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Abstract

The overall objective in defining feature space is to reduce the dimensionality of the original
pattern space, whilst maintaining discriminatory power for classification. To meet this objec-
tive in the context of ear biometrics a new force field transformation treats the image as an
array of mutually attracting particles that act as the source of a Gaussian force field. Under-
lying the force field there is a scalar potential energy field, which in the case of an ear takes the
form of a smooth surface that resembles a small mountain with a number of peaks joined by
ridges. The peaks correspond to potential energy wells and to extend the analogy the ridges
correspond to potential energy channels. Since the transform also turns out to be invertible,
and since the surface is otherwise smooth, information theory suggests that much of the infor-
mation is transferred to these features, thus confirming their efficacy. We previously described
how field line feature extraction, using an algorithm similar to gradient descent, exploits the
directional properties of the force field to automatically locate these channels and wells, which
then form the basis of characteristic ear features. We now show how an analysis of the mech-
anism of this algorithmic approach leads to a closed analytical description based on the diver-
gence of force direction, which reveals that channels and wells are really manifestations of the
same phenomenon. We further show that this new operator, with its own distinct advantages,
has a striking similarity to the Marr-Hildreth operator, but with the important difference that
it is non-linear. As well as addressing faster implementation, invertibility, and brightness sen-
sitivity, the technique is also validated by performing recognition on a database of ears
selected from the XM2VTS face database, and by comparing the results with the more estab-
lished technique of Principal Components Analysis. This confirms not only that ears do indeed
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appear to have potential as a biometric, but also that the new approach is well suited to their
description, being robust especially in the presence of noise, and having the advantage that the
ear does not need to be explicitly extracted from the background.

© 2004 Elsevier Inc. All rights reserved.

1. Introduction

The potential of the human ear for personal identification was recognized and
advocated as long ago as 1890 by the French criminologist Alphonse Bertillon [1].
In machine vision, ear biometrics has received scant attention compared to the more
popular techniques of automatic face, eye, or fingerprint recognition. However, ears
have played a significant role in forensic science for many years, especially in the
United States, where an ear classification system based on manual measurements
has been developed by Iannarelli, and has been in use for more than 40 years [2],
although the safety of ear-print evidence has recently been challenged in the Courts
[3.4].

Ears have certain advantages over the more established biometrics; as Bertillon
pointed out, they have a rich and stable structure that is preserved from birth well
into old age. The ear does not suffer from changes in facial expression, and is firmly
fixed in the middle of the side of the head so that the immediate background is pre-
dictable, whereas face recognition usually requires the face to be captured against a
controlled background. Collection does not have an associated hygiene issue, as may
be the case with direct contact fingerprint scanning, and is not likely to cause anxiety,
as may happen with iris and retina measurements. The ear is large compared with the
iris, retina, and fingerprint and therefore is more easily captured.

Burge and Burger [5,6] were amongst the first to describe the ear’s potential as a
biometric using graph matching techniques on a Voroni diagram of curves extracted
from the Canny edge map. Moreno et al. [9] have tackled the problem with some suc-
cess using neural networks and have reported a recognition rate of 93% using a two-
stage neural network technique. Chang et al. [7,8] use principal components analysis,
and they also did a comparison of ear and face recognition, where they came to the
interesting conclusion that ears are essentially just as good as faces for machine rec-
ognition. They have reported a recognition rate of almost 91% using a multi-modal
PCA approach. In our original descriptions of our new approach to low-level feature
extraction [10,11] we also explored the feasibility of recognizing people by their ears.
In addition to extending and improving the basic technique, we now validate it using
ear images derived from a standard database. Our results are broadly comparable to
the aforementioned results, and when taken together, certainly suggest that ear bio-
metrics has a good future.

Our technique provides a robust and reliable description of the ear without the
need for explicit ear extraction. It has two distinct stages: Image to Force Field Trans-
formation, and Force Field Feature Extraction. First, the entire image is transformed
into a force field by pretending that each pixel exerts a force on all the other pixels,
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which is proportional to the pixel’s intensity and inversely proportional to the square
of the distance to each of the other pixels. It turns out that treating the image in this
way is equivalent to passing it through an extremely powerful low pass filter which
transforms it into a smooth undulating surface, but with the interesting property that
the new surface retains all the original information. Operating in the force field do-
main allows us access to a wealth of established vector calculus techniques to extract
information about this surface. Also, because it is based on a natural force field there
is the prospect of implementing the transform in silicon hardware by mapping the
image to an array of electric charges. The powerful smoothing also affords valuable
resistance to noise and surface matching is also greatly facilitated when the surfaces
are smooth.

