n∑
i=1

αi ≥ q = T − c (3.12)

• Optimise the auctioneer’s total revenue:

n∑
i=1

Pi(αi) is minimal. (3.13)

Considering this reverse auction, we can see that finding a supply allocation 〈αi〉 (such

that 〈αi〉 satisfies the demand constraint and optimises the auctioneer’s revenue) is

equivalent to finding a tuple 〈α′
i〉 (α′

i = si − αi) such that:

• ∑n
i=1 α′

i ≤ T − q = c, and

• ∑n
i=1 P ′

i (α
′
i) is maximal, where P ′

i (r) = Pi(si) − Pi(si − r) (it is because, as
∑n

i=1 P ′
i (α

′
i) =

∑n
i=1 Pi(si) −

∑n
i=1 Pi(αi), we have

∑n
i=1 Pi(αi) is minimised if

and only if
∑n

i=1 P ′
i (α

′
i) is maximised).

Also, as P ′
i (r) = Pi(si) − Pi(si − r), this means P ′

i (r) = 0, ∀1 ≤ r ≤ si − 1 and

P ′
i (si) = vi. Thus, finding the optimal allocation 〈αi〉 is equivalent to optimising the

Chapter 3 Polynomial Auction Clearing Algorithms 41

Algorithm 1. Repeat the following steps:

• For all i such that ui > q, set ui = q.

That is, we truncate the demand (supply) function to consider only quantities that
are not bigger than the supply (demand). This is because, for the forward auction
case, the auctioneer cannot sell more quantity than his supply; for the reverse
auction case, in order to minimise the total price, the auctioneer does not need to
buy more units than its demand, since the price functions satisfy the free disposal
property (inequation (3.4)).

• At each step, find the bidder ak such that pi(uk) is maximal (minimal), then sell
(buy) uk units to (from) ak.

That is, we consider all the biggest packages offered by the bidders, then choose
the package that offers the biggest (smallest) unit price.

• Repeat the steps above for the set of bidders A \ ak and qnew = q − uk.

Figure 3.1: The clearing algorithm for the multi-unit single-item case.

instance {(s1, v1), (s2, v2), ..., (sn, vn), c} of the knapsack problem. As the latter is NP-

complete, so is the problem of finding the optimal allocation of our auction.

3.1.2 The Algorithm

We are now in a position to express our algorithm for solving this problem. Like [Sand-

holm et al., 2002] we adopt a greedy approach for solving this problem. Our algorithm

is presented in figure 3.1.

We can now analyse this algorithm to assess its properties.

Theorem 3.3. In the reverse auction case, if there is a solution, this algorithm will

find it.3That is, if the total of the supplies of the bidders is larger than the auctioneer’s

demand, this algorithm will produce an allocation. Also, the total units of the solution

will be exactly equal to the auctioneer’s demand.

3In the forward case, it is trivial that there is always a solution: when the auctioneer accepts no bid,
or any single bid.

Chapter 3 Polynomial Auction Clearing Algorithms 42

Proof. In each step, the algorithm for the reverse case selects exactly one agent from

the set of bidders. And if its supply is less than the auctioneer’s remaining demand,

the algorithm takes all its supply. Otherwise it takes the quantity that is equal to the

remaining demand. So, if the algorithm does not terminate beforehand, it will eventually

select all the bidders and take all the supplies. Thus, if the total of the supplies of the

bidders is larger than the auctioneer’s demand, the algorithm will produce an allocation.

Moreover, in each step, the algorithm takes at most all the remaining demand, thus the

solution it produces will have the total units being equal to the auctioneer’s demand.

Theorem 3.4. The complexity of the algorithm is O(n2).

Proof. At each step, it requires O(n) to find the biggest (smallest) element of the set

{p1(u1),

p2(u2), ..., pn(un)}. So each step has O(n) complexity. As there are at most n steps, it

is clear that the complexity of the algorithm is O(n2)

Theorem 3.5. The solution generated from the algorithm is within a bound b = n from

the optimal. That is, let Pn(O) be the optimal total price and Pn(S) be the total price

of the solution of the algorithm. Then:

Pn(O)
Pn(S)

≤ n (forward auction case) (3.14)

Pn(S)
Pn(O)

≤ n (reverse auction case) (3.15)

Proof. [Forward auction case]

Let 〈r1, r2, .., rn〉 be the solution of the algorithm; that is, the auctioneer sells ri units

to agent ai. Then the total price of the solution will be: Pn(S) =
∑n

i=1 Pi(ri). Thus,

we have to prove that:

n ·
n∑

i=1

Pi(ri) ≥ Pn(O) (3.16)

Chapter 3 Polynomial Auction Clearing Algorithms 43

Or, equivalently, for all other supply allocations 〈t1, t2, .., tn〉 that satisfy the supply

constraint, their total price will be no more than n times the total price of the solution

of our algorithm. That is, ∀ t1, t2, .., tn such that: 0 ≤ ti ≤ ui, ∀1 ≤ i ≤ n and
∑n

i=1 ti ≤ q, then:

n ·
n∑

i=1

Pi(ri) ≥
n∑

i=1

Pi(ti)

First, we can assume the maximal quantity that each bidder wants to buy is less than

the supply of the auctioneer, that is, ui ≤ q, ∀1 ≤ i ≤ n.

Let s (s ≤ n) be the number of rounds of the algorithm, or the number of the agents

that were selected in the algorithm.

Without loss of generality, suppose agent ai, 1 ≤ i ≤ s is selected in round i of the

algorithm. Thus:

• In round 1, agent 1 is selected. Because the maximal quantity this agent wants to

buy is less than the supply of the auctioneer, the auctioneer will sell the agent the

maximal quantity it wants. That is, r1 = u1.

Also, the unit price of the biggest package of agent 1 will be the biggest one in all

the biggest packages offered by the bidders:

p1(r1) =
n

max
i=1

pi(ui)

• In round k (2 ≤ k ≤ s), agent k is selected. Because the remaining supply of

the auctioneer is (q − ∑k−1
i=1 ri), the auctioneer will sell the agent the quantity

rk = min(q − ∑k−1
i=1 ri, uk).

Also, the unit price of the biggest package of agent k will be the biggest one in all

the biggest packages offered by the remaining bidders:

pk(rk) =
n

max
j=k

pj(rj) (3.17)

Chapter 3 Polynomial Auction Clearing Algorithms 44

• The total quantity that the auctioneer sells to all the bidders will be equal to its

supply (by Theorem 3.4):
s∑

i=1

ri = q

From that we have the following lemma:

Lemma 3.6. For all 1 ≤ k ≤ n:

k∑
v=1

rvpv(rv) ≥ tkpk(tk)

Proof. Consider the three possible cases:

• For the case k = 1, we have : r1p1(r1) = u1p1(u1) ≥ t1p1(t1).

• For the case 2 ≤ k ≤ s, we have:

For all 1 ≤ v ≤ k: pv(rv) = maxn
j=vpj(rj) (by (3.17))

⇒ pv(rv) ≥ pk(rk) = pk(min(q −
k−1∑
i=1

ri, uk)) (3.18)

But min(q − ∑k−1
i=1 ri, uk) ≤ uk and pk satisfies the discount property in (3.3),

thus:

pk(min(q −
k−1∑
i=1

ri, uk)) ≥ pk(uk) (3.19)

From (3.18) and (3.19) we have: pv(rv) ≥ pk(uk), ∀1 ≤ v ≤ k.

Thus:
∑k

v=1 rvpv(rv) ≥
∑k

v=1 rvpk(rk) = (
∑k

v=1 rv)pk(uk).

But rk = min(q − ∑k−1
i=1 ri, uk)

⇒ ∑k
v=1 rv = min(q, uk +

∑k−1
i=1 ri) ≥ uk (as q ≥ uk).

Thus:
∑k

v=1 rvpv(rv) ≥ ukpk(uk).

But uk ≥ tk, and Pk satisfies the free disposal property in (3.4), so Pk(uk) ≥ Pk(tk)

or ukpk(uk) ≥ tkpk(tk).

Chapter 3 Polynomial Auction Clearing Algorithms 45

So we have
∑k

v=1 rvpv(rv) ≥ tkpk(tk).

• For the case k > s:

For all 1 ≤ v ≤ s: pv(rv) = maxn
j=vpj(rj) (by (3.17))

⇒ pv(rv) ≥ pk(rk) = pk(min(q −
k−1∑
i=1

ri, uk)) (3.20)

But min(q − ∑k−1
i=1 ri, uk) ≤ uk and pk satisfies the discount property in (3.3),

thus:

pk(min(q −
k−1∑
i=1

ri, uk)) ≥ pk(uk) (3.21)

From (3.20) and (3.21) we have: pv(rv) ≥ pk(uk), ∀1 ≤ v ≤ s.

Thus:
∑k

v=1 rvpv(rv) ≥
∑s

v=1 rvpv(rv)

≥ (
∑s

v=1 rv)pk(uk) = q · pk(uk) ≥ uk · pk(uk) ≥ tk · pk(tk)

So we have:
∑k

v=1 rvpv(rv) ≥ tkpk(tk), ∀1 ≤ k ≤ n.

From lemma 3.6 we have:

n∑
k=1

k∑
v=1

rvpv(rv) ≥
n∑

k=1

tkpk(tk)

⇒
n∑

k=1

(n + 1 − k)rkpk(rk) ≥
n∑

k=1

tkpk(tk)

⇒ n ·
n∑

k=1

rkpk(rk) ≥
n∑

k=1

tkpk(tk)

(As n + 1 − k ≤ n, ∀1 ≤ k ≤ n)

[Reverse auction case]

We prove by induction on the number of bidders n.

Base case (n = 1):

In the case where n = 1 the solution is optimal (because we have only one bid) so it is

clear that the proof is correct with n = 1.

Chapter 3 Polynomial Auction Clearing Algorithms 46

Inductive step:

Suppose that (3.15) is true for n, we will prove that (3.15) is also true for n + 1. That

is, let (r1, r2, ..., rn+1) be the supply allocation that the algorithm generates. Then we

have to prove that:
n+1∑
i=1

ri · pi(ri) ≤ (n + 1) · Pn+1(O)

Or equivalently, for all other supply allocations (t1, t2, .., tn+1) that satisfy the demand,

their total price is greater than 1
n+1 times the total price of the supply allocation pro-

duced by the algorithm. That is, ∀ t1, t2, .., tn+1 such that: 0 ≤ ti ≤ ui, ∀1 ≤ i ≤ n + 1

and
∑n+1

i=1 ti ≥ q, then:

n+1∑
i=1

ri · pi(ri) ≤ (n + 1) · (
n+1∑
i=1

ti · pi(ti))

Proof of inductive step

Without loss of generality, assume that agent an+1 provides the smallest unit price.

That is, p(un+1) = minn+1
i=1 p(ui). This means that agent an+1 is selected in the first step

of the algorithm and:

rn+1 = un+1 (3.22)

Because supply allocation {ti} satisfies the demand (as in (3.6)), the total quantity that

the auctioneer buys from all bidders is not less than the auctioneer’s demand:

n+1∑
i=1

ti ≥ q (3.23)

But supply allocation {ri} supplies exactly the demand quantity (by Theorem 1)

⇒
n+1∑
i=1

ri = q

⇒
n+1∑
i=1

ti ≥
n+1∑
i=1

ri (by (3.23))

⇒
n∑

i=1

ti ≥
n∑

i=1

ri (as tn+1 ≤ un+1 = rn+1, from (3.22))

Chapter 3 Polynomial Auction Clearing Algorithms 47

Moreover, by inductive hypothesis, (3.15) is true for n agents.

⇒
n∑

i=1

ri · pi(ri) ≤ n ·
n∑

i=1

ti · pi(ti)

⇒
n∑

i=1

ri · pi(ri) ≤ n ·
n+1∑
i=1

ti · pi(ti) (3.24)

(as tn+1 · pn+1(tn+1) ≥ 0)

Also:

un+1 · pn+1(un+1) ≤
n+1∑
i=1

ti · pn+1(un+1)

(as un+1 ≤ q ≤ ∑n+1
i=1 ti, from (3.23))

But because pn+1(un+1) is the smallest unit price.

⇒ un+1 · pn+1(un+1) ≤
n+1∑
i=1

ti · pi(ti)

or

rn+1 · pn+1(rn+1) ≤
n+1∑
i=1

ti · pi(ti) (3.25)

From (3.24) and (3.25), we have:

n+1∑
i=1

ri · pi(ri) ≤ (n + 1) · (
n+1∑
i=1

ti · pi(ti))

The completion of the inductive step completes our proof.

Although multi-unit single-item auctions are not our main target case, this algorithm still

represents a contribution in its own right. While Sandholm and Suri’s algorithms target

the same environment as this, they are only applicable in the specific case where the

supply curves are linear [Sandholm and Suri, 2001]. In contrast, our result is applicable

to the more general case; that is, sub-additive, free disposal supply curves.

Chapter 3 Polynomial Auction Clearing Algorithms 48

Having dealt with the multi-unit single-item case, the next section generalises the algo-

rithm to the multi-unit combinatorial case.

3.2 Multi-Unit Combinatorial Auctions

To deal with the multi-unit combinatorial case, we need to add one more assumption

about the price functions of the items. This is that there exists a number K > 1 such

that for any price function from any bidder, K units of any item will be more expensive

than 1 unit of any other item:

∀ 1 ≤ i, j ≤ m, i �= j, d ∈ N:

Pi(r1, .., ri + d, .., rj , .., rm) ≤ Pi(r1, .., ri, .., rj + Kd, .., rm) (3.26)

That is, for any package, if we substitute d units of any item in this package by K ·d units

of any other item, then the price of the new package will be more expensive or equal to

the price of the old package. For example, in the case K = 3,m = 2, r1 = 2, r2 = 4, d = 1,

we have: for any price function, the price of 3 units of item 1 and 4 units of item 2 will

be less than or equal to the price of 2 units of item 1 and 7 (i.e. 4 + 3) units of items 2.

We believe this is a realistic assumption because in a competitive market the unit price

of any item is always likely to be within a finite range; that is, it cannot be arbitrarily

high or low.4 This is especially true in the VO creation context, as the VO’s potential

partners compete against each other to join the VO and so they would not bid with a too

high price (otherwise they would fail in the reverse auction). On the other hand, they

cannot bid with a too low price, because of the manufacturing cost of a product/service.

From this, a number of lemmas follow:

Lemma 3.7. For any package of items, if we replace d units of any item with d units

of any other item, then the total price of the new package of items is not bigger than K

times the total price of the old package:
4There are however domains where this assumption does not hold, for example, when the price equals

or is less than zero. This can occur when, for example, a firm gives free promotion to advertise a new
product or to expand its market.

Chapter 3 Polynomial Auction Clearing Algorithms 49

∀ 1 ≤ i, j ≤ m, i �= j, d ∈ N:

Pi(r1, .., ri + d, .., rj , .., rm) ≤ K · Pi(r1, .., ri, .., rj + d, .., rm) (3.27)

Proof. We have:

Pi(r1, .., ri + d, .., rj , .., rm)

≤ Pi(r1, .., ri, .., rj + Kd, .., rm) (by (3.26))

But K > 1 ⇒ Kr ≥ r for all r. Also Pi satisfies the free disposal property (in (3.2)).

⇒ Pi(r1, .., ri + d, .., rj , .., rm)

≤ Pi(Kr1, ..,Kri, ..,Krj + Kd, ..,Krm)

≤ Pi(r1, .., ri, .., rj + d, .., rm) + Pi((K − 1)r1,

.., (K − 1)ri, .., (K − 1)(rj + d), .., (K − 1)rm)

≤ ...

≤ K · Pi(r1, .., ri, .., rj + d, .., rm)

(by the discount property in (3.1))

Lemma 3.8. For any two packages, if the total number of units of the first package is

not bigger than the total number of units of the second package, then the total price of

the first package is not bigger than Km−1 times the total price of the second package:

∀1 ≤ i ≤ n, ∀r1, r2, ..., rm, s1, s2, ..., sm such that

m∑
j=1

rj ≤
m∑

j=1

sj

Chapter 3 Polynomial Auction Clearing Algorithms 50

Then:

Pi(r1, r2, ..., rm) ≤ Km−1Pi(s1, s2, ..., sm) (3.28)

Proof. Let dj = (sj − rj)

⇒
m∑

j=1

dj =
m∑

j=1

sj −
m∑

j=1

rj ≥ 0 (3.29)

Now there are 2 cases:

• Case 1: di ≥ 0, ∀1 ≤ i ≤ m. Then we have:

Pi(r1, r2, ..., rm) ≤ Pi(s1, s2, ..., sm)

(because Pi satisfies the free disposal property in (3.2))

⇒ Pi(r1, r2, ..., rm) ≤ Km−1Pi(s1, s2, ..., sm)

• Case 2: There exists a dk < 0.

Without loss of generality, suppose that dm < 0. Then we have:

Pi(r1, r2, ..., rm−1, rm) ≤ K · Pi(r1 − dm, r2, ..., rm−1, sm)

(by lemma 3.7)

Let r
(2)
1 = r1 − dm, r

(2)
i = ri, ∀ 2 ≤ i ≤ m − 1.

