
Grid Resources for Industrial Applications

Steve Taylor
IT Innovation Centre

2 Venture Road, Chilworth
Southampton, SO16 7NP, UK

+44 23 8076 0834
sjt@it-innovation.soton.ac.uk

Mike Surridge
IT Innovation Centre

2 Venture Road, Chilworth
Southampton, SO16 7NP, UK

+44 23 8076 0834
ms@it-innovation.soton.ac.uk

Darren Marvin
IT Innovation Centre

2 Venture Road, Chilworth
Southampton, SO16 7NP, UK

+44 23 8076 0834
djm@it-innovation.soton.ac.uk

Abstract

We introduce Grid Resources for Industrial
Applications (GRIA), a project that aims to enable
commercial use of the Grid. GRIA enables service
providers to rent out spare CPU cycles, and clients to
hire those CPU cycles. Web services play a key role in the
architecture of GRIA, chiefly through their
interoperability and security features - they provide a
well-defined means of limiting clients’ access to discrete
operations, thus allowing clients to do “work” on a
remote application server without giving them full shell
access to the server. In this paper, we focus on
requirements, business processes and security, and
interoperability and standardisation issues raised by this
work. We also describe some of the lessons learned
through experience of designing, implementing and
deploying a prototype system, GRIA v1.

1. Introduction

GRIA is an acronym for Grid Resources for Industrial
Applications and is a system that enables:
• service providers to rent out spare CPU cycles, thus

attaining better utilization; and
• clients to hire those CPU cycles, thus providing them

with access to HPC when they need it.
In short, it aims to permit commercial use of the Grid

in a secure, interoperable and flexible manner.
Figure 1 shows the basic premise of GRIA for an

example structural analysis problem using the finite
element method (FEM). An engineer wants to outsource a
simulation because they do not have enough internal
resources to get it done in time. The horizontal path is the
actual engineering simulation, and the vertical path is the
“business” side of the outsourcing – discovery of a
service provider, negotiation of quality-of-service (QoS)
terms (perhaps including price, runtime, machine spec,

software spec), agreement, running the job and
settlement. This type of problem is typically very
demanding of computational resources, and may not be
run frequently - hence it is an ideal candidate for the
computation-on-demand nature of GRIA.

Mesh
Generation

Modal
Matching

Discovery

Negotiation

Agreement

Settlement Attribution/
Recovery

Business
Process

Analysis
Process

success failure

FEM

Resource Reservation
Legal contracts

Payment systems
Audit

Traceability

CRM
ITT/RFP

Resource allocation

Performance
Modelling

Sign-off

Figure 1: Example use of GRIA

The GRIA software consists of three evolving
prototypes: GRIA v0, GRIA v1 and GRIA v2. Each
consists of a client and service provider component.
GRIA v0 was a basic first attempt at providing a basic
business process for Grid job submission. GRIA v1
introduced a more extended business process to handle
long-lived jobs and encompass business procurement
processes, and is currently deployed for testing in a
number of project partner sites across Europe. GRIA v2 is
now in development, and with enhanced software
architecture and a wider range of business models.

Section 2 of this paper covers the requirements for
GRIA, and why these are important. Section 3 covers the
business processes we have adopted. Section 4 discusses
our approach to security. Section 5 discusses business
process enforcement, which is a means of ensuring that

the business processes are adhered to. Section 6 covers
interoperability, and the importance of a standards-based
approach. Finally, Section 7 concludes with a summary of
lessons learned and some indications of future work in
GRIA v2, and possible contributions to standards and
best practice in this field.

2. Requirements

2.1 Business Processes

Our primary purpose in the GRIA project is to provide
ways to do business on the Grid. GRIA builds on the
work of the DISTAL project [1], which used an agent
(rather than specifically Grid) platform to demonstrate the
possibility of negotiating for software services. Lessons
learned from DISTAL concerning business processes
included:
• A need to keep people in the loop. Business decisions

are complex, and people don’t want them automated.
• A need to use standards. Open systems improve

exploitation and take-up.
Business processes in GRIA have been designed to

take account of these lessons. We aim to use existing
business models and processes as far as possible, and
avoid inventing new models for the Grid except where
this is essential. Traditional business processes have
operated successfully for many (hundreds of) years. By
starting from existing processes, we make it easier to
integrate Grid models into existing businesses, and reduce
the risk that our models and processes will prove unstable
in deployed systems. We note that the recently formed
GGF Grid Economic Services Architecture Working
Group [12] concurs with this philosophy, which is also
reflected in the Computational Markets Project Grid
Economic Services Draft Proposal to GGF 8 [7], [14] and
in the discussion of a computational economy framework
for the Grid by Buyya et al [6].