The smooth surface corresponds to the potential energy field underlying the vec-
tor force field, and in our earlier work [10,11] we showed how the directional prop-
erties of the force field can be exploited to automatically locate a small number of
potential wells and channels which correspond to local energy peaks and ridges,
respectively, that form the basis of the new features. Information theory would also
suggest that these are good features as follows. A smooth surface is easier to describe
than a complicated one and therefore requires less information. In the extreme, a
hemisphere can be described just by its radius. At the other extreme, a surface made
up of random noise would be very hard to describe and therefore would require
much more information. The total image information is conserved in the transfor-
mation, so we argue that there must be a redistribution of information density away
from the smoothest parts towards the salient channels and wells which break up the
monotony of the otherwise smooth surface.

In this paper we show how the divergence operator may be used to extend the ear-
lier algorithmic approach leading to an even richer functional form. Others have
used force field techniques to good effect in the past. Luo et al. [14] describe the
use of Vector Potential to extract corners by treating the Canny edge map of an im-
age as a current density. Ahuja [15] used a novel force field segmentation technique
where pixels of similar intensity were detected by assigning inter-pixel forces inver-
sely proportional to the gray level difference. Ahuja and Chuang [16] used a potential
field model to extend the medial axis transform. Xu and Prince [17] extended the ac-
tive contour model by replacing the external local force with a force field derived
from the image edge map. Similarly, Yahia et al. [18] used an external force field
to attract a level-set towards extracted image-pixels in a deformable structure appli-
cation. Also Siddiqi et al. [20,21] make extensive use of vector flow techniques in
their work.

What makes our application considerably different from the others is that our
force field is derived directly from the entire image without any pre-processing what-
soever; we effectively smooth the entire image with a gigantic 1/r kernel, which is
more than four times the area of the original image, thus obliterating all fine detail
such as edges, yet preserving all the image information.

Our target application is ear biometrics where we would expect measurement con-
ditions such as diffuse-lighting and viewpoint to be carefully controlled. We shall as-
sume that the subject will be looking directly ahead, sideways to the camera view,
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and the resulting camera projection will be taken as the subject’s ear image for bio-
metric purposes, even if the ears should protrude excessively. We do not seek pinna-
plane tilt invariance simply because there is no reason why the tilted version of a gi-
ven pinna should not correspond to another subject. A selection of samples taken
from each of 63 subjects drawn from the XM2VTS face profiles database [19] has
been used to test the viability of the technique. A classification rate of 99.2% has
been achieved so far, using just simple template matching on the basic channel
shapes, demonstrating the merit of the technique at least at this scale. It can reason-
ably be expected that the use of more sophisticated channel matching techniques
would lead to even better results. We also do a head-to-head comparison with
PCA which also helps to demonstrate the implicit extraction inherent in our tech-
nique. As such, a new low-level feature extraction approach has been demonstrated
with success in a new application domain.

2. Force field transforms

This section gives a brief description of the mathematical foundations of the new
transforms. The basic concepts used can be found in various introductory works on
physics [22,23] and electromagnetics [24,25]. We also consider faster computation by
applying the convolution theorem in the frequency domain. We also investigate how
the features are affected by the combination of the unusual dome shape and changes
in image brightness. The question of transform invertibility is considered as this
establishes that the transforms are information preserving. Further details of invari-
ance, including initialization invariance, scale invariance, and noise tolerance can be
found in [10-13].

The image is transformed to a force field by treating the pixels as an array of
mutually attracting particles that act as the source of a Gaussian force field. We
use Gaussian force as a generalization of the inverse square laws which govern the
gravitational, electrostatic, and magnetostatic force fields, to discourage the notion
that any of these forces are in play. The laws governing these forces can all be de-
duced from Gauss’s Law, itself a consequence of the inverse square nature of the
forces. So, purely as an invention, the pixels are considered to attract each other
according to the product of their intensities and inversely to the square of the dis-
tances between them. Each pixel is assumed to generate a spherically symmetrical
force field so that the total force F(r)) exerted on a pixel of unit intensity at the pixel
location with position vector r; by a remote pixels with position vector r; and pixel
intensities P(r;) is given by the vector summation.