⇒ Pi(r1, r2, ..., rm−1, rm) ≤ K · Pi(r
(2)
1 , r

(2)
2 , ..., r

(2)
m−1, sm)

Also:

m−1∑
j=1

r
(2)
j =

m−1∑
j=1

rj − dm

⇒
m−1∑
j=1

r
(2)
j ≤

m−1∑
j=1

sj (by (3.29))

Chapter 3 Polynomial Auction Clearing Algorithms 51

Repeating the whole step above, it will take at most m − 1 steps to terminate. Thus,

after at most m − 1 steps, we will have:

Pi(r1, r2, ..., rm) ≤ Km−1Pi(s1, s2, ..., sm)

Lemma 3.9. For any two packages, if the total number of units of the first package is

not bigger than the total number of units of the second package, then the average unit

price of the first package is not smaller than 1
2Km−1 times the average unit price of the

second package:

∀1 ≤ i ≤ n, r1, r2, ..., rm, s1, s2, ..., sm such that
∑m

j=1 rj ≤
∑m

j=1 sj, then:

2Km−1 · Pi(r1, r2, ..., rm)
r1 + r2 + ... + rm

≥ Pi(s1, s2, ..., sm)
s1 + s2 + ... + sm

(3.30)

Proof. Let k = [
∑m

j=1 sj∑m
j=1 rj

], that is, k is the integral part of
∑m

j=1 sj∑m
j=1 rj

.

⇒ k ≤
∑m

j=1 sj∑m
j=1 rj

< k + 1 (3.31)

⇒ (k + 1)
m∑

j=1

rj >

m∑
j=1

sj

⇒ Km−1Pi((k + 1)r1, (k + 1)r2, ..., (k + 1)rm) ≥ Pi(s1, s2, ..., sm)

(by lemma 3.8)

⇒ Km−1(k + 1)Pi(r1, r2, ..., rm) ≥ Pi(s1, s2, ..., sm) (3.32)

(by the discount property in (3.1))

Chapter 3 Polynomial Auction Clearing Algorithms 52

Also:

m∑
j=1

rj ≤
m∑

j=1

sj ⇒
∑m

j=1 sj∑m
j=1 rj

≥ 1 ⇒ k ≥ 1

⇒ k + 1 ≤ 2k ≤ 2 ·
∑m

j=1 sj∑m
j=1 rj

(from (3.31))

⇒ 2Km−1 ·
∑m

j=1 sj∑m
j=1 rj

Pi(r1, r2, ..., rm) ≥ Pi(s1, s2, ..., sm)

(by inequation (3.33))

⇒ 2Km−1 · Pi(r1, r2, ..., rm)
r1 + r2 + ... + rm

≥ Pi(s1, s2, ..., sm)
s1 + s2 + ... + sm

With these lemmas in place, we can now proceed with the presentation of the generali-

sation of the single-item algorithm in section 3.1. The algorithm for the general case is

presented in figure 3.2.

We can now analyse this algorithm to assess its properties.

Theorem 3.10. If there is a solution, then this algorithm will find it. That is, if the

total of the demands (supplies) of the bidders is larger than the auctioneer’s supply

(demand), this algorithm will produce an allocation. Also, the total units of the solution

will be exactly equal to the auctioneer’s supply (demand).

Proof. In each step, the algorithm for the forward (reverse) case selects exactly one

agent from the set of bidders. And if its demand (supply) is less than the auctioneer’s

remaining supply (demand), the algorithm takes all its demand (supply). Otherwise it

takes the quantity that is equal to the remaining supply (demand). So, if the algorithm

does not terminate beforehand, it will eventually select all the bidders and take all the

demands (supplies). Thus, if the total of the demands (supplies) of the bidders is larger

than the auctioneer’s supply (demand), the algorithm will produce an allocation.

Moreover, in each step, the algorithm takes at most all the remaining supply (demand).

Thus the solution it produces will have the total units being equal to the auctioneer’s

supply (demand).

Chapter 3 Polynomial Auction Clearing Algorithms 53

Algorithm 2. At each round k ≥ 1 repeat the following steps:

• For all i, j, set uj
i (k) = min(uj

i , qj(k − 1)).

(qj(0) = qj)

That is, we truncate the demand (supply) function to consider only quantities that
are not bigger than the supply (demand). This is because, for the forward auction
case, the auctioneer cannot sell more quantity than his supply; for the reverse
auction case, in order to minimise the total price, the auctioneer does not need to
buy more units than its demand, since the price functions satisfy the free disposal
property (inequation (3.2)).

• Find the bidder ahk
such that:

Phk
(u1

hk
(k), u2

hk
(k), ..., um

hk
(k))

u1
hk

(k) + u2
hk

(k) + ... + um
hk

(k)
is maximal (minimal),

then select ahk
to provide all its units (u1

hk
(k), u2

hk
(k), ..., um

hk
(k)).

That is, we consider all the biggest packages offered by the bidders, then choose
the package that offers the biggest (smallest) average unit price.

Note that this is not necessarily the package that offers the biggest (smallest)
average in all packages, because a smaller package may have a bigger (smaller)
average unit price.

• Repeat the steps with the new set of bidders A \ ahk
and new supply (demand)

qj(k) = qj(k − 1) − uj
hk

(k).

Figure 3.2: The clearing algorithm for the multi-unit combinatorial case.

Chapter 3 Polynomial Auction Clearing Algorithms 54

Theorem 3.11. The complexity of the algorithm is O(n2)

Proof. At each step, it requires O(n) to find the biggest (smallest) element of the set

{Pk(u1
k ,u2

k,...,um
k)

u1
k+u2

k+...+um
k
}n

i=1. So each step has O(n) complexity. As there are at most n steps,

the complexity of the algorithm is O(n2).

Theorem 3.12. The solution generated from the algorithm is within a bound b = 2n ·
Km−1 from the optimal. That is, let Pn(O) be the optimal total price and Pn(S) be the

total price of the solution of the algorithm. Then:

Pn(O)
Pn(S)

≤ 2n · Km−1 (forward auction case) (3.33)

Pn(S)
Pn(O)

≤ 2n · Km−1 (reverse auction case) (3.34)

Proof. [Forward auction case]

Let {rj
i }, 1 ≤ i ≤ n, 1 ≤ j ≤ m be the solution of the algorithm; that is, the auctioneer

sells rj
i units of item j to agent ai. We have to prove that:

2nKm−1 ·
n∑

i=1

Pi(r1
i , .., r

m
i) ≥ Pn(O) (3.35)

Or, equivalently, for all other supply allocations {tji} that satisfy the supply constraint,

their total price will be no more than 2nKm−1 the total price of the solution of the

algorithm. That is, ∀ tji such that: 0 ≤ tji ≤ uj
i , ∀1 ≤ i ≤ n, 1 ≤ j ≤ m and

∑n
i=1 tji ≤ qj,

then:

2nKm−1 ·
n∑

i=1

Pi(r1
i , .., r

m
i) ≥

n∑
i=1

Pi(t1i , .., t
m
i)

First, we can assume the maximal quantity of each item that each bidder wants to buy is

less than the auctioneer’s supply for that item, that is, ∀1 ≤ i ≤ n, 1 ≤ j ≤ m: uj
i ≤ qj.

So uj
i (1) = uj

i .

Chapter 3 Polynomial Auction Clearing Algorithms 55

Let s (s ≤ n) be the number of rounds of the algorithm, or the number of agents that

were selected in the algorithm.

Without loss of generality, suppose agent ak, 1 ≤ k ≤ s is selected in round k of the

algorithm. Thus we have:

hk = k, ∀1 ≤ k ≤ s (3.36)

rj
k = uj

k(k) ,∀1 ≤ k ≤ s (3.37)

Pk(r1
k, .., r

m
k)∑m

j=1 rj
k

=
n

max
i=k

Pi(u1
i (k), .., um

i (k))∑m
j=1 uj

i (k)
,∀1 ≤ k ≤ s (3.38)

Also, the total quantity of each item that the auctioneer sells to all the bidders will be

equal to its supply for that item (by Theorem 3.10). That is:

s∑
i=1

rj
i = qj (3.39)

From the algorithm, we can see that : uj
i (k) = min(uj

i , qj −
∑k−1

v=1 uj
hv

(v)). Thus, by

equation (3.36):

uj
i (k) = min(uj

i , qj −
k−1∑
v=1

uj
v(v)) (3.40)

From that we have the following lemma:

Lemma 3.13. For all 1 ≤ k ≤ n:

2Km−1 ·
k∑

v=1

Pv(r1
v , .., r

m
v) ≥ Pk(t1k, .., t

m
k)

Proof. There are two cases:

• Case 1, 1 ≤ k ≤ s:

Chapter 3 Polynomial Auction Clearing Algorithms 56

For all 1 ≤ v ≤ k we have:

Pv(r1
v , .., r

m
v) ≥ (

m∑
j=1

rj
v)

Pk(u1
k(k), .., um

k (k))∑m
j=1 uj

k(k)
(from (3.38))

But
∑m

j=1 uj
k(k) ≤ ∑m

j=1 uj
k

⇒ 2Km−1 · Pk(u1
k(k), .., um

k (k))∑m
j=1 uj

k(k)
≥ Pk(u1

k, .., u
m
k)∑m

j=1 uj
k

Thus:

2Km−1 · Pv(r1
v , .., r

m
v) ≥ (

m∑
j=1

rj
v)

Pk(u1
k, .., u

m
k)∑m

j=1 uj
k

⇒ 2Km−1 ·
k∑

v=1

Pv(r1
v , .., r

m
v) ≥ (

k∑
v=1

m∑
j=1

rj
v)

Pk(u1
k, .., u

m
k)∑m

j=1 uj
k

⇒ 2Km−1 ·
k∑

v=1

Pv(r1
v , .., r

m
v) ≥ (

m∑
j=1

k∑
v=1

rj
v)

Pk(u1
k, .., u

m
k)∑m

j=1 uj
k

⇒ 2Km−1 ·
k∑

v=1

Pv(r1
v , .., r

m
v) ≥ (

m∑
j=1

k∑
v=1

uj
v(v))

Pk(u1
k, .., u

m
k)∑m

j=1 uj
k

uj
k(k) = min(uj

k, qj −
k−1∑
v=1

uj
v(v)) (from (3.40))

⇒
k∑

v=1

uj
v(v) = min(uj

k +
k−1∑
v=1

uj
v(v), qj)

But uj
k +

∑k−1
v=1 uj

v(v) ≥ uj
k and qj ≥ uj

k thus:

k∑
v=1

uj
v(v) ≥ uj

k

⇒ 2Km−1 ·
k∑

v=1

Pv(r1
v , .., r

m
v) ≥ (

m∑
j=1

uj
k)

Pk(u1
k, .., u

m
k)∑m

j=1 uj
k

⇒ 2Km−1 ·
k∑

v=1

Pv(r1
v , .., r

m
v) ≥ Pk(u1

k, .., u
m
k)

Chapter 3 Polynomial Auction Clearing Algorithms 57

• Case 2, k ≥ s: By proving similarly to case 1, we have:

2Km−1 ·
s∑

v=1

Pv(r1
v , .., r

m
v) ≥ (

m∑
j=1

s∑
v=1

rj
v)

Pk(u1
k, .., u

m
k)∑m

j=1 uj
k

But
∑s

v=1 rj
v = uj

⇒ 2Km−1 ·
s∑

v=1

Pv(r1
v , .., r

m
v) ≥ (

m∑
j=1

uj
k)

Pk(u1
k, .., u

m
k)∑m

j=1 uj
k

⇒ 2Km−1 ·
s∑

v=1

Pv(r1
v , .., r

m
v) ≥ Pk(u1

k, .., u
m
k)

⇒ 2Km−1 ·
s∑

v=1

Pv(r1
v , .., r

m
v) ≥ Pk(t1k, .., t

m
k)

(by the free disposal property in (3.2))

⇒ 2Km−1 ·
k∑

v=1

Pv(r1
v , .., r

m
v) ≥ Pk(t1k, .., t

m
k)

So we have: 2Km−1 · ∑k
v=1 Pv(r1

v , .., r
m
v) ≥ Pk(t1k, .., t

m
k), ∀1 ≤ k ≤ n.

From lemma 3.13 we have:

2Km−1 ·
n∑

k=1

k∑
v=1

Pv(r1
v , .., r

m
v) ≥

n∑
k=1

Pk(t1k, .., t
m
k)

⇒ 2Km−1 ·
n∑

k=1

(n + 1 − k)Pk(r1
k, .., r

m
k) ≥

n∑
k=1

Pk(t1k, .., t
m
k)

⇒ 2nKm−1 ·
n∑

k=1

Pk(r1
k, .., r

m
k) ≥

n∑
k=1

Pk(t1k, .., t
m
k)

(as n + 1 − k ≤ n, ∀1 ≤ k ≤ n)

[Reverse auction case]

We prove by induction of the number of bidders n.

Chapter 3 Polynomial Auction Clearing Algorithms 58

Base case (n = 1):

In the case where n = 1 the solution is optimal (because there is only one bid to choose

from), so it is clear that the proof is correct with n = 1.

Inductive step:

Suppose that (3.34) is true for n, we will prove that (3.34) is also true for n+1. That is,

let {rj
i }, 1 ≤ i ≤ n+1, 1 ≤ j ≤ m be the supply allocation that the algorithm generates.

Then we have to prove that:

n+1∑
i=1

Pi(r1
i , r

2
i , ..., r

m
i) ≤ 2n · Km−1Pn+1(O)

Or equivalently, for every other supply allocation {tji} that satisfies the auctioneer’s

demand, the total price of {rj
i } is not bigger than 2n · Km−1 times the total price of

{tji}:
n+1∑
i=1

Pi(r1
i , r

2
i , ..., r

m
i) ≤ 2(n + 1) · Km−1

n+1∑
i=1

Pi(t1i , t
2
i , ..., t

m
i)

Proof of inductive step

Without loss of generality, assume that agent an+1 provides the lowest average price in

all the biggest packages:

Pn+1(u1
n+1, u

2
n+1, ..., u

m
n+1)

u1
n+1 + u2

n+1 + ... + um
n+1

=
n+1
min
i=1

Pi(u1
i , u

2
i , ..., u

m
i)

u1
i + u2

i + ... + um
i

(3.41)

This means an+1 is selected in the first step of the algorithm and:

rj
n+1 = uj

n+1, for all 1 ≤ j ≤ m (3.42)

For all 1 ≤ j ≤ m, because supply allocation {tji} satisfies the auctioneer’s demand:

⇒
n+1∑
i=1

tji ≥ qj (3.43)

(by inequation (2.2))

Chapter 3 Polynomial Auction Clearing Algorithms 59

But supply allocation {rj
i } supplies exactly the demand quantity (by Theorem 3.10).

⇒
n+1∑
i=1

rj
i = qj

⇒
n+1∑
i=1

tji ≥
n+1∑
i=1

rj
i

⇒
n∑

i=1

tji ≥
n∑

i=1

rj
i

(as tjn+1 ≤ uj
n+1 = rj

n+1 by (3.42))

Moreover, by inductive hypothesis, (3.34) is true for n agents.

⇒
n∑

i=1

Pi(r1
i , r

2
i , ..., r

m
i) ≤ 2nKm−1 ·

n∑
i=1

Pi(t1i , t
2
i , ..., t

m
i)

⇒
n∑

i=1

Pi(r1
i , r

2
i , ..., r

m
i) ≤ 2nKm−1 ·

n+1∑
i=1

Pi(t1i , t
2
i , ..., t

m
i) (3.44)

(because Pn+1(t1n+1, t
2
n+1, ..., t

m
n+1) ≥ 0)

Also:

Pn+1(r1
n+1, r

2
n+1, ..., r

m
n+1)

= Pn+1(u1
n+1, u

2
n+1, ..., u

m
n+1) (by (3.42))

= (
m∑

j=1

uj
n+1) ·

Pn+1(u1
n+1, u

2
n+1, ..., u

m
n+1)∑m

j=1 uj
n+1

But uj
n+1 ≤ qj, for all 1 ≤ j ≤ m.

⇒ Pn+1(r1
n+1, r

2
n+1, ..., r

m
n+1)

≤ (
m∑

j=1

qj)
Pn+1(u1

n+1, u
2
n+1, ..., u

m
n+1)∑m

j=1 uj
n+1

≤ (
m∑

j=1

n+1∑
i=1

tji)
Pn+1(u1

n+1, u
2
n+1, ..., u

m
n+1)∑m

j=1 uj
n+1

(by (3.43))

Chapter 3 Polynomial Auction Clearing Algorithms 60

≤
n+1∑
i=1

(
m∑

j=1

tji
Pi(u1

i , u
2
i , ..., u

m
i)∑m

j=1 uj
i

) (because of (3.41))

≤
n+1∑
i=1

(
m∑

j=1

tji2K
m−1 Pi(t1i , t

2
i , ..., t

m
i)∑m

j=1 tji
) (by lemma 3.9)

⇒ Pn+1(r1
n+1, r

2
n+1, ..., r

m
n+1) ≤ 2Km−1 · (

n+1∑
i=1

Pi(t1i , t
2
i , ..., t

m
i)) (3.45)

From (3.44) and (3.45) we have:

n+1∑
i=1

Pi(r1
i , r

2
i , ..., r

m
i) ≤ 2(n + 1) · Km−1

n+1∑
i=1

Pi(t1i , t
2
i , ..., t

m
i)

The completion of the inductive step completes our proof.

3.3 Experimental Evaluation

To accompany the theoretical analysis that we have done so far, this section outlines the

experimental evaluation of our clearing algorithms to see how they perform in reality.

This is because the theoretical analysis is in terms of worst-case, however by doing an

experimental analysis we can have a clearer idea of average case and how the algorithms

perform in practical scenarios. Specifically, we want to assess how much closer to the

optimal are the solutions generated by the algorithms compared to the worst-case bound.

We will do the evaluation for both the single-item (subsection 3.3.1) and combinatorial

cases (subsection 3.3.2).