2.2. Security

Traditionally the Grid has been used by academics
cooperating in benign environments. As soon as we wish
to use the Grid for commerce, we face a completely new
set of security requirements. Indeed, we must use
commercial grade security to remain credible. The main
issues are discussed by one of us in the Rough Guide to
Grid Security [22], which was motivated partly by the
needs of a commercial grid, and has guided the
development of GRIA.

In the commercial Grid world, a service provider’s
primary concern is to provide computational resources to
traceable and creditworthy users:

• For traceability, mutual authentication of client and
service provider identities is paramount.

• All communication must be over secure channels, so
that eavesdroppers cannot read or alter the data.

• A service provider must protect itself from breaches
such as hacking and denial of service attacks.

• The system must support “security in depth” -
employing a succession of barriers that limit the
damage should any one barrier be breached.

• The system must not undermine existing security
barriers. In particular, we must operate with
conventionally configured firewalls, and not rely on
tunnelling around them.

• We must base the system on off-the-shelf
components that are mature and regularly patched.

2.3. Interoperability

GRIA is intended to provide a means to make money
by exploiting a market in grid-based computation, as a
consumer or a supplier to this market (or possibly both).
To maximise the potential size of this market, we must
make the GRIA technology as interoperable as possible.

2.4. Summary

In summary, GRIA had to be:
• conservative in its business models and processes;
• secured to normal commercial standards; and
• open and interoperable.

We now examine how we sought to meet these
requirements, and what lessons we believe can be learned
from our experiences.

3. Business models and processes

3.1. Negotiation model

The first business process investigated and
implemented in GRIA v0 and v1 is a traditional Invite–
Tender–Contract model. A client invites a number of
service providers to tender for a particular piece of work.
The service providers respond with tenders that indicate a
run time for the work, and how much it will cost the
client. The client selects the tender that best suits their
needs, and exchanges contracts with the service provider
to confirm the terms are accepted by both sides. Once
both sides have digitally signed the contract, the job is
submitted and run.

Our implementation has the (human) end-user decide
which proposal to accept, leaving them in control of the
trade-off between performance, cost and their level of
trust in the service provider. This is consistent with our

experience from the earlier DISTAL project, where users
rejected the (apparently more attractive) notion that these
decisions could be taken by software agents.

3.2. Quality of service models

The quality of service model used with the above
negotiation process is based simply on the response time
for a single job. We express quality of service as a set of
obligations accepted by each party:
• The client must state the amount of work needed for

their job, when they will submit the input data, and
when they will collect the output.

• The service provider agrees to allocate a resource
capable of delivering the required amount of work
between submission and collection time, and to store
the output until the collection time.

The noteworthy point about this approach is that we do
not make absolute guarantees that resources will be
available to run jobs by a certain time. We believe that
this is not feasible in a real commercial environment.
Instead, the parties state their obligations, and agree what
should occur if those obligations are or are not met. This
is a robust approach that recognises that guarantees are
not absolute, and uses conventional business practices to
address this.

To operate our quality of service model, we needed a
measure of computational work that is independent of the
resource that will be used, but allows the service provider
to calculate the run-time and decide whether they can
meet their side of the agreement. We used a very simple
model in which the execution time for a job on a given
machine is simply:

⎟
⎠
⎞

⎜
⎝
⎛=

R
WTe

where W is the workload of the client’s problem, and R is
the relative performance of the target machine. We can
measure R for a given machine by running a
representative benchmark for which we know W. We can
then estimate W for a given job from an estimate (or
measurement) of Te on a machine where R is known, and
thus we can estimate run-time on any other machine. This
allows the service provider to determine whether any of
their machines is acceptable under a given quality of
service agreement.