Fir)=Y (P(ri) oo #j) (1)

To calculate the force field for the entire image, this equation should be applied at
every pixel position in the image. Units of pixel intensity, force, and distance are
arbitrary, as are the co-ordinates of the origin of the vector field.
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The defining equations could be applied directly, but in practice for greater effi-
ciency, the process can be treated as a convolution of the image with the force field
corresponding to a unit value test pixel, and then invoking the Convolution Theorem
to perform the calculation as a multiplication in the frequency domain, the result of
which is then transformed back into the spatial domain. The force field equation for
an M x N pixel image becomes,

force field = v/M x N3~ '[3(unit force field) x J(image)], (2)

where 3 stands for the Fourier Transform and 3" for its inverse. This applies
equally to the energy field to be described next. The usual care must be taken to en-
sure that dimensions of the unit sample force field are twice those of the image
dimensions and that sufficient zero padding is used to avoid aliasing effects. Fig. 1
shows how to implement this in Mathcad in which 1j denotes the complex operator
and cfft and icfft denote the Fourier and inverse Fourier transforms, respectively.

There is a scalar potential energy field associated with the vector force field where
the two fields are related by the well-known equation [24,25],

F(r) = —grad(E(r)) = —VE(r). (3)

This equation tells us that the force at a given point is equal to the additive inverse
of the gradient of the potential energy field at that point. This simple relationship
allows the force field to be easily calculated by differentiating the energy field and
allows some conclusions drawn about one field to be extended to the other.

We can restate the force field formulation in energy terms to derive the energy
field equations directly as follows. The image is transformed by treating the pixels
as an array of particles that act as the source of a Gaussian potential energy field.

ff{pic) := | sre2-(rows(pic) — 1)
sc— 2:-(cols(pic) - 1)
r—rows(pic) — 1
cecols(pic) - 1
for rre O..sr

for cce 0..sc

(r+c-1j) - (rr+ce-1j) + 0

upf

IT, CC

(|r+ e 1j= (rr+ ce-1j)| )

upf}rows( pic) — 3,3-cols( pic) — 3‘_ 0

inpe pic

lnp3'rows( pic) — 3, 3-cols(pic) — 3(_ 0

oup « «/rows( inp)-cols (inp)-icfft\( cfft(upf)-cfft( inp)))

ff— submatrix(oup,r,2-r,c,2-c)

Fig. 1. Force field by convolution in Mathcad.
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It is assumed that there is a spherically symmetrical potential energy field generated
by each pixel, so that E(r)) is the total potential energy imparted to a pixel of unit
intensity at the pixel location with position vector r; by the energy fields of remote
pixels with position vectors r; and pixel intensities P(r;), and is given by the scalar
summation

Er) =Y <'<_)V¢J> @)

—\ ovi=

where the units of pixel intensity, energy, and distance are arbitrary, as are the co-
ordinates of the origin of the field. To calculate the energy field for the entire image
Eq. (4) should be applied at every pixel position. The result of this process for the
energy transform for an ear image is shown in Fig. 2, where the same surface has
been depicted from a variety of different perspectives below the lobe.

The potential surface undulates, forming local peaks or maxima, with ridges lead-
ing into them. These peaks we call potential energy wells since, by way of analogy, if
the surface were to be inverted and water poured over it, the peaks would correspond
to small pockets where water would collect. Notice that the highest of the three obvi-
ous peaks in Fig. 2 has a ridge that slopes gently towards it from the smaller peak to
its left. This corresponds to a potential energy channel, because to extend the anal-
ogy, water that happened to find its way into its inverted form would gradually flow
along the channel towards the peak. The reason for the dome shape of the energy
surface can be easily understood by considering the case where the image has just
one gray level throughout. In this situation, the energy field at the center would have
the greatest share of energy because test pixels at that position would have the short-
est average distance between themselves and all the other pixels, whereas test pixels
at the corners would have the greatest average distance to all the other pixels, and
therefore the least total energy imparted to them.

2.1. An invertible linear transform

The transformation is linear since the energy field is derived purely by summation
which is itself a linear operation. What is less obvious is that the transform is also
invertible. For an N pixel image, the application of Eq. 4 at each of the N pixel posi-
tions leads to a system of N equations in N unknowns. Now if the N equations are

Fig. 2. Energy surface for an ear viewed from below the lobe.
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linearly independent, then it follows [26] that the system of equations can be solved
for the pixel values, given the energy values. In other words, the transform would be
invertible, and the original image could be completely recovered from the energy sur-
face, thus establishing that the transform preserves information. This system of N
equations can be expressed as a matrix multiplication of an N x 1 vector of pixel
intensities by an N X N square matrix of coefficients dj; corresponding to the inverse
distance scalars given by,

1
r; —r

(5)

Ji =

producing an N x 1 vector of pixel energies. Equation 6 shows this multiplication for
a simple 2 x 2 pixel image.

