
CECIL – A Language for Learning Hardware Design
David Argles
School of Electronics & Computer Science, University of Southampton

Southampton, Hampshire, UK

da@ecs.soton.ac.uk

Gary Wills
School of Electronics & Computer Science, University of Southampton

Southampton, Hampshire, UK

gbw@ecs.soton.ac.uk
Abstract: At Southampton, we have a degree course in IT designed to attract female and mature students. It is people-orientated, but delivers a level of technical competence that justifies the award of a BSc in IT in a top research-led university. Students’ technical skills vary widely at the outset of the degree. To help deal with this situation, we aim to ground theoretical concepts in practical experience. In hardware design, students learn about, and program, a simulated microprocessor. By doing so, they engage with the underlying principles of design.  Simulating the microprocessor allows the design to be tailored for efficient learning. The history of the development of this approach is reviewed, including experiences at other institutions. It examines the concept of virtual machines and their design and the application of theory to the design of our simulated microprocessor, concluding by abstracting principles from the lessons learnt.
Introduction
About fifteen years ago, some colleagues and I explored the market in Computing degrees to determine if there was an area that that was not being adequately provided for.  We concluded that, whilst Computer Science degrees are good at providing graduates who are technically competent, and Business IT degrees are good at providing IT Managers who are people- and organisation- aware, there is very little done to support the SME (Small to Medium-sized Enterprise) sector.  Yet such businesses form a large part of the potential employer pool after graduation.

Our investigation led us to conclude that SMEs have distinctive needs, and that a suitable graduate would need to be both technically competent, and people- and organisation- aware.  Our thinking was that applicants to our course should be primarily people-aware, and have an aptitude for technical competence, rather than being primarily technically competent.  This emphasis appears to help meet another agenda, which is to increase the number of female and mature students on the course.  

A degree designed on this basis was developed and successfully run, and similar degrees have since been developed at two other institutions.  The current context is of a large, internationally-successful, research-led engineering faculty, so there is considerable pressure to achieve high standards in technical components of this degree.  This poses a problem.  Unlike other degrees in the faculty, incoming students are not required to have qualifications in technical subjects, though many do have them.  This means that there is a wide range of initial skill level which must be addressed in introductory course modules.
Designing Virtual Machines
Current thinking in educational research on pedagogy states that learning needs to be situated and authentic, with learners adopting an active and constructive approach. In particular, it builds on the problem-based learning literature [11], constructivism [12, 1], communities of practice [14], situated learning [10, 7, 13] and activity theory [9]. The pedagogical strategy aimed to create an environment that allowed the different benefits of each of these pedagogical approaches to be made explicit. 

Toolkits provide a pragmatically-based approach to applying theory to practice and can be used to support decision-making by the tutor. We have developed a framework for integrating learning technologies into courses which builds on Laurillard’s ‘conversational’ framework [8]. The framework is designed to take the user through the thought processes of re-engineering a course. It begins with an evaluation of the existing course and an analysis of its strengths and weaknesses.

We have known about designing for learning in the computing context for some time.  Back in 1981, du Boulay and others commented,

“We might expect to find that racing drivers are impatient with slow, family saloon cars, though the latter are much better than racing cars for the learner driver.” [3]

We do not need to focus on state of the art technology when our target is for the students to understand fundamental principles.  Virtual machines provide the potential to tailor the design for maximum learning potential.

To be good for learning, virtual machines should be:

· Visible

· Simple

· Interactive

· Appropriate

· Unambiguous

· Predictable

· Extensible

· Consistent

This list has been derived from a number of sources and is explored in detail elsewhere [4].  It may be noted that a good virtual system will be simple and yet extensible.  In practical terms, students need to be able to produce useful applications with just a few lines of code right from the start of the course, yet there needs to be sufficient intellectual challenge to ensure that they will be extended and challenged throughout the course.

Another attribute noted above is consistency.  As a student works with the CECIL language, they will build up a picture of the associated, simulated CPU.  It is vital that the responses of the system reinforce the intended picture and do not confuse matters.

Abowd & Beale have developed a framework for analysing human-machine interactions [5].  It is designed to provide a language for analysing interactions between people and machines, and is given in figure 1.