In GRIA v0, the client-side estimate of W was
obtained by asking the user for an estimate of run-time on
their own machine, which the GRIA client had
benchmarked in the background. In GRIA v1, we have a
more sophisticated model in which W and R are both
vectors, covering different aspects of machine
performance (processing, disk I/O, and memory
bandwidth), and the W vector is estimated using a neural

network developed by NTUA [10], [11], to model our
applications (FEM analysis and 3D video rendering).

In both GRIA releases, we use a simple model of
resource availability to estimate the queuing time for a
non-dedicated compute cluster controlled by Condor or
PBS. This model is also used to limit the total amount of
work sent to the cluster by GRIA.

3.3. Discovering service providers

In real-life, organisations do not allow staff to engage
arbitrary service providers to fulfil their day-to-day needs.
This is certainly true for services involving commercially
sensitive data. In sectors such as health-care, where
personal data is involved, allowing an arbitrary service
provider to be used as a processor of this data is actually
illegal under the relevant EU Directives [16].

Instead, most organisations maintain an “approved
supplier list”, of suppliers with which the organisation has
negotiated acceptable terms including price, quality and
(where appropriate) confidentiality, etc. These suppliers
have been vetted and approved, and possibly preferential
rates negotiated with the supplier. Anyone within the
organisation that needs to purchase a particular item or
service should use an approved supplier, as these have
been vetted and approved.

We use approved supplier lists in GRIA to record the
relationships that a client organisation has with approved
service providers. This fits our philosophy of modelling
existing B2B processes as far as possible. For users, the
approved supplier list acts as an internal registry that they
can consult to find potential service providers.

This is not to preclude the use of external (or public)
registries. In GRIA, these are a source of classified
information about available services from which to
populate the approved supplier list.

3.4. Financial processing

In GRIA we have assumed that all financial
processing, from the credit checks performed when a
client is first encountered, through to the transfer of
transactions to the bank for processing, is out of band.

The DISTAL project [1] taught us that humans would
much rather be responsible for decisions involving credit
checks and credit limits, as an automated process cannot
take responsibility. You cannot sue a computer because it
gave a dishonest customer a large credit limit!

Clearly, there is no need to invent a new banking
system for the Grid (given that we are using fairly
conventional business processes). Because of this, GRIA
does not provide accounting facilities beyond statements
of usage (from which bills may be generated) and
logging.

3.5. Lessons learned

The main lessons learned about Grid business
processes in GRIA v1 are as follows:
• emulating existing processes where possible is the

best approach; but
• the Invite-Tender-Contract model is probably too

heavyweight to be used on a “per job” basis.
By emulating existing business processes, we have

found it relatively easy to integrate with existing
infrastructure, which means one doesn’t have to develop
Grid alternatives for things like banking services, etc.

However, having the user “sign-off” each individual
job, with an exchange of signed QoS contracts, is not a
good idea unless each job is very expensive. It may be
sensible where a job involves heavy use of a high-end
commercial software package, but this is not the case in
the GRIA project, where the cost of each job can be as
little as €1. In these circumstances, we need lightweight
business processes where a client can pre-negotiate
quality of service, after which they can just submit and
run jobs, the QoS terms having been already taken care
of.

We are investigating solutions to this problem for
GRIA v2. We are currently focusing on a “resource
rental” model for this multiple-job type of QoS
agreement. Here, the QoS is agreed over a particular time
period, for a particular total workload, and the client (or
their delegate) can submit as many jobs as they like
within these limits. The cost to the client may be
presented as a tariff: cost per unit of workload, for
instance.

4. Security Features

4.1. Rings of Security

In accordance with our “security in depth” philosophy,
GRIA provides multiple “rings of defence”. In most
cases, this is achieved simply by adopting solutions from
the world of web-based e-Commerce systems, and
working within, rather than around the operational
security best practices developed there.

GRIA uses mature, off-the-shelf software components
as its application container and web server such as the
Apache HTTP Server [3]. It is of primary importance that
the user-facing applications are mature, well patched, and
are kept up to date using a prompt security advisory
service [4]. A critical feature of GRIA is that we have not
modified or “Grid-enabled” any of the components it is
based upon. If vulnerabilities are discovered, GRIA users
can use the patches from Apache – they don’t have to
wait for a GRIA-specific version of the patch to appear.