0 do dp do P(ro) E(ro)
do 0 dp di P(ry) _ E(ry) )
dyo dun 0 dy || P(r) E(r,)
dy dy dn O P(r3) E(r3)

All the determinants of matrices corresponding to the sequence of square images
ranging from 2 X 2 pixels to 33 x 33 pixels have been computed and have been found
to be non-zero. It has also been verified that all non-square image formats up to 7 x 8
pixels have associated non-singular matrices [12]. Notwithstanding questions of ma-
chine accuracy, these results suggest that the energy transform is indeed invertible for
most image sizes and aspect ratios.

2.2. Dome shape and brightness sensitivity

As stated in the introduction, we do not seek viewpoint invariance, or illumina-
tion invariance, either in intensity or direction, because we have assumed carefully
controlled measurement conditions. However, it is still interesting to investigate
how the position of features will be affected by the combination of the unusual dome
shape and changes in image brightness. The effect will first be analyzed and then con-
firmed by experiment. Should the individual pixel intensity be scaled by a factor a
and also have and an additive intensity component b, we would have,

aP(r, )+b b\ .
COB S ARGl S 0t Lkl 85 ot kil

; ovi=j ; OVl:j ;

(7)

We see that scaling the pixel intensity by the factor ¢ merely scales the energy inten-
sity by the same factor a, whereas adding an offset b is more troublesome, effectively
adding a pure dome component corresponding to an image with constant pixel inten-
sity b. This could be corrected by subtracting the dome component, if » can be esti-
mated. The effect of the offset and scaling is shown in Fig. 3 with the channels
superimposed. We see that scaling by a factor of 10 in (E) has no effect as expected.
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(A) Original. (B) 1 SD. (C) 2 SD. (D) 3 SD. (E) Scaled 10x.

Fig. 3. Effect of additive and multiplicative brightness changes.

The original image in (A) has a mean value of 77 and a standard deviation of 47.
Images (B) to (D) show the effect of progressively adding offsets of one standard
deviation. At one standard deviation the effect is hardly noticeable and even at 3
standard deviations the change is by no means catastrophic as the channel structure
alters little. We therefore conclude that operational lighting variation in a controlled
biometrics environment will have little effect. These conclusions are borne out by the
results of the corresponding recognition experiments in Table 2.

3. Force field feature extraction

Here field line extraction is presented in outline, as it has already been described in
detail in our previous work, whereas the analytic form of convergence feature extrac-
tion is presented in detail for the first time. The striking resemblance of convergence
to the Marr-Hildreth operator [31]is illustrated and the differences highlighted, espe-
cially the non-linearity of the convergence operator. The close correspondence be-
tween the field line and convergence techniques is demonstrated by superimposing
their results for an ear.

3.1. Field line feature extraction

Fig. 4 demonstrates in brief outline the field line approach to feature extraction
for an ear image. A more detailed description can be found in [10-12]. In Fig. 4B
a set of 40 test pixels is arranged in an ellipse shaped array around the ear and al-
lowed to follow the field direction so that their trajectories form field lines which cap-
ture the general flow of the force field. The test pixel positions are advanced in
increments of one pixel width, and test pixel locations are maintained as real num-
bers, producing a smoother trajectory than if they were constrained to occupy exact
pixel grid locations. Notice how ten field lines cross the upper ear rim and how each
line joins a common channel that follows the curvature of the ear rim rightwards
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(A) Ear. (B) Initialization. (C) Iteration. (D) Well
positions.

Fig. 4. Field line, channel, and well formation for an ear.

finally terminating in a potential well. The well locations have been extracted by
observing clustering of test pixel co-ordinates so that Fig. 4D is simply obtained
by plotting the terminal positions of all the co-ordinates.

3.2. Convergence feature extraction

Here we introduce the new analytical method of feature extraction as opposed to
the field line method. This method came about as a result of analyzing in detail the
mechanism of field line feature extraction. As shown in Fig. 6C, when the arrows
usually used to depict a force field are replaced with unit magnitude arrows, thus
modeling the directional behavior of exploratory test pixels, it becomes apparent
that channels and wells arise as a result of patterns of arrows converging towards
each other, at the interfaces between regions of almost uniform force direction. As
the divergence operator of vector calculus measures precisely the opposite of this ef-
fect, it was natural to investigate the nature of any relationship that might exist be-
tween channels and wells and this operator. This resulted not only in the discovery of
a close correspondence between the two, but also showed that divergence provided
extra information corresponding to the interfaces between diverging arrows.