3.3.1 Multi-Unit Single-Item Auctions

We implement a problem generator that enables us to evaluate the performance of our

algorithms for a range of values that are typical for the types of VO problems in which

we are interested (see chapter 6 for relevant examples). However, as there is no standard

benchmark in this area, we make our problem generator similar to [Eso et al., 2001],

Chapter 3 Polynomial Auction Clearing Algorithms 61

which is the only previous attempt to generate realistic problems for auctions with

bidding functions. Below are the parameters used in our problem generator:

• NumBids - number of bidders: varied from 10 to 16.

• MaxNumSegments - Maximum number of segments of a curve bid: from 2 to

4.

Given the two parameters above, our problem generator consists of the following steps:

• Generating the call for bids: the requested quantity is randomly selected in the

interval [101, 50 ∗ NumBids]. This range is chosen because:

– It makes sure the generated problem has solutions: The auctioneer’s requested

quantity is less than or equal to 50 ∗ NumBids, and also the maximum

quantity that each bidder is willing to trade is at least 50 (see below) so there

is always enough demand (supply) from the bidders.

– It ensures there are at least 2 winners: The auctioneer’s requested quantity

is at least 101, and the maximum quantity that each bidder is willing to

trade is not bigger than 100, so the number of winners will be at least 2.

This is preferable because if the auctioneer’s requested quantity is small (for

example, less than 50) there will be only one winner and the algorithm will be

very straightforward — just choosing the bidder who bid the highest (lowest)

price for that quantity of items.

• For bidders i = 1, ..., NumBids, construct the bid curve for bidder i by doing the

following:

– The maximum quantity that it is willing to trade (MaxQuantity) is randomly

selected in the interval [50, 100]. This range is chosen for the above reasons.

– The number of segments of its curve bid (NumSegs) is randomly selected in

the interval [1,MaxNumSegments]. This range is chosen so that it adds

more variety into the experiment.

Chapter 3 Polynomial Auction Clearing Algorithms 62

– For the first segment: start quantity is: Start1 = 1, end quantity (End1) is

randomly selected in the interval [1,MaxQuantity−NumSegs+1] and unit

price UP1 is randomly selected in the interval [100, 102].

– For segments j > 1: start quantity is segment j − 1’s end quantity +1:

Startj = Endj−1+1, end quantity (Endj) is randomly selected in the interval

[Startj,MaxQuantity − NumSegs + j] (except that Endj = MaxQuantity

when j = NumSegs) and unit price UPj = UPj−1 ∗ (1 − DiscountRate)

where DiscountRate is randomly selected in the interval [0.01, 0.05].

The last two steps are carried out in these ways to ensure that the generated

bidding functions satisfy the free disposal and discount properties, while still

adding a degree of variety into the experiment.

We now turn to the results. We ran the algorithm for 40 generated problems and record

the bounds from the optimal of the generated solutions. The results are presented in

figures 3.3, 3.4 (forward auction case) and figures 3.5, 3.6 (reverse auction case) as box

plots5. The number of runs (40) guarantees us a 95% confidence interval, if we accept

the bound to have a precision of:

• Plus or minus 0.001 for the box plots in figure 3.3 and the first box plot in figure

1.2

• Plus or minus 0.002 for the second and third box plots in figure 3.4

• Plus or minus 0.0001 for the first box plot in figure 3.5

• Plus or minus 0.00002 for the second and third box plots in figure 3.5

• Plus or minus 0.0005 for the fourth box plot in figure 3.5 and the box plots in

figure 3.6.

As can be seen, all of the bounds are very close to 1, specifically, they are in the

interval [1, 1.02]. This is significantly lower than the theoretically proved bound which
5A box plot is a graphical representation of a set of one-dimensional data and comprises of a central

box (bounded below by the lower hinge, bounded above by the upper hinge, and with a central line
showing the median), two protruding lines (whiskers) extending from the central box with lengths no
larger than 1.5 times the length of the box, and outliers marked individually data points that lie beyond
the whiskers.

Chapter 3 Polynomial Auction Clearing Algorithms 63

10 12 14 16

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

B
ou

nd
 fr

om
 th

e
op

tim
al

Number of bidders

Figure 3.3: The experimental result of our algorithm for multi-unit single-item for-
ward auctions (varying the number of bidders).

2 3 4

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

B
ou

nd
 fr

om
 th

e
op

tim
al

Maximum number of segments

Figure 3.4: The experimental result of our algorithm for multi-unit single-item for-
ward auctions (varying the maximum number of segments).

Chapter 3 Polynomial Auction Clearing Algorithms 64

10 12 14 16

1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

1.004

B
ou

nd
 fr

om
 th

e
op

tim
al

Number of bidders

Figure 3.5: The experimental result of our algorithm for multi-unit single-item reverse
auctions (varying the number of bidders).

2 3 4

1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

1.004

1.0045

1.005

B
ou

nd
 fr

om
 th

e
op

tim
al

Maximum number of segments

Figure 3.6: The experimental result of our algorithm for multi-unit single-item reverse
auctions (varying the maximum number of segments).

Chapter 3 Polynomial Auction Clearing Algorithms 65

is NumBids (i.e., 10, 12, 14 or 16 in this experiment). This suggests that in many

practical cases, our algorithm performs significantly better than the theoretical proved

worst-case analysis.

Moreover, by performing ANOVA tests, we can make a number of additional observa-

tions. Specifically, in the forward case we can determine that there is no significant

difference between the different numbers of bidders. However, there is a significant dif-

ference between the different maximum numbers of segments. This suggests that the

maximum number of segments has a bigger influence on the bound from the optimal

of the solutions generated by our algorithms. Turning now to the reverse case, we can

determine there is no significant difference between the different numbers of bidders nor

between the different maximum numbers of segments. Thus no hypotheses can be made

about the effect of these parameters on the values of the bound.

3.3.2 Multi-Unit Combinatorial Auctions

As in the multi-unit single-item case, we implement a problem generator that enables

the performance of our algorithms to be evaluated in a range of environments. Below

are the parameters used in this problem generator:

• NumBids — number of bidders: varied from 5 to 8.

• NumItems — number of items: from 2 to 4.

• MaxNumSegments — maximum number of segments of a curve bid: from 2 to

4.

Given the above parameters, our problem generator consists of the following steps:

• Generating the call for bids: the requested quantity is randomly selected in the

interval [101, 50 ∗ NumBids]. Again, this range is chosen for the same reasons

given above in the single-item case (except that in this case, we cannot guarantee

that the generated problem has solutions, because a bidder may want to trade

only one or few items, not all of them).

Chapter 3 Polynomial Auction Clearing Algorithms 66

• For bidders i = 1, ..., NumBids: The actual number of items that bidder i wants

to trade is chosen randomly from the range [1, NumItems]. Now for any item k

that bidder i is willing to trade, construct the bid curve for bidder i by doing the

following:

– The maximum quantity that it is willing to trade (MaxQuantity) is randomly

selected in the interval [50, 100].

– The number of segments of its curve bid (NumSegs) is randomly selected in

the interval [1,MaxNumSegments].

– For the first segment: start quantity is: Startk1 = 1, end quantity (Endk
1) is

randomly selected in the interval [1,MaxQuantity−NumSegs+1] and unit

price UP k
1 is randomly selected in the interval [100, 102].

– For segments j > 1: start quantity is segment j − 1’s end quantity +1:

Startkj = Endk
j−1+1, end quantity (Endk

j) is randomly selected in the interval

[Startkj ,MaxQuantity −NumSegs + j] (except that Endk
j = MaxQuantity

when j = NumSegs) and unit price UP k
j = UP k

j−1 ∗ (1 − DiscountRate)

where DiscountRate is randomly selected in the interval [0.01, 0.05].

– For all bidders, set the correlation values wi(NumSegs1
i , NumSegs2

i , ...,

NumSegsNumItems
i) to be a random value in the interval [MinV al, 1] where

MinV al is the smallest possible value to satisfy the free disposal assumption.

Again, the last three steps are carried out in these ways to ensure that the

generated bidding functions satisfy the free disposal and discount properties,

while still adding a degree of variety into the experiment.

• Check if the generated problem has solutions, if it does not, re-generate it6.

We now turn to the results. As before, we ran the algorithm for 40 generated problems

and record the bounds from the optimal of the generated solutions. The results are

presented in figures 3.7, 3.8 and 3.9 (forward auction case) and figures 3.10, 3.11 and 3.12

(reverse auction case). Again, the number of runs (40) guarantees us a 95% confidence
6In some reverse auction cases the generated problem does not have any solutions because the total

supply from the bidders does not meet the auctioneer’s demand

Chapter 3 Polynomial Auction Clearing Algorithms 67

5 6 7 8

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

B
ou

nd
 fr

om
 th

e
op

tim
al

Number of bidders

Figure 3.7: The experimental result of our algorithm for multi-unit combinatorial
forward auctions (varying the number of bidders).

interval, if we accept the bound to have some specific precisions (these are broadly as

per subsection 3.3.1).

As can be seen, all of the bounds are very close to 1, specifically, in the interval

[1, 1.025]. Again this is significantly lower than the theoretically proved bound which is

2 ∗ NumBids ∗ KNumItems−1 (K is a constant). This suggests that in many cases, our

algorithm is likely to perform significantly better than the theoretical proved worst-case

analysis.

On the other hand, the ANOVA tests performed on this data show no significant differ-

ence between the different tested values of the number of bidders, the maximum number

of segments or the number of items, so no hypotheses can be made about the effect of

these parameters on the values of the bound.

Chapter 3 Polynomial Auction Clearing Algorithms 68

2 3 4

1

1.005

1.01

1.015

1.02

B
ou

nd
 fr

om
 th

e
op

tim
al

Maximum number of segments

Figure 3.8: The experimental result of our algorithm for multi-unit combinatorial
forward auctions (varying the maximum number of segments).

2 3 4

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

B
ou

nd
 fr

om
 th

e
op

tim
al

Number of items

Figure 3.9: The experimental result of our algorithm for multi-unit combinatorial
forward auctions (varying the number of items).

Chapter 3 Polynomial Auction Clearing Algorithms 69

5 6 7 8

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

B
ou

nd
 fr

om
 th

e
op

tim
al

Number of items

Figure 3.10: The experimental result of our algorithm for multi-unit combinatorial
reverse auctions (varying the number of bidders).

2 3 4

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

B
ou

nd
 fr

om
 th

e
op

tim
al

Maximum number of segments

Figure 3.11: The experimental result of our algorithm for multi-unit combinatorial
reverse auctions (varying the maximum number of segments).

Chapter 3 Polynomial Auction Clearing Algorithms 70

2 3 4

1

1.005

1.01

1.015

B
ou

nd
 fr

om
 th

e
op

tim
al

Number of items

Figure 3.12: The experimental result of our algorithm for multi-unit combinatorial
reverse auctions (varying the number of items).

3.4 Summary

In this chapter we developed, for the first time, polynomial algorithms for clearing multi-

unit combinatorial auctions with demand/supply functions. While previous work has

concentrated on single-item auctions with demand/supply curves or combinatorial auc-

tions with atomic propositions, we generalised the problem to multi-unit single-item and

multi-unit combinatorial auctions with demand/supply functions. For this very general

case, we showed that our algorithms are of polynomial complexity and can generate

solutions that are within a bound of the optimal. We then showed our experimental

results for both the multi-unit single-item and multi-unit combinatorial cases. For the

problems we considered, our algorithms produce solutions that are within a bound from

the optimal that is much smaller than the theoretically proved bound. Specifically, all

of the bounds are within the range [1, 1.025], while the theoretical bound is n in the

multi-unit single-item case, and is 2nKm−1 in the multi-unit combinatorial case (n is

the number of bidders, m is the number of items, and K is a constant). Moreover, we be-

lieve the generalisation to multi-unit single-item and multi-unit combinatorial auctions

Chapter 3 Polynomial Auction Clearing Algorithms 71

with demand/supply functions is an important step toward realising the full application

potential of combinatorial auctions since it enables us to deal with a maximally flexible

and efficient scheme in a computationally tractable manner.

Chapter 4

Optimal Auction Clearing

Algorithms

In contrast to chapter 3, this chapter presents optimal clearing algorithms for multi-unit

single-item and multi-unit combinatorial forward and reverse auctions with demand/sup-

ply functions. Specifically, we consider two classes of demand/supply function. Firstly,

those in which the demand/supply curves for each individual commodity are composed

of many linear segments (i.e. piece-wise linear functions) (section 4.1). Price functions

that are composed of linear segments are common in business, thus this is a very appro-

priate auction settings for the VO context and for e-business in general. Secondly, those

in which the function indicating the price for adding one more single unit into a package

is monotonic (called monotonic one-unit-difference functions) (section 4.2). This sec-

ond class is not particularly common, however, it is considered because it is amenable

to the same solution as piece-wise linear and it covers another portion of the general

auction clearing problem space. For each of these cases, we analyse the complexity of

our algorithms and prove that they are guaranteed to find the optimal allocation.

As mentioned in section 2.2, it is impossible to find a polynomial algorithm that is

guaranteed to find the optimal allocation, unless P = NP. In this section, we concentrate

on optimality and so, necessarily, our algorithms are not polynomial.

72

Chapter 4 Optimal Auction Clearing Algorithms 73

4.1 Piece-wise Linear Supply/Demand Curve Bids

In this section, we consider the case where:

Pi(r1, r2, ..., rm) = ωi(t1, t2, ..., tm) · (
m∑

j=1

P j
i (rj))

where P j
i is the price function of agent i for item j, in the form of a piecewise linear

curve (i.e. the function’s graph is composed of many segments, each of which is linear),

tj is the segment number of P j
i that rj belongs to and

ωi : {(t1, t2, ..., tm)|tj is a segment number of P j
i } → Q∗

is the function that expresses correlations between items in the set S.

More precisely, each piece-wise linear function P j
i is composed of N j

i linear segments,

numbered from 1 to N j
i . Each individual segment with segment number l, 1 ≤ l ≤ N j

i ,

is described by a starting quantity sj
i,l and an ending quantity ej

i,l, a unit price πj
i,l and

a fixed price cj
i,l, with the meaning that: bidder i wants to trade any r units of item j,

sj
i,l ≤ r ≤ ej

i,l with the price:

P = πj
i,l · r + cj

i,l

Note that the segments are not required to be continuous; that is, (sj
i,l+1 − ej

i,l) may

not equal 1. Also, for convenience, we call segment number 0 the segment in which the

starting quantity, the ending quantity, the unit price and the fixed price are all equal

to 0. Thus, the number of segments of P j
i , including this special segment, will equal

N j
i + 1.

The correlation function ωi has many potential uses in real-life scenarios. For example,

suppose bidder i, selling 3 items (1, 2 and 3), wants to express things like “I am willing to

sell r1 units of item 1 and r2 units of item 2 together with a price p, but not separately”.

Using our correlation function, this can be expressed by adding segments t1 and t2, which

contain only r1 and r2, to the functions P 1
i and P 2

i , respectively, then giving ωi(t1, t2, t3)

a very small value, for every t3, and giving P 1
i (r1) and P 2

i (r2) very big values. This way,

the auctioneer will never choose to buy r1 or r2 separately.

Chapter 4 Optimal Auction Clearing Algorithms 74

For convenience in presentation, from this section on, we will use the following terms.

Definition 4.1. A valid allocation is a supply allocation that completely satisfies the

demand constraint.

Definition 4.2. A supply allocation 〈tji 〉 is not less profitable than a supply allocation

〈rj
i 〉 if the former brings the auctioneer an equal or bigger revenue than the latter. That

is:

P (〈tji 〉) ≥ P (〈rj
i 〉) (forward case)

P (〈tji 〉) ≤ P (〈rj
i 〉) (reverse case) (4.1)

According to this definition of profitability, the most profitable valid allocation optimises

the auctioneer’s total revenue. Thus, this is what our algorithms aim to find. We

first consider the multi-unit single-item case (subsection 4.1.1), before moving onto the

combinatorial case (subsection 4.1.2).

4.1.1 Multi-Unit Single-Items

Using the notation from the previous section, the single-item case can be re-formulated

as follows. Let n be the number of bidders. The auctioneer has a supply (demand) q.

Each bidder i submits bids in the form of a piece-wise linear demand (supply) curve:

Pi : N → R, which is composed of Ni linear segments. Each segment l, 0 ≤ l ≤ Ni is

described by a starting quantity si,l and an ending quantity ei,l, a unit price πi,l and a

fixed price ci,l.

Definition 4.3. The dominant set D is the set of all allocations (r1, r2, .., rn) such that

there exists a k, 1 ≤ k ≤ n, such that all rλ1 , ..., rλk−1
equal the ending quantity of the

segments that they belong to, and all rλk+1
, ..., rλn equal the starting quantity of the

Chapter 4 Optimal Auction Clearing Algorithms 75

segments that they belong to:1




rλi
= eλi,tλi

,∀1 ≤ i ≤ k − 1

rλi
= sλi,tλi

,∀k + 1 ≤ i ≤ n

rλk
= q − ∑n

i=1,i�=k rλi

where:

• ti is the segment on Pi that ri belongs to. That is, si,ti ≤ ri ≤ ei,ti .

• (λi)ni=1 is any permutation of (1, 2, ..., n) such that {πλ1,tλ1
}n

i=1 is sorted decreas-

ingly (increasingly):2

πλ1,tλ1
≥ πλ2,tλ2

≥ ... ≥ πλn,tλn
(forward case)

πλ1,tλ1
≤ πλ2,tλ2

≤ ... ≤ πλn,tλn
(reverse case)

From this, a number of lemmas follow:

Lemma 4.4. For every allocation (r1, r2, ..., rn) there exists an allocation in the domi-

nant set D that is not less profitable than it.