[image: image1.png]presentation [0) observation
Key:

S - Computer system

S U U- The user

I - Input language
task
e I O- Output language

performance e Irtculation




Figure 1: Abowd & Beale’s Interaction Framework
In this model, the user (U) interacts with the system (S) via the input and output interfaces (I & O).  The gap between what the user expects to happen and what actually happens is defined by Abowd & Beale as being the semantic gap.  In effect, this defines the difference between the real system and the user’s concept of that system.
The framework is broadly applicable, and can be applied to our context of designing virtual machines for learning.  However, there is a distinction which is worth emphasising.  In Abowd and Beale’s work, there is an assumption that the user needs to understand the real system; whereas we have already established that we are interested in the student learning about our simulated system.  Whilst the interaction framework may be applied as it stands, it is considered more helpful to modify the framework as in figure 2.
[image: image2.png]input

observation

U

task

‘articulation

Key:

S - Computer system
'~ Virtual System
U- The user

I -Input language
O- Output language




Figure 2: Revised Interaction Framework
In this revised framework, we have introduced the virtual system, S’, and we are particularly interested in the interactions of the user with this virtual system rather than with the real system, which is likely to be far more complex.  The task is now to design the real system, S, so that it behaves as if it were the simulated system, S’.  Any errors in design will lead to the virtual system seeming to behave in an unpredictable and inconsistent way.
There is another difference here from the standard approach.  The expectation is normally that good design will lead to a small semantic gap, and that a zero semantic gap indicates a perfect design.  For our purposes, if a system always responds as expected, then the user has learnt nothing, since the response has confirmed the user’s model of the system.  However, for learning to occur, there should sometimes be a semantic gap as the learner’s preconceived ideas about the system are challenged.  It is as the learner confronts the inconsistency and refines their mental model of the system that learning occurs.
The Module
One of the introductory course modules in our degree focuses on hardware design.  Whilst there is a wide variation in previous learning in this area, it is essential that all students have a good understanding of the subject that they can build on in later course modules.  It is also important to ensure that all students understand the subject rather than just knowing about it.

Two principles are considered to be important in order to deal with this situation.  Firstly, good learning should begin with concrete experience, and then move to abstraction.  It is considered to be a fallacy that “good” students have already done all their concrete work, and that they now only work in the abstract.  Secondly, a good approach to learning is to put the learner in an unfamiliar situation, and let them explore.  Some might choose to argue with this thinking, but it is not the purpose of this paper to explore this stance.  It follows the thinking of, for example, Seymour Papert in his Logo work of the 70s and 80s [1], and Richard Noss, also working with Logo [2].

Language & Virtual Machine Design
In order to follow these two principles, it was decided to explore hardware design by requiring students to program a simple CPU in assembler and note what happened as their program compiled and ran.  However, this led to a problem, in that even simple tasks require a lot of code to be written in assembler, thereby obscuring the learning that one wishes to occur.  It was therefore decided to replace a real CPU with a simple simulated one, and to provide an assembly language specifically designed to facilitate learning.

An example of the way in which this improved the situation concerns the display of answers to numeric calculations.  An assembler program that loads two numbers, adds them and stores the answer is trivial.  Displaying that answer is non-trivial, requiring many lines of code, and dealing with this task obscures the learning that was intended to be the focus of the exercise.  In a simulated language, it is possible to provide a single machine code instruction that takes the contents of a register and displays it in decimal on the display unit.  How this is done is not, for now, our concern; instead, we can focus on how this simple program compiles and what happens in the various registers as it runs.

It was decided to call the assembly language “CECIL”, and the latest version of the simulated CPU on which it runs is called the “SIM20”.  The design of this simulated CPU is crucial, since it is this that the students learn about as they explore the working of their CECIL programs.  Since it is simulated, and designed with learning in mind, it is effectively a “virtual machine”, and it is most important to determine just how far this simulation should be taken, and what changes are appropriate to make for good learning.

From the outset, it was clear that the underlying virtual computer needed to be specified in detail before the CECIL assembly language could be implemented.  The criteria developed in the preceding sections apply as much to the virtual hardware design as to the design of the CECIL language that gives access to it.

The SIM20 computer (“Simulated Instructional Machine”) is designed around the SIP200 (“Simulated Instructional Processor”) CPU.  This is of a conventional von Neumann design, and accesses 1K of memory.  The address and data buses are ten bits wide.  This means that any memory location can be directly referenced in a single word of memory, making instructions easy to understand.  The fact that the buses are not the conventional eight bits wide is considered an advantage, since students who are already familiar with computer design have their preconceived notions challenged and are made to go back to first principles, whilst novices have no problem with this – which is exactly what is required.
There are three working registers.  These tend to go under various names, but there is the A-register, intended as the main working register, the X-register, intended mainly for managing loops, and the Y-register, intended mainly for indirect addressing.