The concept of the divergence of a vector field will first be explained, and then
used to define the new function. Convergence is compared with the Marr-Hildreth
operator which is a Laplacian operator and the important difference that conver-
gence is not Laplacian, due to its non-linearity, is illustrated. The function’s proper-
ties are then analyzed in some detail, and the close correspondence between field line
feature extraction and the convergence technique is illustrated by superimposing
their results for an ear image.

The divergence of a vector field is a differential operator that produces a scalar
field representing the net outward flux density at each point in the field. For the vec-
tor force field F(r) it is defined as,
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Fig. 5. Divergence of a vector field.

where dS is the outward normal to a closed surface S enclosing an incremental vol-
ume AV. In two-dimensional Cartesian co-ordinates it may be expressed as follows
[24,25],

©)

where F, and F), are the Cartesian components of F. Fig. 5 illustrates the concept of
divergence graphically. In Fig. SA we see an example of positive divergence where
the arrows flow outwards from the center, and in Fig. 5B we see negative divergence,
where the arrows flow inwards, whereas in Fig. 5C there is no divergence because all
the arrows are parallel.

Having described divergence we may now use it to define convergence feature
extraction. Convergence provides a more general description of channels and wells
in the form of a mathematical function in which wells and channels are revealed
to be peaks and ridges, respectively, in the function value. The new function maps
the force field to a scalar field, taking the force as input and returning the additive
inverse of the divergence of the force direction. The function will be referred to as
the force direction convergence field C(r) or just convergence for brevity. A more
formal definition is given by

divF(r) =V -F(r) = (an + aFy),

o

. _ . ff(r)-dl_ B ofy  0f,
C(r)_—dlvf(r)_—Al:’IEOT_—V-f(r)—— $+@ , (10)
where, f(r) = %, AA is incremental area, and dl is its boundary outward normal.

This function is real valued and takes negative values as well as positive ones
where negative values correspond to force direction divergence. It is interesting to
compare this function with the Marr-Hildreth operator given by,

. dg, QOg,
MH(r) = divg(r) = V- g(r) = <6x + ay)’ (11)
where, g(r) = grad(G(r)*I(r)), I(r) is the image and G(r) = e~""/2") is a Gaussian
kernel.

The Marr-Hildreth operator, also known as Laplacian of Gaussian (LoG), uses a
Gaussian kernel which is optimal in Gaussian noise, whereas the 1/r kernel is an arti-
fact of its force field nature, and the intrinsic smoothing it affords is merely a fortu-
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nate consequence of its formulation. We must also stress that whilst Marr-Hidlreth is
linear, convergence is non-linear because it is based on force direction rather than
force. This non-linearity means that we are obliged to perform the operations in
the order shown; we cannot take the divergence of the force and then divide by
the force magnitude. Div (grad/|grad|) # (div grad)/|grad|. This is easily illustrated
by a simple example using the scalar field ¢* in the following equation:

div(grad/|grad|) (div grad)/| grad |
v ( ’

Ve"):v_gzv_i:o V.Ve __1 (12)

Vel [Ver| —

where i is a unit vector in the x direction. The convergence is zero because we have a
field of parallel unit magnitude vectors, whereas in the second case the vectors are
parallel but the magnitude changes, resulting in a net outflow of flux at any point.
This illustrates that even though convergence looks very much like a Laplacian oper-
ator, it definitely is not.

Fig. 6B shows the convergence field for an ear image, while Fig. 6A shows the cor-
responding field lines. A magnified version of a small section of the force direction
field, depicted by a small rectangular insert in Fig. 6B, is shown in Fig. 6C. In
Fig. 6B the convergence values have been adjusted to fall within the range 0-255,
so that negative convergence values corresponding to antichannels appear as dark
bands, and positive values corresponding to channels appear as white bands. Notice
that the antichannels are dominated by the channels, and that the antichannels tend
to lie within the confines of the channels. Also, notice how wells appear as bright
white spots.
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(A) Field line features. (B) Convergence map. (C) Magnified insert force field.

Fig. 6. Convergence field.
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(A) Field line. (B) Convergence map. (C) Superposition of (A) on (B).
Fig. 7. Correspondence between channels and convergence.