We advocate that GRIA services and associated
resource clusters be placed in a De-Militarised Zone
(DMZ). Again, this is conventional best practice for most
web-based business systems.

On the client side, we expect that the user’s system
will be behind a firewall configured to allow outgoing
connections only. GRIA, like other recent Grid systems is
based on Web Services, using SOAP messages to
implement an RPC model of service invocation. Unlike
some other Grid systems, GRIA’s invocation mechanisms
operate over a standard HTTPS transport. GRIA v1
services are designed so that each SOAP invocation is
reasonably short-lived, so we don’t have problems with
TCP connection time-outs, and there are no “call-backs”
from the service to the client (e.g. for notification). These
features mean that GRIA works with conventional
HTTPS proxies and firewall configurations. There is no
need for the system administrator to open any non-
standard tunnels in the firewall, and client-side users
continue to benefit from its protection.

GRIA also uses both transport- and message-level
security. At the transport level, GRIA (through Apache)
enforces mutual authentication of HTTPS connections.
This ensures that an unauthenticated client cannot access
a GRIA service, as the HTTPS connection will be
dropped in the SSL handshake, before any data reaches
the Web Service message processor.

Once the HTTPS connection is established with an
authenticated user, message-level security is used to
enable separate authentication (and non-repudiation) of
message content. GRIA v0 and v1 require that each
message is signed in conformance with the W3C SOAP
Digital Signature Extensions Note [21]. GRIA v2 will
support end-to-end message authentication and possibly
encryption using the WS-Security standards [26]. This
will enable greater flexibility for intermediary message
processors and action delegates.

4.2. Minimal authorisation

GRIA uses a so-called “minimal authorisation”
security paradigm. Traditional academic Grids have
supported shell access (or something equivalent),
whereby the user accessing a remote resource can run
essentially any command on the remote machine. This
undermines the philosophy of “security in depth”, in
which one aims to restrict the user’s rights to the
absolutely [22].

On a commercial Grid, users are much less likely to
know each other personally, and may have divergent (or
even conflicting) interests. This means that we cannot
rely on collaboration or goodwill to regulate behaviour.
Under these circumstances we need to practice “minimal
authorisation” - limiting user access to specific resources,

rather than allowing them arbitrary rights associated with
shell access. Web Services provide just this - a means of
limiting clients’ access to well-defined operations, thus
allowing users to do “work” without giving them full
shell access to the application server. In an academic
Grid, this may be seen as a limitation, but for a
commercial Grid, it is an essential security feature.

4.3. X.509-compliant PKI

Based on the requirement for commercial grade
security, subscriber identification, privacy, and non-
repudiation, GRIA has implemented and operates an
open, fully X.509 compliant, Public Key Infrastructure
(PKI).

Full compliance with the X.509 standard requires a
Certification Policy (CP) defining the requirements of the
PKI, and the constraints that must be met by its
implementer(s). The GRIA PKI is intended to be open, so
the CP allows for multiple Certification Authorities
(CAs), provided they operate in accordance with the CP.
Each GRIA site can choose which certification authorities
to trust, and there is no need for “cross-certification” to
support this. We anticipate that in future, GRIA user
communities will choose their own CP and CAs.

The GRIA Project’s own Certification Policy defines
the rules for the GRIA PKI, and follows the
recommendations of the IETF RFC for Certificate Policy
and Certification Practices Framework [18]. (We conform
to the 2002 version of RFC 2727, the latest at the time of
authorship of the CP and the CPS. This is now obsolete
and replaced by RFC 3647, listed in the references.)

The emphasis of the GRIA Project CP is on security,
user education and support, rather than scalability or cost.
This is acceptable within the project, where the systems
are prototypes, users may be unfamiliar with PKI
operation, and we need a high level of security and
mutual trust. Obviously, we do not expect commercial
markets to operate their PKI in the same way, but the
GRIA technology is flexible enough to handle this.

Finally, GRIA does not support the use of Grid proxy
certificates. The August 2003 Internet Draft concerning
proxy certificates [19] defines a proxy certificate as:
• “…a certificate that is derived from, and signed by, a

normal X.509 Public Key End Entity Certificate or
by another Proxy Certificate for the purpose of
providing restricted proxying and delegation within a
PKI based authentication system.”