Proof. Let (r1, r2, ..., rn) be an allocation. Let ti be the segment that ri belongs to.

Suppose (λi)ni=1 is a permutation of (1, 2, ..., n) such that:

πλ1,tλ1
≥ πλ2,tλ2

≥ ... ≥ πλn,tλn
(forward case)

πλ1,tλ1
≤ πλ2,tλ2

≤ ... ≤ πλn,tλn
(reverse case) (4.2)

Step 1: we prove that there exists an allocation 〈r(1)
i 〉, that is not less profitable than

〈ri〉, where r
(1)
i belongs to segment ti of Pi, ∀1 ≤ i ≤ n and, either r

(1)
λ1

= eλ1,tλ1
or:




r
(1)
λi

= sλi,tλi
,∀2 ≤ i ≤ n

r
(1)
λ1

= q − ∑n
i=2 r

(1)
λi

1There may be many dominant sets D, as there may exist many permutations (λi)
n
i=1.

2There may exist many such permutations (λi)
n
i=1, as there may be many ways to sort the set

{πi,ti}n
i=1.

Chapter 4 Optimal Auction Clearing Algorithms 76

Let us consider the case where rλ1 < eλ1,tλ1
and there exists a k, 2 ≤ k ≤ n, such that

rλk
> sλk,tλk

.

Consider the allocation (r′1, r′2, ..., r′n) where:




r′λ1
= rλ1 + 1

r′λk
= rλk

− 1

r′λi
= rλi

,∀1 ≤ i ≤ n, i �= 1, i �= k

Because rλ1 < eλ1,tλ1
and rλk

> sλk,tλk
, r′i belongs to segment ti of Pi, ∀1 ≤ i ≤ n.

Now let us compare the revenues of two allocations 〈ri〉ni=1 and 〈r′i〉ni=1. We have:

P (〈ri〉) − P (〈r′i〉)

=
n∑

i=1

(Pλi
(rλi

)) −
n∑

i=1

(Pλi
(r′λi

))

= Pλ1(rλ1) + Pλk
(rλk

)

−(Pλ1(rλ1 + 1) + Pλk
(rλk

− 1))

= (πλ1,tλ1
· rλ1 + cλ1,tλ1

) + (πλk,tλk
· rλk

+ cλk,tλk
)

−(πλ1,tλ1
· (rλ1 + 1) + cλ1,tλ1

)

−(πλk,tλk
· (rλk

− 1) + cλk ,tλk
)

= πλk,tλk
− πλ1,tλ1

But by inequation (4.2):

πλk,tλk
≤ πλ1,tλ1

(forward case)

πλk,tλk
≥ πλ1,tλ1

(reverse case)

Thus:

P (〈ri〉) ≤ P (〈r′i〉) (forward case)

P (〈ri〉) ≥ P (〈r′i〉) (reverse case)

Chapter 4 Optimal Auction Clearing Algorithms 77

This means by taking 1 more unit from bidder λ1 and taking 1 less unit from bidder λk,

we will have a new allocation that is not less profitable than the original one.

Repeating the above process, we will always get a new allocation that is not less profitable

than the original one. Eventually we get an allocation 〈r(1)
i 〉, that is not less profitable

than the original one, where r
(1)
i belongs to segment ti of Pi, ∀1 ≤ i ≤ n, and either

r
(1)
λ1

= eλ1,tλ1
or: 


r
(1)
λi

= sλi,tλi
,∀2 ≤ i ≤ n

r
(1)
λ1

= q − ∑n
i=2 r

(1)
λi

Step 2: In the case if r
(1)
λ1

= eλ1,tλ1
and r

(1)
λ1

< q − ∑n
i=2 sλi,tλi

, by repeating the above

step, there exists an allocation 〈r(2)
i 〉, that is not less profitable than 〈ri〉, where:

• r
(2)
i belongs to segment ti of Pi, ∀1 ≤ i ≤ n.

• r
(2)
λ1

= r
(1)
λ1

= eλ1,tλ1

• Either r
(2)
λ2

= eλ2,tλ2
or:




r
(2)
λi

= sλi,tλi
,∀3 ≤ i ≤ n

r
(2)
λ2

= q − ∑n
i=1,i�=2 r

(2)
λi

By repeating the above steps again and again, we will finally stop at some step k,

1 ≤ k ≤ n and get an allocation 〈r(k)
i 〉, that is not less profitable than 〈ri〉, where r

(k)
i

belongs to segment ti of Pi, ∀1 ≤ i ≤ n, and:




r
(k)
λi

= eλi,tλi
,∀1 ≤ i ≤ k − 1

r
(k)
λi

= sλi,tλi
,∀k + 1 ≤ i ≤ n

r
(k)
λk

= q − ∑n
i=1,i�=k r

(k)
λi

The above lemma leads directly to the following corollary:

Corollary 4.5. The dominant set D must contain an optimal allocation.

Chapter 4 Optimal Auction Clearing Algorithms 78

Lemma 4.6. The number of elements in the set D is not more than
∏n

i=1(Ni + 1).

Proof. For each tuple 〈ti〉ni=1, in which ti is a segment on Pi, there exists at most one

k,3 so the number of elements in the set D is not more than the number of such tuples.

But the number of tuples 〈ti〉ni=1 is
∏n

i=1(Ni + 1). Thus:

|D| ≤
n∏

i=1

(Ni + 1)

With these lemmas in place, we can now present our algorithm for the single-item case

(see figure 4.1). Basically, the algorithm searches through all the allocations of the set D

and chooses the most profitable valid one. We can now analyse the algorithm to assess

its properties.

Theorem 4.7. The algorithm is guaranteed to find an optimal allocation.

Proof. The algorithm searches all the allocations of the dominant set D. Also, by

corollary 4.5, the dominant set D contains an optimal allocation. Thus the algorithm is

guaranteed to find an optimal allocation.

Theorem 4.8. The complexity of the algorithm is O(n ·(K +1)n), where K is the upper

bound on the number of segments of Pi.

Proof. The number of allocations searched by the algorithm is equal to the number of

elements of the dominant set. By lemma 4.6, the number of elements of the dominant

set is not more than
∏n

i=1(Ni + 1) ≤ (K + 1)n. Also, it takes O(log n) to sort {πi,ti}
and O(n) to find k, so the complexity of the algorithm is O(n · (K + 1)n).

Having dealt with the multi-unit single-item case, the next subsection generalises the

algorithm to the multi-unit combinatorial case.

3There may be more than one k, for example, in the case where si,ti = ei,ti for every i, but in such
cases, it does not matter which k is chosen.

Chapter 4 Optimal Auction Clearing Algorithms 79

Algorithm 3. For every tuple 〈ti〉ni=1 such that ti is a segment on Pi:

• If
∑n

i=1 ei,ti < q or
∑n

i=1 si,ti > q:
Continue; // Jump to the next 〈ti〉 tuple.

• Sort {πi,ti} decreasingly (increasingly).

• For k = 1 to n do:

– If
∑k

i=1 ei,ti +
∑n

i=k+1 si,ti > q:

∗ Set:


ri = ei,ti ,∀1 ≤ i ≤ k − 1
ri = si,ti ,∀k + 1 ≤ i ≤ n
rk = q − ∑n

i=1,i�=k ri

∗ End k for loop.

• Compare P (〈ri〉) with the price of the best allocation found so far.

Figure 4.1: Clearing algorithm for multi-unit single-item case with piece-wise linear
supply function bids.

Chapter 4 Optimal Auction Clearing Algorithms 80

4.1.2 Multi-Unit Combinatorial Items

As before, we define a dominant set that is proved to contain an optimal allocation.

Definition 4.9. The dominant set D is the set of all allocations 〈rj
i 〉 such that for every

1 ≤ j ≤ m, there exists a kj , 1 ≤ kj ≤ n, such that all rj

λj
1

, ..., rj

λj
k−1

equal the ending

quantities of the segments that they belong to, and all rj

λj
k+1

, ..., rj

λj
n

equal the starting

quantities of the segments that they belong to:4




rj

λj
i

= ej

λj
i ,tj

λ
j
i

,∀1 ≤ i ≤ k − 1

rj

λj
i

= sj

λj
i ,tj

λ
j
i

,∀k + 1 ≤ i ≤ n

rj

λj
k

= qj −
∑n

i=1,i�=k rj

λj
i

where:

• tji is the segment on P j
i that rj

i belongs to.

• (λj
i)

n
i=1 is any permutation of (1, 2, ..., n) such that {ω

λj
i
(〈tj

λj
i

〉) ·πj

λj
i ,tj

λ
j
i

}n
i=1 is sorted

decreasingly (increasingly):

ω
λj
1
(〈tj

λj
1

〉) · πj

λj
1,tj

λ
j
1

≥ ω
λj
2
(〈tj

λj
2

〉) · πj

λj
2,tj

λ
j
2

≥ ... ≥ ω
λj

n
(〈tj

λj
n
〉) · πj

λj
n,tj

λ
j
n

(forward case)

ω
λj
1
(〈tj

λj
1

〉) · πj

λj
1,tj

λ
j
1

≤ ω
λj
2
(〈tj

λj
2

〉) · πj

λj
2,tj

λ
j
2

≤ ... ≤ ω
λj

n
(〈tj

λj
n
〉) · πj

λj
n,tj

λ
j
n

(reverse case)

From this, a number of lemmas follow:

Lemma 4.10. For every allocation 〈rj
i 〉 there exists an allocation in the dominant set

D that is not less profitable than it.

Proof. Let 〈rj
i 〉 be an allocation. Let tji be the segment that rj

i belongs to. Suppose

(λj
i)

n
i=1 is any permutation of (1, 2, ..., n) such that {ω

λj
i
(〈tj

λj
i

〉) · πj

λj
i ,tj

λ
j
i

}n
i=1 is sorted

4Similar to subsection 4.1.1, there may be many dominant sets D.

Chapter 4 Optimal Auction Clearing Algorithms 81

decreasingly (increasingly):

ω
λj
1
(〈tj

λj
1

〉) · πj

λj
1,tj

λ
j
1

≥ ω
λj
2
(〈tj

λj
2

〉) · πj

λj
2,tj

λ
j
2

≥ ... ≥ ω
λj

n
(〈tj

λj
n
〉) · πj

λj
n,tj

λ
j
n

(forward case)

ω
λj
1
(〈tj

λj
1

〉) · πj

λj
1,tj

λ
j
1

≤ ω
λj
2
(〈tj

λj
2

〉) · πj

λj
2,tj

λ
j
2

≤ ... ≤ ω
λj

n
(〈tj

λj
n
〉) · πj

λj
n,tj

λ
j
n

(reverse case)

(4.3)

For any j̄, 1 ≤ j̄ ≤ m, by proving in similar manner to lemma 4.4, there exists an

allocation 〈r̄j
i 〉, that is not less profitable than 〈rj

i 〉, where r̄j
i belongs to segment tji of

P j
i , ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m and for some k, 1 ≤ k ≤ n:

r̄j̄

λj̄
i

= ej̄

λj̄
i ,tj̄

λ
j̄
i

,∀1 ≤ i ≤ k − 1

r̄j̄

λj̄
i

= sj̄

λj̄
i ,tj̄

λ
j̄
i

,∀k + 1 ≤ i ≤ n

r̄j̄

λj̄
k

= qj −
n∑

i=1,i�=k

r̄j̄

λj̄
i

r̄j
i = rj

i ,∀1 ≤ i ≤ n,∀1 ≤ j ≤ m, j �= j̄

Repeating the above step for every j̄ from 1 to m, we complete the proof.

The above lemma leads directly to the following corollary:

Corollary 4.11. The dominant set D must contain an optimal allocation.

Lemma 4.12. The number of elements in the set D is not more than
∏n

i=1

∏m
j=1(N

j
i +1).

Proof. Consider an allocation 〈rj
i 〉 in D. By lemma 2, for each j̄ ranging from 1 to m,

the number of possible values of a tuple 〈rj̄
i 〉ni=1 is not more than

∏n
i=1(N

j̄
i + 1). Thus,

the number of possible values of 〈rj
i 〉 is not more than

∏n
i=1

∏m
j=1(N

j
i + 1).

With these lemmas in place, we can now present our algorithm for the combinatorial

case (see figure 4.2), which, as before, searches through all allocations of the dominant

Chapter 4 Optimal Auction Clearing Algorithms 82

set D and chooses the most profitable valid one. We can now analyse the algorithm to

assess its properties.

Theorem 4.13. The algorithm is guaranteed to find the optimal allocation.

Proof. The algorithm searches all the allocations of the dominant set D. Also, by

corollary 4.11, the dominant set D contains an optimal allocation. Thus the algorithm

is guaranteed to find an optimal allocation.

Theorem 4.14. The complexity of the algorithm is O(mn · (K + 1)mn), where K is the

upper bound on the number of segments of P j
i .

Proof. The number of allocations searched by the algorithm is equal to the number of

elements of the dominant set. By lemma 4.12, the number of elements of the dominant

set is not more than
∏n

i=1

∏m
j=1(N

j
i + 1) ≤ (K + 1)mn. Also, for each j running from 1

to m, it takes O(log n) to sort {ωi(〈tji 〉) · πj

i,tji
} and O(n) to find k, so the complexity of

the algorithm is O(mn · (K + 1)mn).

Note that this is a worst-case analysis. In many real-life scenarios, each bidder is likely to

provide a subset of the goods/services, not all of them. So if bidder i does not provide

an item j, then N j
i = 0, meaning the number

∏n
i=1

∏m
j=1(N

j
i + 1) is much smaller

than (K + 1)mn. For example, given the values suggested in [Eso et al., 2001] (that

are claimed to resemble real-life problems in the domain of e-commerce), the number
∏n

i=1

∏m
j=1(N

j
i + 1) normally reduces to 3

m(n+4)
2 . While this is certainly not an average

case analysis, it provides an indication of the complexity that may be encountered in

practice.

Chapter 4 Optimal Auction Clearing Algorithms 83

Algorithm 4. For every tuple 〈tji 〉, 1 ≤ i ≤ n, 1 ≤ j ≤ m such that tji is a segment on
P j

i :

• For every j = 1 to m do:

– If
∑n

i=1 ej

i,tji
< qj or

∑n
i=1 sj

i,tji
> qj :

Continue; // Jump to the next 〈tji 〉 tuple.

– Sort {ωi(〈tji 〉) · πj

i,tji
} decreasingly (increasingly).

– For k = 1 to n do:

∗ If
∑k

i=1 ej

i,tji
+

∑n
i=k+1 sj

i,tji
> qj:

· Set:




rj
i = ej

i,tji
,∀1 ≤ i ≤ kj − 1

rj
i = sj

i,tji
,∀kj + 1 ≤ i ≤ n

rj
kj

= qj −
∑n

i=1,i�=kj
rj
i

· End k for loop.

• Compare P (〈rj
i 〉) with the price of the best allocation found so far.

Figure 4.2: Clearing algorithm for multi-unit combinatorial case with piece-wise linear
supply function bids.

Chapter 4 Optimal Auction Clearing Algorithms 84

4.2 Monotonic One-Unit-Difference Supply/Demand

Functions

In this section, we apply broadly the same techniques as those used in the previous sec-

tion to another class of demand/supply functions. As stated before, although this class

is not common, it is considered because the same solution as piece-wise linear can be

used and it covers another portion of the general auction clearing problem space. Specif-

ically, the case where the one-unit-difference demand/supply functions are monotonic

(non-decreasing for the forward case and non-increasing for the reverse case). That is,

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, ∀a1, .., aj−1, aj+1, .., am:

Qj
i (r) = Pi(a1, .., aj−1, r + 1, aj+1, .., am) − Pi(a1, .., aj−1, r, aj+1, .., am)

is non-decreasing (non-increasing):

Qj
i (r + 1) ≥ Qj

i (r),∀0 ≤ r ≤ uj
i − 1 (forward case)

Qj
i (r + 1) ≤ Qj

i (r),∀0 ≤ r ≤ uj
i − 1 (reverse case) (4.4)

In the previous case of piece-wise linear function bids, if we limit each piece-wise linear

function to be a single segment only, then the one-unit-difference demand/supply func-

tion is constant (which is a special case of monotonicity). Thus the same technique can

be used in both the cases. As before, we first consider the multi-unit single-item case

(subsection 4.2.1) before moving onto the combinatorial case (subsection 4.2.2).

4.2.1 Multi-Unit Single-Items

In the single-item case, the monotonicity assumption can be re-formulated as follows:

For all 1 ≤ i ≤ n, the one-unit difference function

Qi(r) = Pi(r + 1) − Pi(r)

Chapter 4 Optimal Auction Clearing Algorithms 85

is non-decreasing (non-increasing). That is:

Qi(r + 1) ≥ Qi(r),∀0 ≤ r ≤ ui − 1 (forward case)

Qi(r + 1) ≤ Qi(r),∀0 ≤ r ≤ ui − 1 (reverse case) (4.5)

Again, we define a dominant set that is proved to contain an optimal allocation.

Definition 4.15. The dominant set D is the set of all allocations (r1, r2, ..., rn) such

that there exists a k, 1 ≤ k ≤ n, and a permutation of (1, 2, ..., n): {λi}n
i=1 such that:




rλi
= uλi

, ∀1 ≤ i ≤ k − 1

rλk
= q − ∑k−1

i=1 uλi

rλi
= 0,∀k + 1 ≤ i ≤ n

From this, a number of lemmas follow:

Lemma 4.16. For every allocation (r1, r2, ..., rn) there exists an allocation in the dom-

inant set D which is not less profitable than it.