The correspondence between the convergence function and the field line features
can be seen by observing the patterns in the force direction field shown in Fig. 6C.
Notice the correspondence between the converging arrows and white ridges, and be-
tween the diverging arrows and black ridges. It is evident that the convergence map
provides more information than the field lines, in the form of negative versions of
wells and channels or antiwells and antichannels, although it should be possible to
modify the field line technique to extract this extra information by seeding test pixels
on a regular grid and reversing the direction of test pixel propagation.

Fig. 7 shows the convergence field of an ear image with the corresponding field
lines superimposed. Fig. 7A is the field line map, and Fig. 7B is the convergence
map, while Fig. 7C is the superposition of one on the other. We can see clearly
how channels coincide with white ridges in the convergence map and that potential
wells coincide with the convergence peaks. Notice the extra information in the center
of the convergence map that is not in the field line map, illustrating an advantage of
convergence over field lines.

4. Ear recognition

The early hope of using just wells as a compact description did not live up to its
expectation because some ears produce only two wells. The richer but more compli-
cated description provided by the channels is therefore used instead. The problem of
comparing ears has been reduced to one of comparing channels. This should be eas-
ier than comparing ears directly but it is still not a trivial task. Fig. 8 shows a syn-
thetic image whose principal field lines have been identified, where these could be
defined as the field lines that make the most contribution to a given channel. Assum-
ing that a way can be found of easily extracting such lines they will still need to be
compared. Perhaps techniques derived from differential geometry, which deals with
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(A) Image. (B) Force (C) Convergence. (D) Field lines. (E) Principal lines.
magnitude.

Fig. 8. Principal field lines.

the geometry of curves and surfaces, could be exploited to describe the form of the
channels [27]. Perhaps contour description techniques could be used to describe and
compare the channels, although it might not be as easy as describing and comparing
just simple closed contours [28,29]. Principal field lines would appear to offer a ready
made list of points to facilitate contour descriptions, while the convergence approach
would require thresholding and thinning to extract the same information.

A lower bound on the validity of the technique is established on a database of 252
ear images by using template matching of thresholded convergence maps, realized
using Fourier cross-correlation techniques. The automatic extraction advantage is
demonstrated by deliberately not accurately extracting or registering the ears in
the sense that the database consists of 141 x 101 pixel images where the ears have
only an average size of 111 x 73 and are only roughly located by eye in the center
of these images. This can be seen clearly in Fig. 10A where we see a marked variation
both in vertical and horizontal ear-location. The force field technique gives a correct
classification rate of 99.2% on this set, whereas running PCA on the same set gives a
result of only 62.4% but when the ears are accurately extracted by cropping to the
average ear size of 111 x 73, running PCA then gives a result of 98.4%, thus clearly
demonstrating the inherent extraction advantage. The effect of brightness change by
addition that we described earlier in Fig. 3 is mirrored here by comparing the recog-
nition results with those for PCA when subjected to the same changes, and our ear-
lier conclusion that the technique is robust under variable light conditions is borne
out by experiment, where we see that in the worst case for an addition of 3 standard
deviations the force field results only change by 2%.

4.1. The ear database

To create a suitable database of experimental ear images the XM2VTS face profiles
database [19] was chosen, from which 63 subjects were selected as being suitable can-
didates for ear recognition by eliminating those whose ears were covered by hair. The
ear database thus consists of 4 samples of each of 63 subjects captured during 4 ses-
sions over a 5S-month period thus ensuring natural intra-class variation. Diffuse light-
ing was used during image capture. For each subject there was a significant degree of
rotation in the vertical plane containing the line of sight as shown in Fig. 9. We have
compensated for this rotation by measuring the angle from the top of the ear to the
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033 1 LI 033 4 L1
Fig. 9. Difference of up to 20° of rotation in XM2VTS profiles.

corner of the eye and then rotating each of the four images to the mean of the spread.
The worst case rotation difference varies between 1.5° and 20° with an average value
of about 6°. The standard deviations for each subject vary from 0.6° to 7.3° with an
average value of 2.3°. The image rotation function used bilinear interpolation.

Fig. 10 shows how the images of one of the subjects, with the XM2VTS
identification number 000, have been processed to extract the convergence maps.

000-1-L1 000-2-L1 000-3-L1 000-4-L1

Fig. 10. Feature extraction for subject 000. (A) 141 x 101 Ear images. (B) Convergence fields. (C)
Thresholded convergence maps.
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The original color face profiles were converted to gray scale and a 141 x 101 pixel
frame was manually adjusted by eye to surround and crop the ear images (A).
The force field transforms of the ear images were taken and the force fields were con-
verted to convergence fields (B).