Our main concern with proxy certificates is that they
give (albeit temporary) credence to a private key that may
not be under the associated user’s control. For
commercial use, where protection of identities and private
keys is paramount, this is unacceptable. We therefore
cannot use GSI-enabled protocols such as HTTPG [17] or

Grid-FTP [15], as end-to-end authentication is needed for
all process invocation. GRIA performance suffers
somewhat as a result, but given the security drawbacks,
we cannot permit the use of proxy certificates in a
commercial environment.

4.4. Lessons learned

The main lesson from the GRIA security
implementation work is that industrial and commercial
users are far happier to accept a Grid that uses existing
best practice, even if this means we are unable to exploit
all the performance advantages of service-initiated
messaging through special firewall tunnels, GSI-enabled
protocols, and shell access (or equivalent).

Having said that, we recognise that application
developers do not like the restriction to bilateral client-
server interactions enforced by GRIA. We do not plan to
address this in GRIA v2, but we are investigating
alternative ways to support peer-to-peer application
topologies without losing control in the UK E-Science
project “The Semantic Firewall” [23].

5. Business process enforcement

5.1. Workflow enforcement

Given that we are operating a commercial service,
with high security requirements, we must be able to
control who can do what, and in which context. For
example, we cannot allow the running of a computational
job until there has been an agreement that payment will
be made for the computation.

In GRIA, workflow enforcement provides this link
between business process and security. Our approach has
been to model all business processes as a hierarchy of
bilateral “conversations” between clients and service
providers. We then implemented a “conversational
authorisation” system to support dynamic authorisations
containing who can do what, and in which conversation.
An operation will be executed for a particular user in a
particular context only if an authorisation matching this
specification is present. All other situations result in
denial. Hence business process workflows are enforced.

Conversational authorisation is grounded in the Web
Service interface of a GRIA service. It governs which
exposed operations are accessible to a user in a particular
conversation. A WSDL interface typically exposes many
operations, all of which may normally be executed by a
user. Our solution regulates the use of these Web Service
operations to enforce the business workflow.

The operations themselves may open and close
authorisations – for example, an upload of data may be
permitted only once, and must precede the running of a

job. The first thing the “UploadData” operation does is
check that there is an open authorisation to upload data
for the quoted user and conversation. Once the data is
successfully uploaded, it closes the authorisation to
upload data in the same conversation, and opens
authorisations for subsequent operations (for example
running a job). Thus, the workflow sequence is enforced.

5.2. Contexts

We have found that hierarchical contexts are
extremely useful for representing business processes. At
each level, there is a well-defined subject and
conversational history that the context refers to. This
approach is strongly based on existing business
processing mechanisms.

For example, a B2B relationship is likely to involve a
client opening an account with a service provider
organization. The account is the subject of a conversation
at this level, and the account number is the service
provider's identifier for that particular relationship – in
other words a context identifier. Within the context of this
account, orders are raised by the client, and within an
order, there may be many items, each of which may be
delivered and invoiced separately. Thus there is a
hierarchy of contexts, allowing each individual document
to be traced back to the top-level account.

To represent this in GRIA, we use three nested levels
of conversations, an example of which is shown in Figure
2:
• a conversation referring to the account opened by a

Budget Holder client with a service provider;
• a conversation referring to a quality of service

agreement between a User client and service
provider, which covers a job (or in GRIA v2, jobs)
that will be run on an account; and

• conversations referring to individual jobs and data
stores, that use resources allocated under a quality of
service agreement.

 Account - owner = Budget Holder, ID = 1, parent = none

 Negotiation - owner = U1, ID=10, parent = 1

 Run -
 owner = U1
 ID = 100
 parent = 10

 Run -
 owner = U1
 ID = 101
 parent = 10

 Run -
 owner = U1
 ID = 102
 parent = 10

 Run -
 owner = U1
 ID = 103
 parent = 10

 Negotiation - owner = U2, ID=20, parent = 1

 Run -
 owner = U2
 ID = 200
 parent = 20

Figure 2: Account context hierarchy
This forms a tree-like structure representing the

relationship between a client and service provider. At any
instant, the contextual hierarchy captures the status of the
client-server relationship (e.g. outstanding jobs or total
amount owed).