Proof. Let (r1, r2, ..., rn) be an allocation.

Step 1: Suppose the one-unit difference function of bidder λ1 at rλ1 is the biggest

(smallest):

Qλ1(rλ1) = max{Qi(ri)|1 ≤ i ≤ n, ri > 0} (forward case)

Qλ1(rλ1) = min{Qi(ri)|1 ≤ i ≤ n, ri > 0} (reverse case)

(4.6)

By proving similarly to the proof in theorem 1, we have: there exists an allocation {r(1)
i },

which is not less profitable than {ri}, where either r
(1)
λ1

= uλ1 or r
(1)
λ1

= q.

Step 2: In the case if r
(1)
λ1

= uλ1 and r
(1)
λ1

< q, by repeating the above step, there

Chapter 4 Optimal Auction Clearing Algorithms 86

exists an allocation {r(2)
i }, which is not less profitable than {ri}, where r

(2)
λ1

= r
(1)
λ1

= uλ1

and either r
(2)
λ2

= uλ2 or r
(2)
λ2

= q − uλ1 .

By repeating the above steps again and again, we will finally stop at some step k,

1 ≤ k ≤ n, and get an allocation {r(k)
i }, 1 ≤ k ≤ n, which is not less profitable than the

original allocation {ri}, where {λi}n
i=1 is a permutation of (1, 2, ..., n) and:




rλi
= uλi

, ∀1 ≤ i ≤ k − 1

rλk
= q − ∑k−1

i=1 uλi

rλi
= 0,∀k + 1 ≤ i ≤ n

The above lemma leads directly to the following corollary:

Corollary 4.17. The dominant set D must contain an optimal allocation.

Lemma 4.18. The number of elements in the set D is not more than n · 2n−1.

Proof. For any k, 1 ≤ k ≤ n, let Dk be the set of all the tuples (r1, r2, ..., rn) such that

there exists a permutation of (1, 2, ..., n): {λi}n
i=1 such that:




rλi
= uλi

, ∀1 ≤ i ≤ k − 1

rλk
= q − ∑k−1

i=1 uλi

rλi
= 0,∀k + 1 ≤ i ≤ n

We have D =
⋂n

k=1 Dk. Thus:

|D| ≤
n∑

k=1

|Dk| (4.7)

The number of elements of set Dk is equal to the number of ways to choose a (k − 1)-

element subset {λ1, λ2, ..., λk−1} of the set {1, 2, ..., n} multiplied by the number of ways

to choose one element from the set {1, 2, ..., n} \ {λ1, λ2, ..., λk−1}. But the number of

ways to choose a (k − 1)-element subset of the set {1, 2, ..., n} is n!
(k−1)!(n−k+1)! , and the

number of ways to choose one element from the set {1, 2, ..., n} \ {λ1, λ2, ..., λk−1} is

Chapter 4 Optimal Auction Clearing Algorithms 87

(n − k + 1) (as |{1, 2, ..., n} \ {λ1, λ2, ..., λk−1}|
= n − k + 1). Thus we have:

|Dk| =
n!

(k − 1)!(n − k + 1)!
(n − k + 1)

⇒ |Dk| =
n!

(k − 1)!(n − k)!
(4.8)

From (4.7) and (4.8) we have:

|D| ≤
n∑

k=1

n!
(k − 1)!(n − k)!

= n ·
n∑

k=1

(n − 1)!
(k − 1)!(n − k)!

= n ·
n−1∑
k=0

(n − 1)!
k!(n − 1 − k)!

= n · 2n−1

With these lemmas in place, we can now present our algorithm for the single-item case.

The algorithm is presented in figure 4.3. Again, the algorithm searches through all the

allocations of the set D and chooses the most profitable valid one. The algorithm has

the following properties.

Theorem 4.19. The algorithm is guaranteed to find the optimal allocation.

Proof. The algorithm searches all the allocations of the dominant set D. Also, by

corollary 4.17, the dominant set D contains an optimal allocation. Thus the algorithm

is guaranteed to find an optimal allocation.

Theorem 4.20. The complexity of the algorithm is O(n · 2n−1).

Proof. The number of allocations searched by the algorithm is equal to the number of

elements of the dominant set. By lemma 4.18, the number of elements of the dominant

set is not more than n · 2n−1. Thus, the complexity of the algorithm is O(n · 2n−1).

Chapter 4 Optimal Auction Clearing Algorithms 88

Algorithm 5. For k = 1...n:
For every (k − 1)-element subset {λ1, λ2, ..., λk−1} of the set {1, 2, ..., n}:
For every λk in the set {1, 2, ..., n} \ {λ1, λ2, ..., λk−1}:

• Set:


rλi
= uλi

, ∀1 ≤ i ≤ k − 1
rλk

= q − ∑k−1
i=1 uλi

ri = 0,∀i ∈ {1, 2, ..., n} \ {λi}k
i=1

• If 0 ≤ rλk
≤ uλk

Compare P ({rλi
}) with the price of the best allocation found so far.

Figure 4.3: Clearing algorithm for multi-unit single-item case with monotonic one-
unit-difference demand/supply function bids.

Chapter 4 Optimal Auction Clearing Algorithms 89

Having dealt with the multi-unit single-item case, the next subsection generalises the

algorithm to the multi-unit combinatorial case.

4.2.2 Multi-Unit Combinatorial Items

As previously, we define a dominant set that is proved to contain an optimal allocation.

Definition 4.21. The dominant set D is the set of all allocations {rj
i }, 1 ≤ i ≤ n,

1 ≤ j ≤ m, such that: For any j, 1 ≤ j ≤ m, there exists a kj , 1 ≤ kj ≤ n, and a

permutation of (1, 2, ..., n): {λj
i}n

i=1 such that:




rj

λj
i

= uj

λj
i

, ∀1 ≤ i ≤ kj − 1

rj

λj
k

= q − ∑kj−1
i=1 uj

λj
i

rj

λj
i

= 0,∀kj + 1 ≤ i ≤ n

From this, a number of lemmas follow:

Lemma 4.22. For every allocation {rj
i } there exists an allocation in the dominant set

D which is not less profitable than it.

Proof. For any j̄, 1 ≤ j̄ ≤ m, by proving similarly to the proof of lemma 5, there exists

an allocation {r̄j
i }, which is not less profitable than {rj

i }, where {λj̄
i}n

i=1 is a permutation

of (1, 2, ..., n) and there exists a k, 1 ≤ k ≤ n such that:

r̄j̄

λj̄
i

= uj̄

λj̄
i

,∀1 ≤ i ≤ k − 1

r̄j̄

λj̄
k

= q −
k−1∑
i=1

uj̄

λj̄
i

r̄j̄

λj̄
i

= 0,∀k + 1 ≤ i ≤ n

r̄j
i = rj

i ,∀1 ≤ i ≤ n, 1 ≤ j ≤ m, j �= j̄

Repeating the above step for every j̄ ranging from 1 to m, we complete the proof.

The above lemma leads directly to the following corollary:

Chapter 4 Optimal Auction Clearing Algorithms 90

Corollary 4.23. The dominant set D must contain an optimal allocation.

Lemma 4.24. The number of elements in the set D is not more than nm · 2m(n−1).

Proof. Consider an allocation {rj
i } in D. By lemma 6, for each j̄ ranging from 1 to m,

the number of possible values of a tuple {rj̄
i }n

i=1 is not more than n · 2n−1. Thus, the

number of possible values of {rj
i } is not more than (n · 2n−1)m or nm · 2m(n−1).

With these lemmas in place, we can now present our algorithm for the combinatorial case.

As before, the algorithm, presented in figure 4.4, searches through all the allocations of

the set D and chooses the most profitable valid one. The algorithm has the following

properties.

Theorem 4.25. The algorithm is guaranteed to find the optimal allocation.

Proof. The algorithm searches all the allocations of the dominant set D. Also, by

corollary 4.23, the dominant set D contains an optimal allocation. Thus the algorithm

is guaranteed to find an optimal allocation.

Theorem 4.26. The complexity of the algorithm is O(nm · 2m(n−1)).

Proof. The number of allocations searched by the algorithm is equal to the number of

elements of the dominant set. By lemma 4.24, the number of elements of the dominant

set is not more than nm · 2m(n−1). Thus, the complexity of the algorithm is O(nm ·
2m(n−1)).

Chapter 4 Optimal Auction Clearing Algorithms 91

Algorithm 6. For every tuple (k1, k2, ..., km) such that 1 ≤ kj ≤ n, ∀1 ≤ j ≤ m:
For every tuple {λ1

1, ..., λ
1
k1−1, λ

2
1, ..., λ

2
k2−1, ..., λ

m
1 , ..., λm

km−1} such that {λj
1, λ

j
2, ..., λ

j
k−1}

is a (kj − 1)-element subset of the set {1, 2, ..., n}, ∀1 ≤ j ≤ m:
For every tuple {λj

kj
} such that λj

kj
is in the set {1, 2, ..., n}\{λj

1 , λj
2, ..., λ

j
k−1}, ∀1 ≤ j ≤

m:

• For j = 1...m set:


rj

λj
i

= uj

λj
i

, ∀1 ≤ i ≤ kj − 1

rj

λj
kj

= q − ∑kj−1
i=1 uj

λj
i

rj

λj
i

= 0,∀kj + 1 ≤ i ≤ n

• If 0 ≤ rj

λj
kj

≤ uj

λj
kj

, for all 1 ≤ j ≤ m

Compare P ({rλi
}) with the price of the best allocation found so far.

Figure 4.4: Clearing algorithm for multi-unit combinatorial case with monotonic one-
unit-difference demand/supply function bids.

Chapter 4 Optimal Auction Clearing Algorithms 92

4.3 Summary

This chapter presents, for the first time, optimal clearing algorithms for multi-unit single-

item and multi-unit combinatorial auctions where bids are expressed through supply/de-

mand functions. Specifically, we consider two classes of supply/demand functions where

the demand/supply curves for each individual commodity are piece-wise linear (an im-

portant and often considered case) and where the demand/supply curves are monotonic

one-unit-difference. This means our algorithms enable us to deal with a more general

case than any previous work in this area. Moreover, we believe this degree of expres-

siveness is important for obtaining the maximum benefit from combinatorial auctions in

practical settings.

Chapter 5

Coalition Structure Generation

Algorithm

This chapter presents our novel algorithm for coalition structure generation. We will

show that it produce solutions that are within a finite bound of the optimal. It will then

be compared with an algorithm by [Sandholm et al., 1999] which is the only other non-

trivial algorithm (i.e. not including exhaustive search) for coalition structure generation

that can also establish a finite bound of the optimal.

5.1 The Algorithm

In this section, we present our algorithm for coalition structure generation and prove

that the solution it generates is within a finite bound from the optimal.

To this end, let Lk be the set of all coalition structures with size k. Thus we have:

L =
n⋃

k=1

Lk

The number of coalition structures in Lk is S(n, k), widely known in Mathematics as

the Stirling number of the Second Kind [Roman, 1984]. The value of S(n, k) can be

93

Chapter 5 Coalition Structure Generation Algorithm 94

computed by the following formula [Roman, 1984]:

S(n, k) =
1
k!

k−1∑
i=0

(−1)i
(

k

i

)
(k − i)n

Definition 5.1. Let SL(n, k, c) be the set of all coalition structures that have exactly

k coalitions and at least one coalition whose cardinality is not less than c.

Definition 5.2. Let SL(n, c) be the set of all coalition structures whose cardinality is

between 3 and n − 1 that have at least one coalition whose cardinality is not less than

c. That is:1

SL(n, c) =
n−1⋃
k=3

SL(n, k, c)

With these definitions in place, we can now express our algorithm for solving the problem

(see figure 39). Basically, at first it searches all the coalition structures that have one,

two or n coalitions (i.e. all the coalition structures in the sets: L1, L2 and Ln) (as

Sandholm et al.’s algorithm does). But after that, instead of searching through the

sets Lk (for 3 ≤ k ≤ n − 1) one by one (as Sandholm et al. do), our algorithm only

searches some specific subsets of Lk (see figure 5.2 for a diagramatic representation). In

particular, it searches the set of all coalition structures that have k coalitions and at least

one coalition whose cardinality is not less than
n(q− 1)/q� (with q running from �n+1
4 �

down to 2 as in Figure 5.1). Note that we start from q = �n+1
4 � because Sandholm et al.

showed that, after searching L1, L2, Ln, the algorithm can establish a bound b =
n/2�
and, later in this chapter, we will show that after searching SL(n,
n(q − 1)/q�), our

algorithm can establish a bound b = 2q− 1. Thus, we start from the biggest q such that

2q − 1 <
n/2� or q = �n+1
4 �.

The next step is to show that the solution generated by the algorithm is within a bound

from the optimal and that the bound is reduced further after each round. Thus ours

is an anytime algorithm: it can be interrupted at any time and the bound keeps

improving with an increase in execution time.2

1In fact, as SL(n, k, c) = ∅ for all n− c + 1 < k ≤ n− 1, this formula can be rewritten as: SL(n, c) =⋃n−c+1
k=3 SL(n, k, c)
2If the domain happens to be super-additive, the algorithm finds the optimal coalition structure

(grand coalition) immediately.

Chapter 5 Coalition Structure Generation Algorithm 95

Algorithm 7. The algorithm proceeds as follows:

• Step 1: Search through the sets L1, L2, Ln

• From step 2 onward, search, consequently, through the sets SL(n,
n(q − 1)/q�)
with q running from �n+1

4 � down to 2.

That is, search SL(n,
n(�n+1
4 � − 1)/�n+1

4 ��) at step 2, search
SL(n,
n(�n+1

4 � − 2)/(�n+1
4 � − 1)�) at step 3 and so on.

Moreover, from step 3 onward, as SL(n,
nq/(q + 1)�) ⊆ SL(n,
n(q −
1)/q�) (it is easy to see that SL(n,
n(a−1)/a�) ⊆ SL(n,
n(b−1)/b�) for
every a > b) we only have to search through the set SL(n,
n(q−1)/q�)\
SL(n,
nq/(q+1)�) in order to search through the set SL(n,
n(q−1)/q�).

• At each step return the coalition structure with the biggest value (i.e. best social
welfare) so far.

Figure 5.1: The coalition structure generation algorithm.

Chapter 5 Coalition Structure Generation Algorithm 96

... ...

2

4

5

n

1

3

4

L2

L3

Ln-1

Ln

L1

Ln-2

65

Searching steps in Sandholm et al.’s algorithm

Searching steps in our algorithm i

i

3

2

1

Figure 5.2: Comparison of the searching paths between our algorithm and Sandholm
et al.’s.

Theorem 5.3. Immediately after finishing searching SL(n,
n(q − 1)/q�), the solution

generated by our algorithm is within a finite bound b = 2q − 1 from the optimal.

Proof. Let CSa be the coalition structure that our algorithm generates. Let CS∗ be an

optimal coalition structure. Assume CS∗ contains t coalitions C1, C2, ..., Ct. We have

to prove:
V (CS∗)
V (CSa)

≤ 2q − 1 (5.1)

For the cases where t equals 1, 2 or n, the proof is trivial, as CSa will also be an optimal

coalition structure. Thus V (CSa) = V (CS∗), so V (CS∗)
V (CSa) = 1 ≤ 2q − 1.

Now we only have to prove for the case where 3 ≤ t ≤ n− 1. Without loss of generality,

we can assume the cardinalities of the sets C1, C2, ..., Ct are in decreasing order. That

is:

|C1| ≥ |C2| ≥ ... ≥ |Ct| (5.2)

For the convenience of presentation, we assume Ci = ∅ and v(Ci) = 0 for every i > t.

Chapter 5 Coalition Structure Generation Algorithm 97

First, we will show that for every coalition C ⊆ A:

v(C) ≤ V (CSa)

Considering the coalition structure CS0 = {C,A \ C}. As CS0 ∈ L2, we have:

V (CS0) ≤ V (CSa)

⇒ v(C) + v(A \ C) ≤ V (CSa)

⇒ v(C) ≤ V (CSa) (because of assumption (2.4))

Thus we have:

v(Ci) ≤ V (CSa) ,∀1 ≤ i ≤ q − 1

⇒
q−1∑
i=1

v(Ci) ≤ (q − 1) · V (CSa) (5.3)

Now let us consider the other coalitions of CS∗, namely, Cq, Cq+1, ..., Ct.

