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Abstract

We present work in progress towards maximum margin hierarchical
classification where the objects are allowed to belong to more than
one category at a time. The classification hierarchy is represented
as a Markov network equipped with an exponential family defined
on the edges. We present a variation of the maximum margin mul-
tilabel learning framework, suited to the hierarchical classification
task and allows efficient implementation via gradient-based meth-
ods. We compare the behaviour of the proposed method to the
recently introduced hierarchical regularized least squares classifier
as well as two SVM variants in Reuter’s news article classification.

Often in hierarchical classification, the object to be classified is assumed to belong
to exactly one (leaf) node in the hierarchy (c.f. [?, ?, ?]). Following [1], in this paper
we consider the more general case where a single object can be classified into several
categories in the hierarchy, to be specific, the multilabel is a union of partial paths
in the hierarchy. For example, a news article about David and Victoria Beckham
could belong to partial paths SPORT, FOOTBALL and ENTERTAINMENT, MUSIC but
might not belong to any leaf categories such as CHAMPIONS LEAGUE or JAZZ.

In our setting the training data ((x;,y(x;)))i~, consists of pairs (x,y) of vector

x € R" and a multilabel y € {+1,—1}* consisting of k microlabels. As the model
class we use the exponential family

P(yx) o [ exp (wlge(x,ye)) = exp (w'(x,y)) (1)
eckE

defined on the edges of a Markov network G = (V, E), where node j € V' corresponds
to the j’th component of the multilabel and the edges e = (j,5’) € E correspond
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to the classification hierarchy given as input. By y. = (yj,ygv) we denote the
restriction of the multilabel y = (y1,...,yx) to the edge e = (4,5'). The edge-
feature vector @, in turn, is a concatenation of ’class-sensitive’ feature vectors
oY (x,¥e) = [ye = u]p(x), where [] denotes an indicator function (c.f. [?]), and
w, is the weight vector for edge e. The vector ¢(x) could be a bag of words—as in
the experiments reported here—or any other feature representation of the document
x. Also, note that although the same feature vector ¢(x) is duplicated for each edge
and edge-labeling, in the weight vector w = (W), . £.u, We still have a separate
weights to represent importance differences of a given feature in different contexts.

There are many ways to define loss functions for hierarchical classification setting
(c.f[?,72,2,1]). Zero-one loss Loy (y,u) = [y # u] is not very well suited to the task
as it ignores the severity of the discrepancy between y and u. Symmetric difference
loss {a(y,u) = 3 [yi # u;] does not suffer from this deficiency. However, it fails to
take the dependency structure of the microlabels into account. A more appealling
choice is the hierarchical loss function of [1]. It penalizes the first mistake along a
path, Lparn(y,u) =3, ¢;ly; # uj & yr = ukVk € anc(j)], where the coefficients
Croot = 1,¢j = Cpqa(jy/|51bl(j)| down-weight mistakes made deeper in the hierarchy.
Here we denoted by anc(j) an ancestor, by pa(j) the immediate parent, and by
sibl(f) the set of siblings of node j. In this paper, we consider a simplified version
of épATH, namely

lepan(y,w) =Y ¢ily; # 5 & Ypati) = Upa()]
J

that penalizes a mistake in child if the label of the parent was correct. This choice
lets the loss function to capture some of the hierarchical dependencies (between
the parent and the child) but allows us define the loss in terms of edges, which is
crucial for the efficiency of our learning algorithm. This is achieved by dividing the
microlabel loss of each node among the edges adjacent to it.

As in [?, ?], our goal is to learn a weight vector w that maximizes the minimum
margin on training data the between the correct multilabel y(x;) and the incorrect
multilabels y # y(x;). Also, we would like the margin to scale as a function of
the loss. Alloting a single slack variable for each training example results in the
following soft-margin optimization problem:

1 - :
H‘lhl,n 5 HW||2 + CZEl s.t. WTM(XMY) 2 Z(YMY) - fi,VZ,y (2)

=1

where Ap(x;,y) = ¢(x;,¥:) — ¢(x;,y). This optimization problem suffers from the
possible high-dimensionality of the feature vectors. A dual problem [?, 7]

1
To_ —_a” E a(x; <
Ig‘l%(a J4 2a Ka, s.t y (xi,y) <C

where K = A®T Ad is the kernel matrix and £ = (£(x;,y)) ;.y 1s the loss vector, allows
us to circumvent the problem with feature vectors. However, the number of dual
variables a(x;,y) is exponential (in number of microlabels) due to the exponential
number of constraints in (2), although a polynomial number of dual variables suffices
for an approximate solution [?].

For the loss functions o and /gpgr we can use a marginalization trick (c.f.
[?]) to obtain a polynomial-sized dual optimization problem with dual variables
te(Xi,Ye) = X fuju.=y.} ¥(Xi; 1) that can be seen as edge-marginals of the original



dual variables. After some arithmetic manipulation the optimization problem takes
the form

rggac Z Z Z Me(OCu ue)ge(xia ue)

ecE i=1 u.