User space begins at location zero, and, by default, programs begin execution at that address.  However, as the student progresses, and they produce more complex code, it is possible for them to begin execution at a different address by putting the value of the start address in the “start vector” at location 1023.  System stack is similarly located at the top end of memory.

Input and output devices are direct memory-mapped.  Devices are also defined to be intelligent.  Thus the keyboard maintains its own input buffer and presents the buffered input to location 1013, the keyboard input port, for example.  Of course the reality is very different on most implementations of the SIM20 simulation, but this is the whole point of the modified interaction framework.  We are designing for learning, and having intelligent peripherals makes for efficient learning, enabling the student to focus on the learning we want to occur without distraction.
Of course, the SIM20 sounds to be, and is, a very basic computer, unlike any modern machine.  However, the recent development of the microcontroller has given credibility to this simulation, since it is very like working with a PIC chip, for example.  Indeed, once students are comfortable with the SIM20, it is a relatively comfortable step to learning about microcontrollers, should they wish to follow this route.

The SIP200 has 50 instructions in its instruction set.  The original KIP100, which preceded it, had just 38 instructions, but this grew as a result of building in additional facilities.  The big change from the original KIP100 design was the implementation of interrupts.  This had always been planned for, but was not originally implemented.  Following the principles of being simple yet extensible, interrupts can be ignored initially since they are disabled by default.  When a student has need of, or is ready for, interrupts, they can learn about the interrupt registers and instructions and explore the design of suitable code.
The design of the CECIL interface is given in figure 3.

[image: image3.jpg]2 cEcl X

£ 1% X|
Locaton: [1020
= ,

lelcome to the SIH20 Computer

T L] o] ]| L)

S e e

MenDump | fiom [1623 1o 1325





Figure 3: The CECIL Interface
It can be seen that the student is provided with three main windows.  On the left is the program editing window, where CECIL programs are written.  This can then be compiled, and the resulting machine code is inserted into the SIM20 memory.  The text window on the right is the display window attached to the SIM20 and displays anything written to it via the VDU port.  In addition, the student may choose to display the contents of the SIM20 memory via this window.  A button on this window provides the facility to run the compiled program.  The final window is the “display window” which is a simulation of a LED display.  This is configurable, but by default indicates the contents of the parallel and serial output ports.
This means that it is possible for a student to obtain a static memory dump of a block of memory, or to observe a live display of the contents of any two memory locations (including registers) whilst their program is running.

Lessons Learnt
There have been no quantitative experiments producing rigorous data relating to the success or otherwise of this approach.  This is largely because it started out as a “good idea”, and grew from there.  It is also difficult to access clear data in the form of scientific experiment, since there are far too many inter-related factors involved.  In spite of this, there are a number of interesting observations that may be made.
Firstly, the degree courses that have been developed and run to this model in three quite different institutions have achieved their objectives.  The current version recruits the fewest female and mature students, but this is in the context of an Engineering Faculty that is heavily orientated towards young male students.  Our SME-orientated course recruits many times more female and mature students by comparison with other courses in the department.  At the same time, it has been noted that graduating students are of a similar academic standard to those graduating in Computer Science, for example.  There are also examples of companies specifically targeting our graduates for employment.

All of this relates more properly to the success of the whole degree course rather than to the hardware design module in particular, although the module is a specific example of the whole course design philosophy.
Relating to the module in particular, the following issues have been noted.