Considering the following coalition structure:

CS1 = {Cq, C2q, ..., C� t
q
�q,D}

That is:

D = A \ ∪� t
q
�

i=1Ciq (5.4)

Let us analyse the cardinality of coalition D. We have for all 1 ≤ i ≤ � t
q �:

|C(i−1)q+1| ≥ |C(i−1)q+2| ≥ ... ≥ |Ciq|(because of (5.2))

⇒ q|Ciq| ≤
q∑

j=1

|C(i−1)q+j |

⇒ q

� t
q
�∑

i=1

|Ciq| ≤
� t

q
�∑

i=1

q∑
j=1

|C(i−1)q+j |

Chapter 5 Coalition Structure Generation Algorithm 98

⇒ q

� t
q
�∑

i=1

|Ciq| ≤ |C1| + |C2| + ... + |C� t
q
�q|

⇒ q

� t
q
�∑

i=1

|Ciq| ≤ |C1| + |C2| + ... + |Ct| = n

⇒
� t

q
�∑

i=1

|Ciq| ≤ n/q

As |D| = n − ∑� t
q
�

i=1 |Ciq| (from (5.4)), we then have:

|D| ≥ n − n/q

⇒ |D| ≥ n(q − 1)/q

⇒ |D| ≥
n(q − 1)/q�

⇒ CS1 ∈ SL(n,
n(q − 1)/q�)

⇒ V (CS1) ≤ V (CSa)

⇒ v(Cq) + v(C2q) + ... + v(C� t
q
�q) + v(D)

≤ V (CSa)

⇒ v(Cq) + v(C2q) + ... + v(C� t
q
�q) ≤ V (CSa)

(as v(D) ≥ 0, by assumption (2.4))

For all 1 ≤ j ≤ q − 1, by proving similarly to the above, we have:

v(Cq+j) + v(C2q+j) + ... + v(C� t
q
�q+j) ≤ V (CSa)

Thus for all 0 ≤ j ≤ q − 1, we have:

� t
q
�∑

i=1

v(Ciq+j) ≤ V (CSa)

⇒
q−1∑
j=0

� t
q
�∑

i=1

v(Ciq+j) ≤ q · V (CSa)

Chapter 5 Coalition Structure Generation Algorithm 99

⇒
� t

q
�q+q−1∑
i=q

v(Ci) ≤ q · V (CSa) (5.5)

Also:

� t

q
�q + q − 1 > (

t

q
− 1)q + q − 1

⇒ � t

q
�q + q − 1 > t − 1

⇒ � t

q
�q + q − 1 ≥ t (5.6)

Thus, from (5.5) and (5.6), we have:

t∑
i=q

v(Ci) ≤ q · V (CSa) (5.7)

From (5.3) and (5.7) we have:

t∑
i=1

v(Ci) ≤ (2q − 1) · V (CSa) (5.8)

From theorem 1, we can also see that the bound decreases after each round, because

2q − 1 decreases as q decreases. Thus our algorithm is an anytime one.

Having presented our algorithm for coalition structure generation, the next section com-

pares it with Sandholm et al.’s.

5.2 Performance Evaluation

To evaluate the effectiveness of our algorithm we compare it against Sandholm et al.’s

[Sandholm et al., 1999] since this is the only other known algorithm with worst-case

bounds. In more detail, Sandholm et al.’s algorithm operates as described in figure 5.3.

Basically, it first searches all the coalition structures that have 1 or 2 coalitions, then

Chapter 5 Coalition Structure Generation Algorithm 100

• Search the bottom two levels of the coalition structure graph (Note that level k of
the coalition structure graph in Sandholm et al.’s algorithm corresponds exactly
to the set Lk in ours).

• Continue with a breadth-first search from the top of the graph as long as there
is time left, or until the entire graph has been searched (this occurs when this
breadth-first search completes level 3 of the graph, i.e., depth n − 3)

• Return the coalition structure that has the highest welfare among those seen so
far.

Figure 5.3: Sandholm et al.’s algorithm.

it continues to search all the coalition structures that have n, n − 1, ..., 3 coalitions (in

that order). Sandholm et al. then prove that after having completed searching Lk, the

solution the algorithm generates is within a bound b′, where b′ =
n
h� if n ≡ h−1(mod h)

and n ≡ k(mod 2), or b′ = �n
h� otherwise (h = �n−k

2 � + 2).

To evaluate the performance of our algorithm, we compare it with Sandholm et al.’s on a

worst-case basis. That is, we compare the size of the search space of the two algorithms

(i.e. the number of coalition structures each algorithm has to search) in order to establish

the same bound from the optimal.

To calculate the number of coalition structures that our algorithm needs to search, we

present the following formula.

Lemma 5.4. For all n > k ≥ 3 and c ≥
n/2�, the cardinality of SL(n, k, c) can be

calculated as follows:

|SL(n, k, c)| =
n−k+1∑

i=c

S(n − i, k − 1) · n!
i!(n − i)!

(5.9)

Proof. For each i such that c ≤ i ≤ n − k + 1, let T (n, k, i) ⊆ SL(n, k, c) be the set of

all coalition structures that have exactly k coalitions and at least one coalition whose

cardinality equals i. As for every coalition structure CS in SL(n, k, c), any coalition in

CS has at most n − k + 1 agents (because (k − 1) other coalitions in CS must contain

Chapter 5 Coalition Structure Generation Algorithm 101

at least (k − 1) agents), we have:

SL(n, k, c) =
n−k+1⋃

i=c

T (n, k, i)

Now we will show that T (n, k, i1)
⋂

T (n, k, i2) = ∅ for every i1 �= i2, i1 ≥ c and

i2 ≥ c. This can be proved by contradiction. Suppose there exist i′1 and i′2 such that

T (n, k, i′1)
⋂

T (n, k, i′2) �= ∅. This means there exists a coalition structure CS′ such that:

CS′ ∈ T (n, k, i′1)
⋂

T (n, k, i′2). Now CS′ ∈ T (n, k, i′1) means it has at least one coalition

whose cardinality equals i′1, and, similarly, CS′ ∈ T (n, k, i′2) means it has at least one

coalition whose cardinality equals i′2. Moreover, CS′ has at least 3 coalitions (as k ≥ 3),

so the number of agents in CS′ will be greater or equal than i′1 + i′2 + 1. Thus:

n ≥ i′1 + i′2 + 1

⇒ n ≥ c + c + 1 = 2c + 1

⇒ n ≥ 2
n/2� + 1

⇒ n ≥ 2n/2 + 1

⇒ n ≥ n + 1

As we reach contradiction, we must have:

T (n, k, i1)
⋂

T (n, k, i2) = ∅

for every i1 �= i2, i1 ≥ c and i2 ≥ c. Thus we have:

⇒ |SL(n, k, c)| =
n−k+1∑

i=c

|T (n, k, i)| (5.10)

Now let us consider a coalition structure CS′ ∈ T (n, k, i). As one of the coalitions in

CS′ has exactly i agents, k − 1 other coalitions in CS′ must have exactly n − i agents.

Also, the number of ways to choose an i-agent set from n agents is n!
i!(n−i)! . Thus the

number of coalition structures in T (n, k, i) equals the number of coalition structures that

have exactly k − 1 coalitions in a multi-agent system with n − i agents multiplied with

Chapter 5 Coalition Structure Generation Algorithm 102

0 10 20 30
Bound from the optimal

N
u
m
b
e
r

o
f

c
o
a
l
i
t
i
o
n

s
t
r
u
c
t
u

Sandholm et al.
Our algorithm

1

1010

1020

1030

1040

1050

Figure 5.4: The case n = 50.

n!
i!(n−i)! :

|T (n, k, i)| = S(n − i, k − 1) · n!
i!(n − i)!

(5.11)

From (5.10) and (5.11) we have:

|SL(n, k, c)| =
n−k+1∑

i=c

S(n − i, k − 1) · n!
i!(n − i)!

With this in place, we test the algorithms with the number of agents n = 50, 100, 500,

and 1000.3 The result of the tests are presented in the following graphs.4 As we are

calculating the number of coalition structures each algorithm has to search in order to
3We observe similar patterns with other values of n varying from 50 to 1000.
4The big bounds are not shown in the graphs (that is, bounds greater than 30 in the case n = 100,

greater than 40 in the case n = 500 and greater than 50 in the case n = 1000), because the results for
the two algorithms are nearly the same for these bounds.

Chapter 5 Coalition Structure Generation Algorithm 103

0 10 20 30
Bound from the optimal

N
u
m
b
e
r

o
f

c
o
a
l
i
t
i
o
n

s
t
r
u
c
t
u
r

Sandholm et al.
Our algorithm

1

1040

1080

10120

Figure 5.5: The case n = 100.

0 10 20 30 40
Bound from the optimal

N
u
m
b
e
r

o
f

c
o
a
l
i
t
i
o
n

s
t
r
u
c
t
u
r

Sandholm et al.
Our algorithm

1

10200

10400

10600

10800

Figure 5.6: The case n = 500.

Chapter 5 Coalition Structure Generation Algorithm 104

0 10 20 30 40 50
Bound from the optimal

N
u
m
b
e
r

o
f

c
o
a
l
i
t
i
o
n

s
t
r
u
c
t
u

Sandholm et al.
Our algorithm

1

10400

10800

101200

101600

Figure 5.7: The case n = 1000.

establish a bound from the optimal, the smaller the number of coalition structures the

better.

As we can see from the graphs, for large bounds from the optimal, there is no significant

difference between the performance of our algorithm and Sandholm et al.’s: the number

of coalition structures that each has to search are similar. However, for small bounds

from the optimal, our algorithm is much faster (up to 10379 times faster in the graphs

shown here). In these cases, the number of coalition structures that our algorithm has

to search is much smaller because of our greater selectivity in searching through the

subsets of Lk.

Moreover, for small bounds, our algorithm scales very well as n increases. Thus the

bigger n is, the more our algorithm outperforms Sandholm et al.’s. For example, with

bound 3, our algorithm is more than 107 times faster for n = 50, more than 1023 times

faster for n = 100, more than 10171 times faster for n = 500, and more than 10379 times

Chapter 5 Coalition Structure Generation Algorithm 105

faster for n = 1000. Note that these numbers would continue to increase the bigger we

made n.

5.3 Summary

In this chapter, we developed an anytime algorithm for coalition structure generation

that can produce solutions within a finite bound from the optimal. As it is an anytime

algorithm, it can be interrupted at any time and the bound keeps improving with an

increase in execution time. We then benchmarked our algorithm against [Sandholm et

al., 1999] which is the only other known algorithm for this task that can also establish

a worst-case bound from the optimal. This comparison showed our algorithm to be

significantly faster; for example, being up to 10379 times faster for systems containing

1000 agents for small bounds.

This algorithm addresses one of the key weaknesses in the work on coalition formation to

date (namely the complexity of coalition structure generation). With this substantially

more efficient algorithm, coalition formation can start to be used in the VO operation

phase to partition the VO’s members into several subsets working on different activities

in order to maximise the VO’s payoff.

Chapter 6

Virtual Organisations in

Operation

Having detailed the mechanisms for clearing combinatorial auctions and coalition struc-

ture generation, this chapter shows how they can be applied to the activities of partner

selection and task distribution within VOs. This is done by undertaking a walkthrough

of the VO lifecycle on a particular scenario:

Suppose a festival is going to take place in Edinburgh. Identifying this business opportu-

nity, an enterprising entrepreneur decides to establish a VO to offer festival attendees a

one stop shop for their trip. Thus the entrepreneur needs to bring together many hotels,

local tour organisers and airlines to meet the needs of the attendees. In so doing, the

VO will offer travel packages, which include airline travel, accommodation and tours to

various attractions in and around Edinburgh.

Against this background, the chapter presents, in detail, the application of the algorithms

that we have developed in previous chapters, to automate partner selection and task

distribution in the creation, operation and maintenance phases of the VO. Specifically,

section 6.1 will address the creation phase, section 6.2 will deal with the operation phase

and section 6.3 will address the maintenance phase.

106

Chapter 6 Virtual Organisations in Operation 107

6.1 The Creation Phase

This section will apply the auction clearing algorithms developed in chapters 3 and 4

to automate partner selection in the creation phase of the VO. Specifically, the creation

phase proceeds with the following steps:

Step 1

The VO initiator (the entrepreneur) identifies the market niche and decides to form

a VO to exploit this niche; that is, a VO to provide travel packages, which includes

airline travel, accommodation and tour to various attractions in and around Edinburgh.

The VO initiator then contacts potential VO partners and sends them a call for bids as

follows:

Required services and associated quantities:

Air travel: for 400 persons

Accommodation: 400 rooms

Tour: for 400 persons

Using our formal notations introduced in previous chapters, the call for bids can be

written as (q1, q2, q3) with:

Chapter 6 Virtual Organisations in Operation 108




q1 = 400

q2 = 400

q3 = 400

Step 2

The potential VO partners (PA1, PA2, PA3, PA4, PA5, PA6) send the bids back to the

VO initiator. The services and the associated quantities offered by the bidders are as

follows:

Agent Air tickets Accommodation Local tour

PA1 500 300

PA2 200

PA3 300

PA4 300

PA5 450

PA6 250

Using our formal notations, this means:


u1
1 = 500, u2

1 = 300, u3
1 = 0

u1
2 = 0, u2

2 = 200, u3
2 = 0

u1
3 = 0, u2

3 = 300, u3
3 = 0

u1
4 = 0, u2

4 = 0, u3
4 = 300

u1
5 = 450, u2

5 = 0, u3
5 = 0

u1
6 = 0, u2

6 = 0, u3
6 = 250

Suppose the details of the bids are as follows:

Bidder PA1 can provide air travel for 500 persons and accommodation for 300 persons.

The price function is as follows:

Chapter 6 Virtual Organisations in Operation 109

• Air travel: from 1 — 20 persons: the price is 150/person; from 21 — 500 persons:

the price is 143/person.

Using our formal notations, this means:


P 1
1 (r) = 150 ∗ r,∀1 ≤ r ≤ 20

P 1
1 (r) = 143 ∗ r,∀21 ≤ r ≤ 500

• Accommodation: From 1 — 20 persons: the price is 25/person. From 21 — 300

persons: the price is 23.85/person.

Using our formal notations, this means:


P 2
1 (r) = 25 ∗ r,∀1 ≤ r ≤ 20

P 2
1 (r) = 23.85 ∗ r,∀21 ≤ r ≤ 300

• For a package which consists of at least 21 air tickets and at least 21 rooms, the

total price of the package is 0.99 ∗ [P (airtickets) + P (accommodation)] otherwise

the total price is P (airtickets) + P (accommodation).

Formally, this means:

P1(r1, r2) = ω1(t1, t2)(P 1
1 (r1)+P 2

1 (r2)) with the correlation function ω1 calculated

as follows:

Chapter 6 Virtual Organisations in Operation 110




ω1(2, 2) = 0.99

ω1(t1, t2) = 1, if t1 �= 2 or t2 �= 2

Bidder PA2 can provide 200 rooms with the following price function: from 1 — 10

rooms: the price is 24/person; from 11 — 200 rooms: the price is 22.5/person.

Formally, this means:


P 2
2 (r) = 24 ∗ r,∀1 ≤ r ≤ 10

P 2
2 (r) = 22.5 ∗ r,∀11 ≤ r ≤ 200

Bidder PA3 can provide 300 rooms with the following price function: from 1 — 20

rooms: the price is 25.5/person; from 21 — 300 rooms: the price is 24.5/person.

Formally:


P 2
3 (r) = 25.5 ∗ r,∀1 ≤ r ≤ 20

P 2
3 (r) = 24.5 ∗ r,∀21 ≤ r ≤ 300

Bidder PA4 can provide tour for 300 persons with the following price function: from 1

— 20 persons: the price is 30/person; from 21 — 300 persons: the price is 28.8/person.

Formally:


P 3
4 (r) = 30 ∗ r,∀1 ≤ r ≤ 20

P 3
4 (r) = 28.8 ∗ r,∀21 ≤ r ≤ 300

Bidder PA5 can provide air tickets for 450 persons with the following price function:

from 1 — 20 persons: the price is 148/person; from 21 — 450 persons: the price is

143.5/person.

Formally:


P 1
5 (r) = 148 ∗ r,∀1 ≤ r ≤ 20

P 1
5 (r) = 143.5 ∗ r,∀21 ≤ r ≤ 450

Bidder PA6 can provide tour for 250 persons with the following price function: from 1

— 15 persons: the price is 31/person; from 16 — 250 persons: the price is 30/person.

Formally:

Chapter 6 Virtual Organisations in Operation 111




P 3
6 (r) = 31 ∗ r,∀1 ≤ r ≤ 15

P 3
6 (r) = 30 ∗ r,∀16 ≤ r ≤ 250

Step 3: The VO initiator receives the bids, clears the auction using our clearing algo-

rithms and forms the VO.

Using our clearing algorithms, we get the following results:

• Using the polynomial algorithm:

– At round 1: Consider all the biggest packages offered by the bidders (after

truncating them according to the auctioneer’s demand) and their average unit

price:

∗ Bidder PA1: the biggest package offered is (400, 300, 0) (400 air tickets,

300 rooms and) with average unit price 91.94

∗ Bidder PA2: (0, 200, 0) with average unit price 22.5

∗ Bidder PA3: (0, 300, 0) with average unit price 24.5

∗ Bidder PA4: (0, 0, 200) with average unit price 28.8

∗ Bidder PA5: (400, 0, 0) with average unit price 143.5

∗ Bidder PA6: (0, 0, 250) with average unit price 30

Thus, PA2 is selected to provide (0, 200, 0).

– At round 2: The new auctioneer’s demand is (400, 200, 400). Again, con-

sider all the biggest packages offered by the bidders (after truncating them

according to the auctioneer’s demand) and their average unit price:

∗ Bidder PA1: (400, 200, 0) with average unit price 103.28

∗ Bidder PA3: (0, 200, 0) with average unit price 24.5

∗ Bidder PA4: (0, 0, 200) with average unit price 28.8

∗ Bidder PA5: (400, 0, 0) with average unit price 143.5

∗ Bidder PA6: (0, 0, 250) with average unit price 30

Thus, PA3 is selected to provide (0, 200, 0).

Chapter 6 Virtual Organisations in Operation 112

– At round 3: The new auctioneer’s demand is (400, 0, 400). Again, consider all

the biggest packages offered by the bidders (after truncating them according

to the auctioneer’s demand) and their average unit price:

∗ Bidder PA1: (400, 0, 0) with average unit price 143

∗ Bidder PA4: (0, 0, 200) with average unit price 28.8

∗ Bidder PA5: (400, 0, 0) with average unit price 143.5

∗ Bidder PA6: (0, 0, 250) with average unit price 30

Thus, PA4 is selected to provide (0, 0, 200).