4.2. Template matching

Fourier based cross-correlation techniques are used to perform multiplicative
template matching on ternary thresholded convergence maps. Levels less than minus
one standard deviation are mapped to —1, whilst those greater than one standard
deviation map to +1 and those remaining map to 0. Thresholding is done not only
in terms of the convergence level but also in terms of a rectangular exclusion zone
centered on the convergence magnitude centroid shown in Fig. 10C. The centroid
of the convergence tends to be stable with respect to the ear features and this ap-
proach has the advantage of removing unwanted outliers such as bright spots caused
by spectacles. The threshold of one standard deviation was chosen experimentally
resulting in the template channel thickness shown in Fig. 10C. The size of the rect-
angle was chosen as 71 x 51 pixels by adjusting its proportions to give a good fit for
most of the convergence maps. Notice how for image 000-2 which is slightly lower
than the other three, that the centroid-centered rectangle has correctly tracked the
template downwards.

Fig. 11 shows a selection of convergence maps for the first eight subjects. These
results also confirm the stability of the centroids with respect to the features, since
visual inspection of the results confirm that all the templates are correctly aligned
in the middle of their frames. If a particular centroid were unstable, then the corre-
sponding template would appear offset.

4.3. Classification results

The thresholded convergence maps were exhaustively cross-correlated to yield a
252 x 252 element array of cross-correlations. The matrix of correlations is too large
to be displayed directly, but can be illustrated graphically as a gray-scale image and
as a confusion matrix, as shown in Fig. 12. The self-correlations along the main diag-
onal are excluded, as indicated by a black line along the diagonal. The position cor-
responding to the highest value in each row is assigned a white pixel while all the
others are set to black. As expected most of the white pixels lie within a 4 x 4 pixel
square centered on the main diagonal, indicating correct classification. The two sol-
itary white pixels shown lying outside these squares indicate incorrect classifications.
Out of the 252 trials, 250 resulted in correct classification which corresponds to a
classification rate of 99.2%.

Fig. 13 shows the frequency distributions for the intra-class and inter-class corre-
lations. The close fit of a normal distribution, corresponding to their respective
means and standard deviations, suggests that they might indeed be normally distrib-
uted. The cross-correlation axes have been divided into 25 intervals, between mini-
mum and maximum values.
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AN

000-1 000-2 000-3 000-4 001-1 001-2 001-3 001-4

004-1 004-2 004-3 004-4 008-1 008-2 008-3 008-4

QA

016-1 016-2 016-3 016-4 019-1 019-2 019-3 019-4

Fig. 11. A selection of thresholded convergence maps: four for each of eight subjects.

010-1

ID 000-1 Highest correlation 371-4
000-1 &

Subject

3714

A Correlation as a gray scale B Confusion matrix

Fig. 12. Matrix of 252 x 252 cross-correlations.
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Fig. 13. Normal distribution fitted to frequency distribution of cross-correlations.

Since the frequency distributions are shown to be normally distributed, we can
normalize them and form probability density functions as shown in Fig. 14.

The area of intersection formed between the two distributions, compared with the
areas of the distributions themselves, gives an indication of the probability of
misclassification.

The mean and standard deviation of the intra-class and inter-class correlations
give a good indication of the nature of the results. Table 1 shows these statistics.

Cross-Correlation Probability Densities
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Fig. 14. Probability density functions of intra-class and inter-class correlations.

Table 1

Statistics for intra-class and inter-class convergence cross-correlations

Intra-class Inter-class

Mean SD Mean SD

584.4 116.3 254.5 70.3
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Note that the self-correlations that occur along the main diagonal of the cross-cor-
relation matrix have been excluded from the calculations.

Using these results we may compute the decidability index after Daugman [30].
This index d’ measures how well separated the distributions are, since recognition er-
rors are caused by their overlap. The measure aims to give the highest scores to dis-
tributions with the widest separation between means, and smallest standard
deviations. If the two means are p; and p, and the two standard deviations are o
and o, then & is defined as

d = [ — 1 . (13)
(ot +01)/2

Substituting the means and standard deviations from Table 1, we obtain d' = 3.43.
4.4. Comparison with PCA

As promised earlier we now do a head-to-head comparison with the popular Prin-
cipal Components Analysis technique [32]. The comparison is not quite head-to-
head since FFE is symmetric in the sense that none of the samples are used for train-
ing, whereas we use 25% of the samples in forming the PCA covariance matrix. The
tests are therefore less demanding for PCA since each subject is only compared with
188 others whereas for FFE they are compared against 251 other subjects.