Firstly, it was noted when the module was first introduced, replacing earlier work with “real” assembler, that results improved dramatically.  This was not all due to introduction of CECIL.  The first step was to switch from conventional numerical exercises to ones focused on control, so that students wrote programs to run traffic lights or disco lights, for example.  This was partly because it was considered that programs that gave immediate, visible results were preferable to ones that gave somewhat abstract results.  It was also because it was felt that control scenarios can give immediate tangible meaning to concepts such as logical “AND” and “OR” operations, for example.  Whatever the rationale, the effect was that a module that was previously noted for its high failure rate became one that produced similar mark profiles to other modules.
The second step was to switch from control work with conventional assembler to control work with CECIL.  The effect of this was to enable a change of focus.  Previously, the students were introduced to assembler as a way of giving substance to theoretical hardware concepts, yet the task of learning assembler was so challenging that the learning of assembler became a goal in itself.  With the introduction of CECIL, it became much easier to focus on the learning of hardware concepts through CECIL, rather than the learning of CECIL per se.
A particular incident will illustrate this.  The CECIL/SIM20 design is highly refined and rigorous.  The simulation actually ensures that subtractions are performed as a twos complement operation, for example.  One cohort of students included someone who intended to become a teacher rather than an IT Manager, and he was struggling with the concept of twos complement.  He constructed a program in CECIL to explore subtraction during one workshop, and probed the registers to find out what was going on.  The look of delight on his face as he discovered why one might want a CPU to work in that way has remained with me to this day.
Another example illustrates the power of rigorous design in creating simulations.  In another cohort, a student wanted to make use of sound in his program.  On being told that he could write an ASCII code seven to the VDU port to produce a beep, he complained that what he wanted was to be able to produce a range of different sounds.  The SIM20 design includes a tight specification for memory layout, including room for expansion.  As a result, it was possible to produce an update for CECIL for the following week which included a sound card, inserted in memory in the available expansion space.  This addition resulted in much interest and exploration amongst the students, which focused strongly on learning about relevant aspects of hardware design.
Another anecdotal observation concerns the extent to which it has been possible to relate later course learning to the CECIL experience.  In both networking and in operating system design, many opportunities arise to relate new concepts to the learning that has occurred earlier in the CECIL module.
Another aspect of this module which deserves mention concerns transferability, in the sense of the extent to which this module might work because of the enthusiasm of the developer, rather than because the inherent value of the approach.  It is of interest to note that the concept behind the degree has been implemented in varying forms in three different UK HE institutions over about the last fifteen years; two of these degrees are still running, including the CECIL-based hardware design module.  In addition, the CECIL approach has been used in a fourth UK HE institution, and in two additional Partnership institutions.  In total, some seven staff have taught the CECIL-based module.  Transfer has tended to be on the “share and move on” model, so that the author will co-teach with another member of staff, and then leave that member of staff to continue on their own.  However, staff tend to continue to be enthusiastic about the approach, and to take ownership of the concept and ideas behind it.  Partnership delivery takes this a step further, in that this hasn’t begun with co-teaching.  Instead, there has been a sharing of all course material, including lecture and workshop notes. What hasn’t happened, or indeed been sought so far, is transfer into other, unrelated, degree programmes.

A number of issues arise out of this work.

Firstly, there are issues concerning the improvement of the design.  One aspect of the simulation concerns visibility of the operations performed by the CPU.  It is extremely valuable to see, not only what the results of a given operation are, but to see it actually happening.  From this point of view, a “single step” facility has been requested, but not yet implemented.  It is possible for students to write programs that effectively single step by including some form of break instruction every other line, but this is tedious.  A single step facility would allow investigation of how programs work at the machine code level much more easily.

Some thought has also been given to the depth of the design.  Interrupts have already been implemented, and thought has been given to making provision for extending the memory of the SIM20, and including facilities for paging and file access, for example.  The vital issue to consider here is that CECIL was originally designed to the “KISS” principle (“Keep It Stupidly Simple”), and such changes greatly increase the complexity of the model.  What one wants to achieve is simplicity with extensibility and rigour.  Complexity is not the same thing, and great care is needed here not introduce confusion rather than greater depth.

A second consideration concerns follow-up work.  It has already been noted that work in HCI design tends to focus on usability rather than learning.  Abowd & Beale’s work was done some time ago, yet such work is still used as the foundation in that area of HCI.  For example, Preece, writing in 2002 [6], still refers to Norman’s work in HCI design, which is the model on which Abowd & Beale’s work was based.  If it is true that criteria and models for HCI design need to be different when applied to the context of learning, then there is work to be done in this area.

Another aspect of design that might warrant investigation concerns the development of criteria for exploratory learning scenarios.  In the UK, there has been a loss of credibility of learning through exploration, and it might be argued that there is good reason for this.  However, the CECIL/SIM20 simulation would seem to give weight to the argument that, in some circumstances, learning through exploration can be very effective.  Perhaps this might be more acceptable if one rephrased the observation as being that the CECIL/SIM20 simulation gives a good context for problem-based learning occur.  Again, in the UK, funding opportunities exist for implementing “exploratory learning” in an on-line learning context.  However, by comparison with the CECIL/SIM20 model, these examples of exploratory learning seem in fact to be highly structured, and more like guided walk-throughs.  The provision of a good simulation could make a substantial difference to what is currently being provided in the UK as exploratory learning.