To represent contexts, we have found it useful to
borrow an established method from traditional business
processes – “our-ref”, and “your-ref”. This is a simple but
effective means of allowing two communicating parties
keep track of a particular subject. The key point is that in
each bipolar communication, there are two references,
one owned by each side respectively. Each side owns,
uses and manages one reference ID (our-ref), and quotes
the other (your-ref) back to its owner. Because each side
is responsible for their own reference, they can ensure
that this reference is unique within their own domain.
Thus we do not need a global scope or schema for
representing context. Of course, this tried and tested
method has worked for many years in paper-based
business processes.

When a new conversation is started, the conversational
authorisation system supplies the conversation ID for it,
and the service provider adopts it as their service provider
reference.

5.3. Delegation

Each conversation has an owner who can extend
access rights to other parties through delegation. This is
the mechanism by which authority for a particular action
in a particular context is conferred on a user. GRIA v1
provides a web-based account management portal,
operated by the service provider (using certificate-
authenticated HTTPS), enabling the top-level
conversation owner to access and manipulate delegated
access rights on their account.

An example of delegation and its relationship to the
hierarchical context model is illustrated in Figure 3.

Customer

Main
User

Budget
Holder

Service
Provider
Systems

A
ccount

Interface
A

ccountInterface
Account
Interface

Ac
co

un
t

S
er

vi
ce

Jo
bs

an
d

D
at

a
Se

rv
ic

e

Delegate Access

Delegate Access

Credit and Payment Details

Pricing Terms

Pricing Requirements

Specify jobs, data storage,
QoS needs

QoS Terms

Input data

Output data

Checking Output data

Checking Input data

Checking job progress

Checking job progress

Figure 3: Delegation

The Budget Holder has opened an account with a
service provider, and this is the top-level conversation. If
the Main User wishes to negotiate QoS with the service
provider, they must have permission from the Budget
Holder. The account manager allows the Budget Holder
to communicate this to the service provider by opening an
authorisation on the account for the Main User to access
the “OpenQoS” operation. Thus they can delegate
responsibility for negotiating QoS on their behalf.

When the Main User opens a QoS negotiation, they
quote the account number to the service provider. The
service provider is then able to check this against their list
of authorisations, and if the main user is permitted, a new
conversation is created, whose parent conversation is the
account. Given the hierarchical nature of the contexts,
when the time comes to send the Budget Holder a bill, it
is a simple matter to collect the relevant information as
the service provider must only recursively look for is the
set of unsettled children of the account.

Now further suppose that the job is run on behalf of
the Customer. The Main User may now open an
authorisation for a Customer to examine the results of the
job, thus delegating access to the Customer. This is done
exactly the same way the Budget Holder delegated access
to the account for the Main User.

5.4. Lessons learned

The main lessons learned from our work are that it is
possible to construct dynamic authorisation mechanisms
that relate easily to business processes. In doing this, we
have not found it necessary to use role-based access
control. The usual reason for using role-based
mechanisms is the need to manage access rights for large
numbers of users, but in GRIA this becomes a fully
distributed responsibility.

Neither have we used centralised authorisation
services in GRIA. At present, we cannot see any use for
such services. Business process enforcement is a matter
for the participants in a process, and few businesses
would trust an external agency to handle this, especially a
centralised service that could become the focus for
criminal attacks.

Thus, a distributed process-oriented authorisation
scheme similar to our dynamic conversational model
seems inevitable. We can envisage changing some details
(e.g. adding support for roles), but see no benefits in a
centralised approach.

6. Interoperability issues

GRIA aims to contribute to standards, but not by
trying to promote small changes in existing Grid
specifications (e.g. by contributing to the Resource
Specification Language used in the Globus Resource
Allocation Manager (GRAM) [13]). Instead, we are
focusing on emerging activities to understand and express
standardisation requirements in the Semantic Web and
Semantic Grid [20] communities. We believe that this
approach will lead to a mature understanding of needs,
which can then feed into next-generation standards for
things like resources, quality of service and security.

A number of challenges for commercial Grids in
industrial applications have been presented at GGF 9 in
[9]. The focus for that discussion was the challenges
coming from business modelling for the representation of
resources, scheduling and quality of service. This is our
current focus in GRIA v2, but we see that in the longer
term we will need to reflect processes (and especially
process enforcement) in security standards, etc. Other
semantic-level standards that will be of interest to GRIA
are those for describing business processes and function,
such as BPEL4WS [5], and DAML-S [8], [2].