The first member of each of the 63 classes is used to generate 63 eigenvectors
which then form the basis vectors of the eigenspace. Fig. 15 shows the first four such
eigenvectors. Each of the set of 252 images is projected onto the eigenspace, to ob-
tain the corresponding projections. Fig. 16 shows the 4 projections for the first sub-
ject. Each projected image is made up of a linear combination of the basis vectors
weighted by the projection components. Number 000-1 is naturally the most faithful
reproduction since it has contributed to the subspace formation, but careful exami-
nation reveals minute differences when compared with Fig. 10A. As before, the pro-
jection vectors were exhaustively compared with each other, but this time it is the
smallest Euclidian distance, rather than the highest cross-correlation which deter-
mines the best match. Not surprisingly, the results were poor because the ear images

Fig. 15. First 4 eigenvectors for 141 x 101 pixel images.
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4
hJ*

000-2 000-3

000-1

Fig. 16. First 4 projections for 141 x 101 pixel images.

are deliberately poorly registered. Out of the set of 189 images only 118, or 62.4%,
gave correct matches and the decidability index was only 1.945.

To demonstrate that the bad results were due to poor extraction and registration
and thereby highlight the inherent extraction advantage of the force field technique,
the PCA experiment was run again but this time with the ears accurately extracted to
the average data set ear size of 111 x 73 as shown in Fig. 17. This lead to a dramatic
improvement in the recognition rate to 98.4% and an index of 3.77 thus confirming
the inherent extraction advantage of the force field approach. Notice that the index is
slightly higher than the value of 3.43 obtained for the 141 x 101 images but this could
be attributed to the reduction in data set size from 252 to 189 also to the fact that the
images have been more fully extracted for PCA.

Fig. 18 shows the first 4 projections for the 111 x 73 pixel images where we notice
a marked improvement in the quality of the projections compared with those in Fig.
16 due to the more accurate extraction and registration. The corresponding eigenvec-
tors are shown in Fig. 19.

Finally, some experiments were conducted to assess the effect of brightness addi-
tion and the results compared with those for PCA under the same conditions. Each
odd image has been subjected to the brightness change and every even image has
been left unchanged, so that for each subject there are two bright images and two
unchanged. These results are shown in tabular form in Table 2. where we see that
the recognition rate for FFE falls by only 2% for a brightness addition of 3 standard

Lk

- 000-1 000-2 000-3 000-4

Fig. 17. Ear set cropped to average size of 111 x 73.
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000-1

000-2

©000-3 000-4

Fig. 18. First 4 projections for the 111 x 73 pixel images.

Fig. 19. First 4 eigenvectors for 111 x 73 pixel images.

Table 2

Comparison of force field (FFE) and PCA recognition results

Image type Method  Passes Percentage (%)  Brightness  Decidability

addition

141 x 101 with deliberately FFE 250/252 99.2 None 3.432

poor extraction and registration ~ FFE 250/252  99.2 1 SD 3.384
FFE 247/252  98.0 2 SD 3.137
FFE 245/252 972 3SD 2.846
PCA 118/189 624 None 1.945

111 x 73 with accurate PCA 186/189 98.4 None 3.774

extraction and registration PCA 130/189  68.8 1SD 1.694
PCA 120/189  63.6 2 SD 0.878
PCA 118/189  62.4 3SD 0.476

deviations, compared to a fall of about 36% for PCA, thus confirming the robustness
of FFE in the presence of variable lighting.

5. Conclusions

In conclusion we may say that in the context of ear biometrics we have developed
a new linear transform that transforms an ear image, with very powerful smoothing
and without loss of information, into a smooth dome shaped surface whose special
shape facilitates a new form of feature extraction that extracts the essential ear
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signature without the need for explicit ear extraction; and in the process we have ver-
ified the recognition potential of the human ear for biometrics. We have introduced
the convergence operator and shown that it is a valuable alternative form of our ear-
lier field line feature extraction. We have validated the technique by experiment and
in the process we have contributed to the mounting evidence that ears are indeed via-
ble as a biometric. In our future work we hope to refine our new technique and de-
velop its full potential. We also hope to promote the case of ears as a new and
promising biometric capable of competing in a rapidly developing field.
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