- % Z Z Z Me(xiaue)Ke($i7ue;xj,Ve),U/e(l‘j,Ve)

e€E i,j=1ue,vVe

s.tZue(mi7ue) < C,Vx;,e € E,
> pe(x,y,9) = Y per(%,9,y) =0, Ve 3e’: €/(2) = e(),
D ne(x,5,y) = > per (%, 5,y) = 0, Ve Fe” : €”(2) = e(2). (3)

where K. is an edge-kernel, defined by K.(x;, uc; 2, ve) = Me (x4, ue)TAqﬁe(xj, Ve).
While this formulation is closely related to that described in [?], there are a few
differences to be pointed out. Firstly, as we assign the loss to the edges rather
than the microlabels, we are able to use richer loss functions than the simple ¢a.
Secondly, single-node marginal dual variables (the y;’s in [?]) become redundant
when the box constraints (the first constraint set above) and marginal consistency
constraints! (the last two constraint sets) are given in terms of the edges. Finally,
we utilize the fact that the ’cross-edge’ kernel values Ap. (z,y)T Ap. (2, y’) are zero
when using the feature vectors described above. However, even this considerably
smaller optimization problem is a challenging one to solve.

Using our efficient reformulation of the problem (3), we are able to arrive at a more
tractable problem. Notice that the box constraints and the marginal consistency
constraints are defined for each x separately, which suggest a possible decomposi-
tion. Unfortunately, the objective does not decompose similarly as there certainly
exists non-zero kernel values k(e,z,y.,e,2',y,) for most x # x’. However, the
gradient of the objective g = (£.) . — Kpp can be decomposed by training exam-
ples. This gives us the possibility to conduct iterative constrained gradient ascent
in subspaces of the examples, where the gradient update for single x is relatively
cheap and the more expensive gradient update only needs to be performed when
moving onto the next example. A working set approach, where a chunk of worst
predicted training exmaples are added in to the current working set (c.f [?, ?]) also
immediately suggests itself. These algorithms can be implemented with relatively
low memory footprint by taking into account the special structure of the feature
vectors, that repeat ¢(x) many times. We omit details due to lack of space.

We report on an initial experiment with hierarchical classification of Reuter’s
newswire articles. We used the Reuters Corpus Volume 1, RCV1 [2]. The 2500
documents were used for training and 5000 for testing. Each document in the cor-
pus is associated with one or more topic codes, which are arranged as a forest of
4 trees. For our experiments we used the tree corresponding to the 'CCAT’ family
of categories, which had a total of 34 nodes We compared the performance of the
presented learning approach—below denoted by H-M3—to three algorithms: SVM
denotes an SVM trained for each microlabel separately, H-SVM denotes the case
where the SVM for a microlabel is trained only with examples for which the an-
cestor labels are positive, and H-RLS is the algorithm described in [1]. For training

1The notation Ve e’ is meant to indicate that to ensure consistency, it suffices to pair
up each edge with another, all pairs do not need to be considered



H-M? we use both the symmetric difference loss £ and the edge-loss {gzpgr. For
training svM and H-SVM, these losses produce the same learned model. The value
C = 1 was used in all experiments. It should also be noted that, due to time
constraints, H-M>? models were not trained to convergence but until the duality gap
was 5 — 10% of the objective value. This took around 4 hours of CPU time on a
high-end PC running MATLAB 7.0.

For H-svM and H-RLS to obtain a reasonable prediction accuracy it was necessary
to postprocess the predicted labeling as follows: start at the root and traverse the
tree in a breadth-first fashion. If the label of a node is predicted as —1 then all
descendants of that node are also labelled negatively, reasoning that if the algorithm
cannot make coarse-grained decisions we should not punish it for inability to make
fine ones (c.f. [1]). For the other algorithms such postprocessing had only a minor
effect so for them the results are shown without this postprocessing.

The results of our comparison are shown in the table below. Flat SVM is expectedly
inferior to the competing algorithms, as it cannot utilize the dependencies between
the microlabels in any way. In terms of zero-one loss H-M3-£A performs the best,
while H-RLS has the lowest /o and also has slightly lower ¢pary loss than the
competitors. In this experiment {gpgr and £p a7y were equal in all cases. This is
mostly due to the shallowness (3 levels) of the hierarchy.

Algorithm lon/m | ba/m | lparu | LepcE

SVM 0.329 | 0.611 0.099 0.099
H-SVM 0.298 | 0.570 0.097 0.097
H-RLS 0.281 0.554 0.095 0.095

H-M®-fa 0.271 | 0.627 | 0.144 | 0.144
H-M>lepce | 0.294 | 0.643 | 0.102 0.102

Based on these initial experiments, we conclude the presented H-M? method seems
promising, although the prediction accuracies do not differ very much between the
algorithms.

We plan to extend the experimental studies by the time of the workshop, taking
on board other document hierarchicies. Also, the good choice of loss function is far
from clear from these experiments alone. For example, scaling of the {p a7y and
{gppcr losses can be done in several ways only one of which was examined here.

References

[1] Y. Altun and T. Hofmann I. Tsochantaridis. Hidden markov support vector machines.
In ICML’03, pages 3—10.

[2] L. Cai and T. Hofmann. Hierarchical document categorization with support vector
machines. In 13 ACM CIKM, 2004.

[3] N. Cesa-Bianchi, C. Gentile, A. Tironi, and L. Zaniboni. Incremental algorithms for
hierarchical classification. In Neural Information Processing Systems, 2004.

[4] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. In
ICML’04, pages 209-216.

[5] T. Hofmann, L. Cai., and M. Ciaramita. Learning with taxonomies: Classifying doc-
uments and words. In NIPS Workshop on Syntax, Semantics, and Statistics, 2003.

[6] David D. Lewis, Y. Yang, Tony G. Rose, and Fan Li. Rcvl: A new benchmark collection
for text categorization research. JMLR, 5:361-397, Apr 2004.

[7] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Neural
Information Processing Systems, 2003.

[8] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In ICML’04, pages 823—-830.