– At round 4: The new auctioneer’s demand is (400, 0, 200). Again, consider all

the biggest packages offered by the bidders (after truncating them according

to the auctioneer’s demand) and their average unit price:

∗ Bidder PA1: (400, 0, 0) with average unit price 143

∗ Bidder PA5: (400, 0, 0) with average unit price 143.5

∗ Bidder PA6: (0, 0, 200) with average unit price 30

Thus, PA4 is selected to provide (0, 0, 200).

– At round 5: The new auctioneer’s demand is (400, 0, 0). Again, consider all

the biggest packages offered by the bidders (after truncating them according

to the auctioneer’s demand) and their average unit price:

∗ Bidder PA1: (400, 0, 0) with average unit price 143

∗ Bidder PA5: (400, 0, 0) with average unit price 143.5

Thus, PA1 is selected to provide (400, 0, 0).

To this end, we have the following winning agents:

PA1 (400 air tickets)

PA2 (200 rooms)

PA3 (200 rooms)

PA4 (tour for 200 persons)

PA6 (tour for 200 persons)

for a total bid price of 78360.

Chapter 6 Virtual Organisations in Operation 113

• Using the optimal algorithm: by searching through the dominant set, the winning

agents are:

PA1 (400 air tickets and 200 rooms)

PA2 (200 rooms)

PA4 (tour for 200 persons)

PA6 (tour for 200 persons)

for a total bid price of 78230.

As we can see, the results from the two algorithms are different. It is because the

polynomial, while being very fast, cannot guarantee to find the optimal solution.

In this case, we will use the optimal result and so the members of the new VO winning

agents are: PA1, PA2, PA4, PA6.

6.2 The Operation Phase

In this section, we will examine the use of coalition structure generation algorithm

developed in chapter 5 in VO operation phase. We focus on the third service of the

VO: providing tours to various attractions in and around the city. To provide this

service, the local tour organiser members of the VO will have to coordinate with the

hotel members to pick up visitors from the hotels as well as returning them. We intend

to use the coalition structure generation to organise this service in an optimal (that is,

cost-minimising) way. In more details:

Chapter 6 Virtual Organisations in Operation 114

Suppose there are 5 car centres from where the cars of the local tour organisers start:

C1, C2, C3, C4, C5 and there are 2 hotels where the visitors wait to be picked up: H1,

H2. The tour drivers then go from one of the car centres to the hotels to pickup the

visitors there, take them for a tour then come back.

The question is then to how can we decide which car centres should pickup visitors from

which hotels in order to maximise the profit of the VO, that is, to minimise the cost?

To solve this, each car centre as well as each hotel is represented by an autonomous

agent. These agents are then coordinated with one another using our coalition structure

generation algorithm to maximise the payoff of the system. Specifically, we partition the

set of all agents (5 car centres and 2 hotels) into several coalitions such that agents in

the same coalition cooperate with one another and agents in different coalitions do not

cooperate. For example, suppose we partition the set of agents into the following coali-

tion structure: {(C1, C2,H1), (C3, C4, C5,H2)}. Then car centre C1, C2 will pickup

visitors from hotel H1, while car centres C3, C4, C5 will pickup visitors from hotel H2.

The value of each coalition can be calculated based on the following points:

• If a coalition C contains only car centres or hotels, then V (C) = 0, because there

is no work done.

• If a coalition C contains C1, C2,..., Cm and H1, H2, , Hn, then V (C1, C2, , Cm,H1,

H2, ,Hm) is the profit that the VO gets from taking the visitors around.

The aim is then to arrange the car centres and the hotels in order to maximise the profit

of the whole VO.

To illustrate how the algorithm works, we can assume the following values of the coali-

tions:

Chapter 6 Virtual Organisations in Operation 115

V (C1,H1) = 20 V (C2,H1) = 32

V (C3,H1) = 23 V (C4,H1) = 21

V (C5,H1) = 20 V (C1,H2) = 22

V (C2,H2) = 31 V (C3,H2) = 33

V (C4,H2) = 45 V (C5,H2) = 20

V (C1,H1,H2) = 30 V (C2,H1,H2) = 31

V (C3,H1,H2) = 28 V (C4,H1,H2) = 29

V (C5,H1,H2) = 26 V (C1, C2,H1) = 31

V (C1, C3,H1) = 32 V (C1, C4,H1) = 44

V (C2, C3,H1) = 33 V (C2, C4,H1) = 34

V (C3, C4,H1) = 35 V (C1, C5,H1) = 32

V (C2, C5,H1) = 41 V (C3, C5,H1) = 34

V (C4, C5,H1) = 31 V (C1, C2,H2) = 32

V (C1, C3,H2) = 43 V (C1, C4,H2) = 34

V (C2, C3,H2) = 45 V (C2, C4,H2) = 33

V (C3, C4,H2) = 34 V (C1, C5,H2) = 33

V (C2, C5,H2) = 31 V (C3, C5,H2) = 42

V (C4, C5,H2) = 34 V (C1, C2,H1,H2) = 37

V (C1, C3,H1,H2) = 38 V (C1, C4,H1,H2) = 37

V (C2, C3,H1,H2) = 38 V (C2, C4,H1,H2) = 38

V (C3, C4,H1,H2) = 37 V (C1, C5,H1,H2) = 36

V (C2, C5,H1,H2) = 37 V (C3, C5,H1,H2) = 36

V (C4, C5,H1,H2) = 38 V (C1, C2, C3,H1) = 42

V (C1, C2, C4,H1) = 31 V (C1, C3, C4,H1) = 30

V (C2, C3, C4,H1) = 31 V (C5, C1, C2,H1) = 30

V (C5, C1, C3,H1) = 31 V (C5, C1, C4,H1) = 29

V (C5, C2, C3,H1) = 32 V (C5, C2, C4,H1) = 28

Chapter 6 Virtual Organisations in Operation 116

V (C5, C3, C4,H1) = 31 V (C1, C2, C3,H2) = 31

V (C1, C2, C4,H2) = 29 V (C1, C3, C4,H2) = 30

V (C2, C3, C4,H2) = 31 V (C5, C1, C2,H2) = 31

V (C5, C1, C3,H2) = 30 V (C5, C1, C4,H2) = 29

V (C5, C2, C3,H2) = 30 V (C5, C2, C4,H2) = 29

V (C5, C3, C4,H2) = 31 V (C1, C2, C3,H1,H2) = 34

V (C1, C2, C4,H1,H2) = 35 V (C1, C3, C4,H1,H2) = 33

V (C2, C3, C4,H1,H2) = 34 V (C5, C1, C2,H1,H2) = 31

V (C5, C1, C3,H1,H2) = 31 V (C5, C1, C4,H1,H2) = 29

V (C5, C2, C3,H1,H2) = 32 V (C5, C2, C4,H1,H2) = 28

V (C5, C3, C4,H1,H2) = 30 V (C1, C2, C3, C4,H1) = 32

V (C1, C2, C3, C5,H1) = 31 V (C1, C3, C4, C5,H1) = 30

V (C1, C2, C4, C5,H1) = 32 V (C2, C3, C4, C5,H1) = 31

V (C1, C2, C3, C4,H2) = 43 V (C1, C2, C3, C5,H2) = 42

V (C1, C3, C4, C5,H2) = 41 V (C1, C2, C4, C5,H2) = 40

V (C2, C3, C4, C5,H2) = 42 V (C1, C2, C3, C4,H1,H2) = 46

V (C1, C2, C3, C5,H1,H2) = 44 V (C1, C3, C4, C5,H1,H2) = 45

V (C1, C2, C4, C5,H1,H2) = 44 V (C2, C3, C4, C5,H1,H2) = 45

V (C1, C2, C3, C4, C5,H1) = 30 V (C1, C2, C3, C4, C5,H2) = 31

V (C1, C2, C3, C4, C5,H1,H2) = 49

We can then use the coalition structure generation that we developed in chapter 5 to

achieve the sub-optimal solutions depends on the time of calculation permitted. The

more time for calculation, the better the solution is.

Here is the execution of our algorithm (see figure 6.1 for a diagramatic presentation)

and the result:

• After round 1 (searching layer 1, 2 and 7): the result coalition structure is:

{(C4,H2), (C1, C2, C3, C5,H1)}. The group payoff is: 76.00.

Chapter 6 Virtual Organisations in Operation 117

Figure 6.1: The searching steps of our coalition structure generation in the operation
phase of the scenario.

• After round 2, (searching SL(7,4)) the result coalition structure is {(C1, C2, C3,H1),

(C4,H2), (C5)}. The group payoff is 87.00.1

Suppose we stop the algorithm after round 2 (with n = 7, our algorithm has only 2

rounds), we then have the following coalition structure:

1We also try searching through all the coalition structures and get the optimal one as follows:
{(C1, C4, H1), (C2, C3, H2), (C5)} with payoff 89.00.

Chapter 6 Virtual Organisations in Operation 118

6.3 The Maintenance Phase

As stated in chapter 1, once the VO is in operation, there are two main situations that

may arise in an uncertain environment:

• Some members fail or withdraw from the VO: in such cases, the VO will have to

find the substitutes to add into the VO.

• The situation changes, but the members remain unchanged. This means that the

work distribution between VO members needs to be reorganised.

Each of these will now be dealt with in turn.

6.3.1 Adding New Members into The VO

In this case, some members fail or withdraw from the VO which means that the VO will

have to find the substitutes to add into the VO. To illustrate this point, suppose member

PA1 withdraws from the VO. Now the VO will use a reverse auction mechanism (similar

to that used in the creation phase) to find substitutions for this member. Specifically,

the VO follows the 3 steps similar to those in section 6.1.

Step 1

The VO contacts potential VO partners and sends them a call for bids. The detail of

the call for bids (the required services and the associated quantities) is as follows (this

is what PA1 provided in the VO):

Air travel: for 400 persons

Accommodation: 200 rooms

Formally, the call for bids can be written as (q1, q2) with:




q1 = 400

q2 = 200

Chapter 6 Virtual Organisations in Operation 119

Step 2

The potential VO partners (PA7, PA8, PA9, PA10) sends the bids back to the VO.

Agent Air tickets Accommodation

PA7 300 150

PA8 200 250

PA9 300

PA10 250

Using our formal notations, this means:

u1
1 = 300, u2

1 = 150

u1
2 = 200, u2

2 = 250

u1
3 = 0, u2

3 = 300

u1
4 = 250, u2

4 = 0

Suppose the details of the bids are as follows:

PA7 can provide air travel for 300 persons and accommodation for 150 persons with the

following price function:

• Air travel: from 1 — 20 persons: price is 151/person; from 21 — 300 persons:

price is 148.5/person.

Formally:


P 1
1 (r) = 151 ∗ r,∀1 ≤ r ≤ 20

P 1
1 (r) = 148.5 ∗ r,∀21 ≤ r ≤ 300

• Accommodation: from 1 — 25 persons: price is 26/person; from 26 — 150 persons:

the price is 25.5/person.

Formally:


P 2
1 (r) = 26 ∗ r,∀1 ≤ r ≤ 25

P 2
1 (r) = 25.5 ∗ r,∀26 ≤ r ≤ 150

Chapter 6 Virtual Organisations in Operation 120

• For a package which comprises of at least 21 air tickets and at least 26 rooms, the

total price of the package is 0.99 ∗ [P (airtickets) + P (accommodation)] otherwise

the total price is P (airtickets) + P (accommodation).

Formally:

P1(r1, r2) = ω1(t1, t2)(P 1
1 (r1)+P 2

1 (r2)) with the correlation function ω1 calculated

as follows:


ω1(2, 2) = 0.99

ω1(t1, t2) = 1, if t1 �= 2 or t2 �= 2

PA8 can provide air travel for 200 persons and accommodation for 250 persons with the

following price function:

• Air travel: from 1 — 10 persons: price is 152/person; from 11 — 200 persons:

price is 148/person.

Formally:


P 1
2 (r) = 152 ∗ r,∀1 ≤ r ≤ 10

P 1
2 (r) = 148 ∗ r,∀11 ≤ r ≤ 200

• Accommodation: from 1 — 20 persons: price is 25.4/person; from 21 — 250

persons: the price is 25/person.

Formally:


P 2
2 (r) = 25.4 ∗ r,∀1 ≤ r ≤ 20

P 2
2 (r) = 25 ∗ r,∀21 ≤ r ≤ 250

• For a package which comprises of at least 11 air tickets and at least 21 rooms, the

total price of the package is 0.98 ∗ [P (airtickets) + P (accommodation)] otherwise

the total price is P (airtickets) + P (accommodation).

Formally:

P2(r1, r2) = ω2(t1, t2)(P 1
2 (r1) + P 2

2 (r2)) with the correlation function ω2 calculated as

follows:

Chapter 6 Virtual Organisations in Operation 121




ω2(2, 2) = 0.98

ω2(t1, t2) = 1, if t1 �= 2 or t2 �= 2

PA9 can provide accommodation for 300 persons: from 1 — 20 persons: the price is

26.5/person; from 21 — 300 persons: the price is 25.5/person.

Formally:


P 2
3 (r) = 26.5 ∗ r,∀1 ≤ r ≤ 20

P 2
3 (r) = 25.5 ∗ r,∀21 ≤ r ≤ 300

PA10 can provide air travel for 250 persons: from 1 — 20 persons: the price is 151/per-

son; from 21 — 300 persons: the price is 147/person.

Formally:


P 1
4 (r) = 151 ∗ r,∀1 ≤ r ≤ 20

P 1
4 (r) = 147 ∗ r,∀21 ≤ r ≤ 300

Using our clearing algorithms, we get the following results:

• Using the polynomial algorithm:

– At round 1: Consider all the biggest packages offered by the bidders (after

truncating them according to the auctioneer’s demand) and their average unit

price:

∗ Bidder PA7: the biggest package offered is (300, 150) (300 air tickets,

150 rooms) with average unit price 107.5

∗ Bidder PA8: (200, 200) with average unit price 86.5

∗ Bidder PA9: (0, 200) with average unit price 25.5

∗ Bidder PA10: (200, 0) with average unit price 147

Thus, PA9 is selected to provide (0, 200).

– At round 2: The new auctioneer’s demand is (400, 0). Again, consider all the

biggest packages offered by the bidders (after truncating them according to

the auctioneer’s demand) and their average unit price:

Chapter 6 Virtual Organisations in Operation 122

∗ Bidder PA7: the biggest package offered is (300, 0) with average unit

price 148.5

∗ Bidder PA8: (200, 0) with average unit price 148

∗ Bidder PA10: (200, 0) with average unit price 147

Thus, PA10 is selected to provide (200, 0).

– At round 3: The new auctioneer’s demand is (200, 0). Again, consider all the

biggest packages offered by the bidders (after truncating them according to

the auctioneer’s demand) and their average unit price:

∗ Bidder PA7: the biggest package offered is (200, 0) with average unit

price 148.5

∗ Bidder PA8: (200, 0) with average unit price 148

Thus, PA8 is selected to provide (200, 0).

To this end, we have the following winning agents:

PA8 (200 air tickets)

PA9 (200 rooms)

PA10 (200 air tickets)

for a total bid price of 64100.

• Using the optimal algorithm: by searching through the dominant set, the winning

agents are:

PA8 (200 air tickets and 200 rooms)

PA10 (200 air tickets)

for a total bid price of 64000.

In this case, we will use the optimal result and so the members of the new VO winning

agents are: PA2, PA4, PA6, PA8 and PA10.

Chapter 6 Virtual Organisations in Operation 123

6.3.2 Re-organising The Work

In this case the situation changes in some way (e.g. the production cost of a produc-

t/service increases in some regions) but the members remain unchanged. This means

that the work distribution between VO members may need to be reorganised in order to

maximise the profit of the VO as a whole. To illustrate this, consider the case in which

there is a major work road in the city in progress. This forces the tour cars to change

their route, and so the values of all the coalitions change. In response to this situation,

the VO re-calculates the coalition values and re-runs our coalition structure generation

to re-organise the work.