We also perceive that the GRIA approach for
contextualising business processes is consistent with the
ideas for endpoints from the WS-Addressing [24]
proposals. It is also consistent with the recent proposals
from IBM and Argonne National Laboratory for a Web
Services Resource Framework [25]. We believe that it
will be both feasible and interesting to evolve GRIA in
this direction, and at some future time demonstrate
interoperability with a Globus 4 Grid.

Ultimately, we believe that a client organisation should
be able to discover a service provider that may suit their
needs, and download from that service provider a
specification of how the service provider wants to do
business. This implies standardisation over the
descriptions even of service function.

7. Conclusions

The main conclusions of our work on GRIA are as
follows.

Firstly, in an industrial Grid, one must start from
business processes that industry is used to, and avoid
extending them except where absolutely necessary. This
approach makes the Grid more accessible and acceptable
to industry, and also makes it easier to integrate the Grid
with industry’s existing infrastructure and processes.

Secondly, an industrial Grid must be based on existing
best practice in security to gain acceptance. Our findings
show both this goal is achievable, but that there may be
some drawbacks, especially for performance. However,
on an industrial/commercial Grid, security must always
come first.

Finally, an industrial Grid will depend heavily on
semantics to achieve interoperability, especially at the
level of business processes and corresponding security
mechanisms. We expect that progress in Semantic Web
and Semantic Grid standards will provide a platform for
the next generation of lower-level standards for resources,
quality of service and security.

8. Acknowledgements

GRIA is an IST project (Project Number 33240)
funded by the European Commission and coordinated by
IT Innovation, University of Southampton, UK. The
authors acknowledge the contributions of the other GRIA
partners: National Technical University of Athens,
Dolphin, CESI and Kino. The authors also acknowledge
the contribution of Professor Dave De Roure, University
of Southampton.

9. References

[1] Addis, M. J., Allen, P. J. and Surridge, M. (2000)
“Negotiating for Software Services”. In Tjoa, A. M., Wagner, R.
R. and Al-Zobaidie, A., Eds. Proceedings Eleventh
International Workshop on Database and Expert Systems
Applications (DEXA 2000), pages 1039-1043, London, UK.
[2] Ankolenkar, A., Burstein, M., Hobbs, J. R., Lassila,
O., Martin, D. L., McDermott, D., McIlraith, S. A., Narayanan,
S., Paolucci, M., Payne, T.R. and Sycara, K., "DAML-S: Web
Service Description for the Semantic Web", The First
International Semantic Web Conference (ISWC), Sardinia
(Italy), June, 2002.

[3] Apache Web Server, http://httpd.apache.org/

[4] Apache Web Server Security Advisories,
http://httpd.apache.org/security_report.html

[5] Business Process Execution Language for Web
Services (BPEL4WS) Specification, Version 1.1,
http://www.ibm.com/developerworks/library/ws-bpel/

[6] Buyya, R., Abramson D., Giddy J., and Stockinger H.,
“Economic Models for Resource Management and Scheduling
in Grid Computing”, Special Issue on Grid Computing
Environments, The Journal of Concurrency and Computation:
Practice and Experience (CCPE), Wiley Press, USA, May
2002.

[7] The Computational Markets Project,
http://www.lesc.ic.ac.uk/markets/

[8] DAML-S, http://www.daml.org/services/

[9] De Roure, D. and Surridge, M., “Interoperability
Challenges in Grid for Industrial Applications”, Semantic Grid
Workshop at Global Grid Forum 9, 5-8 October 2003, Chicago,
USA.

[10] Doulamis, N., Doulamis, A., Panagakis, A., Dolkas,
K., Varvagirou, T. and Varvarigos, E. “Workload Prediction of
Rendering Algorithms in GRID Computing,” European
Multigrid Conference, Oct 7 - 10, 2002, Hohenwart, Germany.

[11] Doulamis, N., Doulamis, A., Panagakis, A., Dolkas,
K., Varvarigou, T. and Varvarigos, E., “A Combined Fuzzy -
Neural Network Model for Non-Linear Prediction of 3D
Rendering Workload in Grid Computing,” submitted to IEEE
Trans SMC, PART B.