It is possible that lessons could be learnt by looking across the subject divide to other disciplines.  With the recent success of the “Lord of the Rings” films, it is interesting to look back at C.S. Lewis’s comments on the trilogy, just after it was published in the 1940s [7].  Firstly, he comments that the Fantasy genre can be the best way to explore something really important.  We don’t need to focus on the detail of his argument here; in essence, it relates to the fact that it is possible to remove distracting practicalities and focus on the key issues.  Applying the same thinking to our context would mean that simulation might be a better way of exploring certain concepts than exploring reality, since it also allows us to remove distracting practicalities and focus on the core issues.

A second C.S. Lewis comment concerns the quality of Tolkein’s work.  He predicted it would be highly successful, amongst other reasons, because one feels that the author knows far more about the world of the Hobbits than he is willing to let on.  We might postulate that a good simulation is one that is sufficiently rigorously developed, that one feels that the creator knows more than she/he is letting on.  Another area that might be worth exploring from this point of view concerns video games.  “Classic” games would appear to be the ones that provide highly developed scenarios.  Rally car games that make the car crash if one attempts to leave the track are not generally as highly rated as ones where one can leave the track and keep driving, for example.

Conclusions
As noted above, much of the evaluation of the approach taken has been qualitative and anecdotal.  This is because the driving force has been successful recruitment and retention, and the production of high quality graduates, rather than producing data for research papers.  From that point of view, it could be argued that the continuing successful running of these degrees is data in itself.
Over the years that the approach has been used, the learning of hardware design concepts through CECIL has continued to flourish as a helpful way for students to assimilate the concepts they need for later work.

These are just ideas.  It would be interesting to explore these issues in more detail and to consider whether there might be important lessons to be learnt generally for the provision of simulations for learning, both in a conventional workshop context, and in an on-line learning context.

It is also possible that the principles for good design of virtual machines, presented earlier, should be updated and modified to reflect principles for good design of simulations intended for learning.  This list might include the importance of rigour in the design, and the value of the provision of concrete effects as noted above, for example.  On this basis, it might be possible to generalise to other contexts.
For the future, might it be good to provide a similar simulation that is geared towards learning about operating systems rather than hardware design, for example?  Or perhaps to develop a networking simulation to learn about data communication networks?

References
1 Papert S (1993). Mindstorms, Perseus Publishing
2 Noss R, Hoyles C (1992). Learning Mathematics and Logo, MIT Press
3 du Boulay et al (1981). The Black Box Within the Glass Box; Presenting Computing Concepts to Novices, International Journal of Man-Machine Study, 14, pp237-249

4 Argles D (1996). Concurrent Control for Children, PhD thesis, Southampton University, UK

5 Abowd G, Beale R (1991). Users, Systems and Interfaces: A Unifying Framework for Interaction, People and Computers, eds Diaper, D & Hammond, N, Cambridge University Press

6 Preece J et al (2002).  Interaction Design: Beyond Human-Computer Interaction, Wiley, USA
7 Lewis C S (2000). Tolkien’s The Lord of the Rings, from C.S.Lewis: Of This and Other Worlds, ed. Hooper, W. Fount, UK 
8 Brown JS, Collins A, Duguid P (1989) Situated learning and the culture of learning. Educational Researcher 18(1): 32-42.

9 Conole G, Oliver  M (1998) A pedagogical framework for embedding C and IT into the curriculum. ALT-J 6(2): 4-16.

10 Engestrom Y, Miettinen R, Punamäki R-L, Pea R, Brown JS, Heath C, Eds. (1999) Perspectives on activity theory (Learning in Doing: Social, Cognitive & Computational Perspectives). Cambridge: Cambridge University Press.

11 Lave J, Wenger E (1990) Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press.

12 O’Dowd JK, Spencer JD (1992) An audit of university education in trauma and orthopaedic surgery in Great Britain. J R Soc Med 85(4): 211-213.

13 Piaget J (1954) The construction of reality in the child. New York: Basic Books.

14 Suchman L (1988) Plans and Situated Actions: The Problem of Human/Machine Communication. Cambridge: Cambridge University Press.

15 Wenger E (1998) Communities of practice – learning, meaning and identity. Cambidge: Cambridge University Press.
�Issues are not conclusions – move this up to previous section.