Suppose the new values for the coalitions are (the values those have been changed are

highlighted in bold):

V(C1,H1) = 20 V(C2,H1) = 22

V(C3,H1) = 33 V(C4,H1) = 21

V(C5,H1) = 23 V(C1,H2) = 22

V(C2,H2) = 31 V(C3,H2) = 43

V(C4,H2) = 35 V(C5,H2) = 20

V(C1,H1,H2) = 30 V(C2,H1,H2) = 31

V(C3,H1,H2) = 28 V(C4,H1,H2) = 29

Chapter 6 Virtual Organisations in Operation 124

V(C5,H1,H2) = 33 V(C1,C2,H1) = 31

V(C1,C3,H1) = 32 V(C1,C4,H1) = 34

V(C2,C3,H1) = 33 V(C2,C4,H1) = 44

V(C3,C4,H1) = 35 V(C1,C5,H1) = 32

V(C2,C5,H1) = 41 V(C3,C5,H1) = 27

V(C4,C5,H1) = 31 V(C1,C2,H2) = 32

V(C1,C3,H2) = 43 V(C1,C4,H2) = 34

V(C2,C3,H2) = 45 V(C2,C4,H2) = 43

V(C3,C4,H2) = 34 V(C1,C5,H2) = 33

V(C2,C5,H2) = 31 V(C3,C5,H2) = 42

V(C4,C5,H2) = 34 V(C1,C2,H1,H2) = 37

V(C1,C3,H1,H2) = 38 V(C1,C4,H1,H2) = 37

V(C2,C3,H1,H2) = 38 V(C2,C4,H1,H2) = 38

V(C3,C4,H1,H2) = 37 V(C1,C5,H1,H2) = 36

V(C2,C5,H1,H2) = 37 V(C3,C5,H1,H2) = 42

V(C4,C5,H1,H2) = 38 V(C1,C2,C3,H1) = 34

V(C1,C2,C4,H1) = 31 V(C1,C3,C4,H1) = 30

V(C2,C3,C4,H1) = 31 V(C5,C1,C2,H1) = 30

V(C5,C1,C3,H1) = 31 V(C5,C1,C4,H1) = 29

V(C5,C2,C3,H1) = 32 V(C5,C2,C4,H1) = 28

V(C5,C3,C4,H1) = 31 V(C1,C2,C3,H2) = 31

V(C1,C2,C4,H2) = 47 V(C1,C3,C4,H2) = 30

V(C2,C3,C4,H2) = 31 V(C5,C1,C2,H2) = 31

V(C5,C1,C3,H2) = 32 V(C5,C1,C4,H2) = 29

V(C5,C2,C3,H2) = 30 V(C5,C2,C4,H2) = 29

Chapter 6 Virtual Organisations in Operation 125

V(C5,C3,C4,H2) = 31 V(C1,C2,C3,H1,H2) = 34

V(C1,C2,C4,H1,H2) = 30 V(C1,C3,C4,H1,H2) = 33

V(C2,C3,C4,H1,H2) = 34 V(C5,C1,C2,H1,H2) = 31

V(C5,C1,C3,H1,H2) = 31 V(C5,C1,C4,H1,H2) = 34

V(C5,C2,C3,H1,H2) = 32 V(C5,C2,C4,H1,H2) = 28

V(C5,C3,C4,H1,H2) = 30 V(C1,C2,C3,C4,H1) = 32

V(C1,C2,C3,C5,H1) = 31 V(C1,C3,C4,C5,H1) = 30

V(C1,C2,C4,C5,H1) = 32 V(C2,C3,C4,C5,H1) = 31

V(C1,C2,C3,C4,H2) = 38 V(C1,C2,C3,C5,H2) = 42

V(C1,C3,C4,C5,H2) = 41 V(C1,C2,C4,C5,H2) = 40

V(C2,C3,C4,C5,H2) = 42 V(C1,C2,C3,C4,H1,H2) = 44

V(C1,C2,C3,C5,H1,H2) = 44 V(C1,C3,C4,C5,H1,H2) = 43

V(C1,C2,C4,C5,H1,H2) = 44 V(C2,C3,C4,C5,H1,H2) = 45

V(C1,C2,C3,C4,C5,H1) = 30 V(C1,C2,C3,C4,C5,H2) = 32

V(C1,C2,C3,C4,C5,H1,H2) = 48

Here is the result:

• After round 1 (searching layer 1, 2 and 7): the result coalition structure is:

{(C2, C4,H1), (C1, C3, C5,H2)}. The group payoff is: 76.00.

• After round 2 (searching SL(7,4)): the result coalition structure is {(C3,H1),

(C1, C2, C4,H2), (C5)}. The group payoff is 80.00.

We then have the following coalition structure:

Chapter 6 Virtual Organisations in Operation 126

Chapter 7

Conclusions

This thesis developed efficient mechanisms to automate the creation, operation and

maintenance phases of the VO lifecycle. Specifically, novel algorithms were developed

for the problems of:

• partner selection

• task distribution

In the case of partner selection, the thesis used an auction mechanism, specifically,

combinatorial auctions, to select which agents should be part of the VO. To do this,

however, we needed to develop new clearing algorithms for the types of combinatorial

auctions that are most suitable to the VO environment. In particular, these algorithms

had to deal with multi-unit combinatorial auctions with bids in form of demand/sup-

ply functions. Specifically, two sets of algorithms were developed: polynomial clearing

algorithms and optimal clearing algorithms. The former operate in polynomial time

and can establish a worst-case bound from the optimal, but are not completely efficient

(because the solutions that they generate may not be optimal). In contrast, the later

are guaranteed to find the optimal solutions, but are not polynomial.

In more detail, chapter 3 developed, for the first time, polynomial algorithms for clear-

ing multi-unit combinatorial auctions with demand/supply functions. While previous

127

Chapter 7 Conclusions 128

work has focused on single-item auctions with demand/supply curves or combinatorial

auctions with atomic propositions, we generalised the problem to multi-unit single-item

and multi-unit combinatorial auctions with discount and free disposal demand/supply

functions. For this very general case, we showed that our algorithms are of polynomial

complexity and can generate solutions that are within a bound of the optimal. Our

empirical evaluation showed that our algorithms can produce solutions that are within

a bound of the optimal that is much lower than the theoretically proved bound. Specif-

ically, all of the bounds are within the range [1, 1.025], while the theoretical bound is n

in the multi-unit single-item case, and is 2nKm−1 in the multi-unit combinatorial case

(n is the number of bidders, m is the number of items, and K is a constant). This

generalisation and the tractability of these algorithms enable the efficient application of

combinatorial auctions in VO partner selection, and more generally, they are important

steps toward realising the full application potential of combinatorial auctions since it

enables us to deal with a maximally flexible and efficient scheme in a computationally

tractable manner.

On the other hand, chapter 4 presents, for the first time, optimal clearing algorithms for

multi-unit single-item and multi-unit combinatorial auctions where bids are expressed

through supply/demand functions. Specifically, we consider two classes of supply/de-

mand functions where the demand/supply curves for each individual commodity are

piece-wise linear (an important and often considered case) and where the demand/supply

curves are monotonic one-unit-difference (a less common case). Again, the expressibility

of our auction setting and the optimality of the solutions generated by our algorithms

are an important step towards the use of combinatorial auctions in VO partner selection,

as well as in the general area of e-commerce applications.

In the case of task distribution, the thesis used coalition formation mechanisms to par-

tition the set of VO members into several subsets working on various activities in order

to maximise the payoff of the whole VO. Again, as one of the main reasons that hin-

ders the wide spread use of coalition formation is the computational complexity of the

coalition structure generation, we developed an algorithm to overcome this shortcoming.

Specifically, chapter 5 developed an anytime algorithm for coalition structure generation

Chapter 7 Conclusions 129

that can produce solutions within a finite bound from the optimal. As it is an anytime

algorithm, it can be interrupted at any time and the bound keeps improving with an

increase in execution time. We then benchmarked our algorithm against [Sandholm et

al., 1999] which is the only other known algorithm for this task that can also establish

a worst-case bound from the optimal. This comparison showed our algorithm to be

significantly faster; for example, being up to 10379 times faster for systems containing

1000 agents for small bounds. With this significant jump forward, we believe coalition

formation algorithms can now be used in the VO operation phase to partition the VO’s

members into several subsets working on different activities in order to maximise the

VO’s payoff.

Building on this work, there are still a number of areas for further work in terms of both

auction clearing and coalition formation.

In the area of auction clearing, further research is needed to try to lower the bound from

the optimal of the solutions of the polynomial algorithms and lower the computational

complexity of the optimal algorithm. In the former case, one way to achieve this is

to narrow down the classes of bidding functions. That is, find special classes in which

our algorithms perform better than in the general settings investigated in this thesis.

Another direction could be to modify the way our algorithms select winning bids. In the

later case, it may be possible to apply heuristic techniques such as Branch-and-Bound.

Although when we apply these techniques, the algorithm may not be guaranteed to find

the optimal solution, the improved complexity may make it more broadly applicable in

real-life scenarios.

Another important area of work is to try to obtain better benchmark platforms for

evaluating clearing algorithms. Specifically, although the problem generator used in this

thesis is claimed to resemble real-life problems, it is still artificial. Ideally, we would

like to benchmark the algorithms on real-life data in order to give demonstrating more

realistic results.

In the area of coalition formation, further research is needed to lower the complexity

of the coalition structure generation algorithms still further. It would also be desirable

to try to determine some lower bound and/or some upper bound on the computational

Chapter 7 Conclusions 130

complexity of coalition structure generation algorithms in order for them to establish a

specific bound from the optimal. The other direction is to develop heuristic algorithms

that perform well in common cases and are applicable to large multi-agent systems (that

contains hundreds of agents). Another important area is to see whether we can modify

our algorithms so that they will be more suitable to dynamic environments in which

coalition values may change and agents can enter/leave the environment. To adapt to

this environment, we may have to frequently re-calculate the coalitional values and make

the coalition formation algorithm fully distributed and more robust.

More generally speaking, further work is needed in a number of areas before the full

vision of agile VOs created on demand to fulfill a particular niche is truly met. Such work

includes the ability to determine, on the fly, how a particular service can be composed

out of the available constituent sub-services, how the need or opportunity for a new

VO can be automatically determined, and how a VO can determine when it should be

disbanded. Nevertheless, our work on efficient mechanisms for partner selection and

task distribution provide an important piece of this complex landscape.

Bibliography

[Beer et al., 1990] M. Beer, R.A. Eisenstat, and B. Spector. Why change programs don’t

produce change. Harvard Business Review, 68(6):158–166, 1990.

[Camarinha-Matos and Afsarmanesh, 1999] Luis M. Camarinha-Matos and Hamideh

Afsarmanesh. Virtual enterprises: Life cycle supporting tools and technologies. In

Proceedings of The First IFIP/PRODNET Working Conference on infrastructures for

industrial virtual enterprises, 1999.

[Contractor and Lorange, 1988] F. Contractor and P. Lorange. Why Should Firms Co-

operate? Lexington Books, 1988.

[Dang and Jennings, 2002] V. D. Dang and N. R. Jennings. Polynomial algorithms

for clearing multi-unit single item and multi-unit combinatorial reverse auctions. In

Proceedings of The Fifteenth European Conference on Artificial Intelligence, pages

23–27, 2002.

[Dang and Jennings, 2003] V. D. Dang and N. R. Jennings. Optimal clearing algorithms

for multi-unit single item and multi-unit combinatorial auctions with demand/supply

function bidding. In Proceedings of the Fifth International Conference on Electronic

Commerce, pages 25–30, 2003.

[Dang and Jennings, 2004a] V. D. Dang and N. R. Jennings. Generating coalition struc-

tures with finite bound from the optimal guarantees. In Proceedings of the Third Inter-

national Conference on Autonomous Agents and Multi-Agent Systems, pages 564–571,

2004.

131

BIBLIOGRAPHY 132

[Dang and Jennings, 2004b] V. D. Dang and N. R. Jennings. Polynomial algorithms

for clearing multi-unit single-item and multi-unit combinatorial auctions. Artificial

Intelligence Journal, 2004. Under review.

[Davenport and Kalagnanam, 2001] A. Davenport and J. Kalagnanam. Price negotia-

tions for procurement of direct inputs. IBM Research Report RC 22078, 2001.

[Daviddrajuh and Deng, 2000] R. Daviddrajuh and Z. Deng. Identifying potential sup-

pliers for formation of virtual manufacturing systems. 2000.

[Eso et al., 2001] M. Eso, S. Ghosh, J. Kalagnanam, and L. Ladanyi. Bid evaluation in

procurement auctions with piece-wise linear supply curves. IBM Research Report RC

22219, 2001.

[Fischer et al., 1996] Klaus Fischer, Jorg P. Muller, Ingo Heimig, and August-Wilhelm

Scheer. Intelligent agents in virtual enterprises. In Proceedings of the First Interna-

tional Conference and Exhibition on the Practical Application of Intelligent Agents

and Multi-Agent Technology, pages 205–223, 1996.

[Gonen and Lehmann, 2000] Rica Gonen and Daniel Lehmann. Optimal solutions for

multi-unit combinatorial auctions: Branch and bound heuristics. In Proceedings of

The Second ACM Conference on Electronic Commerce, pages 13–20, 2000.

[Hardwick and Bolton, 1997] Martin Hardwick and Richard Bolton. The industrial vir-

tual enterprise. Communications of the ACM, 40:59 – 60, 1997.

[Jennings and Wooldridge, 1995] Nicholas R. Jennings and M. Wooldridge. Applying

agent technology. Applied Artificial Intelligence: An International Journal, 9:351–

361, 1995.

[Ketchpel, 1994] Steven P. Ketchpel. Forming coalitions in the face of uncertain rewards.

In Proceedings of the Twelth National Conference on Artificial Intelligence, pages 414–

419, 1994.

[Klusch and Gerber, 2002] M. Klusch and A. Gerber. Dynamic coalition formation

among rational agents. IEEE Intelligent Systems, 17(3):42–47, 2002.

BIBLIOGRAPHY 133

[Leyton-Brown et al., 2000] Kevin Leyton-Brown, Yoav Shoham, and Moshe Tennen-

holtz. An algorithm for multi-unit combinatorial auctions. In Proceedings of The

Seventeenth National Conference on Artificial Intelligence (AAAI), pages 56–61, 2000.

[Martello and Toth, 1990] Silvano Martello and Paolo Toth. Knapsack Problems: Algo-

rithms and Computer Implementations (Wiley-Interscience Series in Discrete Math-

ematics & Optimization). John Wiley and Sons Ltd, 1990.

[McAfee and McMillan, 1987] McAfee and McMillan. Auctions and bidding. Journal of

Economic Literature, 25:699–738, 1987.

[Neubert et al., 2001] Ralf Neubert, Oliver Langer, Otmar Gorlitz, and Wolfgang Benn.

Virtual enterprises - challenges from a database perspective. In Proceedings of the

Workshop on Information Technology for Virtual Enterprises, pages 98 – 106, 2001.

[NIIIP, 1998] NIIIP. National industrial information infrastructure protocols (NIIIP)

reference architecture, 1998.

[Nisan, 2000] Noam Nisan. Bidding and allocation in combinatorial auctions. In Pro-

ceedings of The Second ACM Conference on Electronic Commerce, pages 1–12, 2000.

[Norman et al., 2003] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck,

V. D. Dang, T. D. Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian. Conoise:

Agent-based formation of virtual organisations. In Proceedings of the Twenty-Third

SGAI International Conference on Innovative Techniques and Applications of Artifi-

cial Intelligence, pages 353–366, 2003.

[Norman et al., 2004] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck,

V. D. Dang, T. D. Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian. Agent-

based formation of virtual organisations. International Journal of Knowledge Based

Systems, 17(2-4):103–111, 2004.

[Porter, 1980] M. Porter. Competitive strategy. New York: Free Press, 1980.

[Rabelo et al., 1998] Ricardo J. Rabelo, Luis M. Camarinha-Matos, and Hamideh Af-

sarmanesh. Multiagent perspectives to agile scheduling. In Proceedings of IEEE/IFIP

International Conference on Balanced Automation Systems, 1998.

BIBLIOGRAPHY 134

[Rapoport and Kahan, 1984] Amnon Rapoport and James P. Kahan. Theories of Coali-

tion Formation. Lawrence Erlbaum Associates, 1984.

[Rocha and Oliveira, 1999] Ana Paula Rocha and Eugenio Oliveira. An electronic

market architecture for the formation of virtual enterprises. In Proceedings of the

IFIP/PRODNET Conference on Infrastructures for Industrial Virtual Enterprises,

1999.

[Roman, 1984] Steven Roman. The Umbral Calculus. Academic Press, 1984.

[Rothkopf et al., 1998] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M.

Harstad. Computationally manageable combinatorial auctions. Management Science,

44:1131–1147, 1998.

[Sandholm and Suri, 2001] Tuomas Sandholm and Subhash Suri. Market clearability.

In Proceedings of The Seventeenth International Joint Conference on Artificial Intel-

ligence, pages 1145–1151, 2001.

[Sandholm et al., 1999] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and

F. Tohm. Coalition structure generation with worst case guarantees. Artificial Intel-

ligence, 111(1-2):209–238, 1999.

[Sandholm et al., 2002] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David

Levine. Winner determination in combinatorial auction generalizations. In Proc. 1st

Intl. Joint Conf. on Autonomous Agents and Multiagent Systems, pages 69–76, 2002.

[Sandholm, 1999] Tuomas Sandholm. An algorithm for optimal winner determination

in combinatorial auctions. In Proceedings of The Sixteenth International Joint Con-

ference on Artificial Intelligence, pages 542–547, 1999.

[Shehory and Kraus, 1995] Onn Shehory and Sarit Kraus. Coalition formation among

autonomous agents: Strategies and complexity. Lecture Notes in Artificial Intelli-

gence, (957):57–72, 1995.

BIBLIOGRAPHY 135

[Shehory and Kraus, 1996] Onn Shehory and Sarit Kraus. A kernel-oriented model for

coalition-formation in general environments: Implementation and results. In Proceed-

ings of the Thirteenth National Conference on Artificial Intelligence, pages 134–140,

1996.

[Shehory and Kraus, 1998] Onn Shehory and Sarit Kraus. Methods for task allocation

via agent coalition formation. Artificial Intelligence, 101(1-2):165–200, 1998.

[Sieber and Griese, 1998] Pascal Sieber and Joachim Griese. Organizational virtualness.

1998.

[Stephens, 1999] Jeff Stephens. Virtual enterprises using groupware tools and dis-

tributed architectures public final report. Technical report, 1999.

[Tennenholtz, 2000] Moshe Tennenholtz. Some tractable combinatorial auctions. In

Proceedings of The Seventeenth National Conference on Artificial Intelligence (AAAI),

pages 98–103, 2000.

[Wurman, 2001] Peter R. Wurman. Dynamic pricing in the virtual marketplace. IEEE

Internet Computing, 5(2):36–42, March/April 2001.

[Zlotkin and Rosenschein, 1994] G. Zlotkin and J.S. Rosenschein. Coalition, cryptogra-

phy and stability: Mechanisms for coalition formation in task oriented domains. In

Proceedings of the Twelth National Conference on Artificial Intelligence, pages 432–

437, 1994.