[12] The Global Grid Forum Grid Economic Services
Architecture Working Group (GESA-WG),
http://www.gridforum.org/3_SRM/gesa.htm

[13] GLOBUS-GRAM RSL Specification, http://www-
fp.globus.org/gram/rsl_spec1.html

[14] Grid Economic Services Draft Proposal to Global
Grid Forum 8:
http://www.lesc.ic.ac.uk/markets/Resources/gesaservicesdraft.p
df

[15] The GridFTP Protocol and Software,
http://www.globus.org/datagrid/gridftp.html

[16] Herveg, J.A.M., Crazzolara, F., Middleton, S.E.,
Marvin, D., Poullet, Y., "GEMSS: Privacy and security for a
Medical Grid", HealthGRID 2004, 29th-30th January 2004,
Clermont-Ferrand, France.

[17] HTTPG: Globus Toolkit 3 Core – A Grid Service
Container Framework. http://www-
unix.globus.org/ogsa/docs/alpha/gt3_alpha_core.pdf

[18] Internet Engineering Task Force RFC for Certificate
Policy and Certification Practices Framework - RFC 3647:
ftp://ftp.rfc-editor.org/in-notes/rfc3647.txt

[19] Public-Key Infrastructure (X.509) (PKIX) Working
Group Internet-Draft: Internet X.509 Public Key Infrastructure
Proxy Certificate Profile, http://www.ietf.org/internet-
drafts/draft-ietf-pkix-proxy-08.txt

[20] The Semantic Grid, http://www.semanticgrid.org

[21] SOAP Security Extensions: Digital Signature, W3C
NOTE 06 February 2001, http://www.w3.org/TR/SOAP-dsig/

http://httpd.apache.org/
http://httpd.apache.org/security_report.html
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.lesc.ic.ac.uk/markets/
http://www.daml.org/services/
http://www.gridforum.org/3_SRM/gesa.htm
http://www-fp.globus.org/gram/rsl_spec1.html
http://www-fp.globus.org/gram/rsl_spec1.html
http://www.lesc.ic.ac.uk/markets/Resources/gesaservicesdraft.pdf
http://www.lesc.ic.ac.uk/markets/Resources/gesaservicesdraft.pdf
http://www.globus.org/datagrid/gridftp.html
http://www-unix.globus.org/ogsa/docs/alpha/gt3_alpha_core.pdf
http://www-unix.globus.org/ogsa/docs/alpha/gt3_alpha_core.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc3647.txt
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-08.txt
http://www.semanticgrid.org/

[22] Surridge, M, “A Rough Guide to Grid Security”,
published via http://www.nesc.ac.uk by the UK E-Science
Programme.

[23] Ashri, R., Payne, T., Marvin, D., Surridge, M., Taylor,
S., “Towards a Semantic Web Security Infrastructure”, in
Payne, T.R., Decker, K., Lassila, O., Mcilraith, S., Sycara, K.,
eds: First International Semantic Web Services Symposium
(2004 AAAI Spring Symposium Series), AAAI (2004).

[24] Web Services Addressing (WS-Addressing)
Specification, http://www-
106.ibm.com/developerworks/webservices/library/ws-add/

[25] Web Services Notification and Web Services
Resource Framework, http://www-
106.ibm.com/developerworks/webservices/library/ws-resource/

[26] Web Services Security (WS-Security) Specification,
http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/

http://www.nesc.ac.uk/
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

	1. Introduction
	2. Requirements
	2.1 Business Processes
	2.2. Security
	2.3. Interoperability
	2.4. Summary

	3. Business models and processes
	3.1. Negotiation model
	3.2. Quality of service models
	3.3. Discovering service providers
	3.4. Financial processing
	3.5. Lessons learned

	4. Security Features
	4.1. Rings of Security
	4.2. Minimal authorisation
	4.3. X.509-compliant PKI
	4.4. Lessons learned

	5. Business process enforcement
	5.1. Workflow enforcement
	5.2. Contexts
	5.3. Delegation
	5.4. Lessons learned

	6. Interoperability issues
	7. Conclusions
	8. Acknowledgements
	9. References

