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Abstract. In e-Science experiments, it is vital to record the experimental process for later
use such as in interpreting results, verifying that the correct process took place or tracing
where data came from. The process that led to some data is called theprovenanceof that
data, and aprovenance architectureis the software architecture for a system that will provide
the necessary functionality to record, store and useprocess documentationto determine the
provenance of data items. However, there has been little principled analysis of what is actually
required of a provenance architecture, so it is impossible to determine the functionality they
would ideally support. In this paper, we present use cases for a provenance architecture from
current experiments in biology, chemistry, physics and computer science, and analyse the use
cases to determine the technical requirements of a generic, application-independent architec-
ture. We propose an architecture that meets these requirements and evaluate a preliminary
implementation by attempting to realise two of the use cases.

1. Introduction

In business and e-Science, electronic services allow an increasing volume
of analysis to take place. The large amount of processing brings its own
problems, however. Questions that can be answered relatively easily about
theprovenanceof (process that led to) a low number of experimental results,
such as when the experiment took place or whether two experiments were
performed on the same initial material, become near impossible to resolve
with large numbers of results. We use the termprocess documentationto de-
scribe the records of experiments used to answer such questions. Rather than
relying on scientists to remember experiment details or write paper notes,
there is a need to automaticallyrecord process documentation into reliable
and accessiblestorageso that it can later beused.

A provenance architectureis the software architecture for a system that
provides necessary functionality to record, store and use process documen-
tation in a wide variety of applications. In the PASOA (www.pasoa.org )
project, we aim to develop a provenance architecture and, therefore, we must
be aware of the range of uses to which the process documentation will be
put. For this reason, we have surveyed a range of application areas and de-
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termined the use cases that each has for process documentation. This paper
focuses on e-Science applications and presents the results of our requirements
capture and analysis process and discusses its implications for a provenance
architecture.

In this paper, we present the use cases independently of their analysis, so
that others can draw different implications from them. Our presentation is
not intended to be a detailed use case specification; instead, the aim of our
requirements capture is to draw out thegeneric, re-usable aspectsof each
application area so that a provenance architecture can be designed and built.

Our specific contributions in this paper are as follows.

− A range of use cases regarding the recording, querying and use of infor-
mation regarding scientific, and particularly e-Science, experiments.

− An analysis of the technical requirements needed to be fulfilled to achieve
these use cases.

− A proposed architectural design to address these technical requirements.

− A preliminary evaluation of the architecture through an implementation
to achieve two of the use cases.

2. Background

2.1. SERVICE-ORIENTED ARCHITECTURES

Service oriented architectures (SOA) are the underpinning of the common
distributed system technology in e-Business and e-Science. A service-oriented
architecture (SOA) consists of loosely-coupledservicescommunicating via
a common transport. A service, in turn, is defined as a well-defined, self-
contained, entity that performs tasks which provide coherent functionality.
Typically, a service is only available through an interface, identifying all pos-
sible interactions with the service and represented in some standard format. A
client is an entity that interacts with a service through its interface, requesting
that the service perform anoperationby sending amessagecontaining all
the required data. SOA technologies include Web Services [7], Grids [18],
Common Object Request Broker Architecture (CORBA) [30] and Jini [36].

SOAs provide several benefits. First, they hide implementation behind an
interface allowing implementation details to change without affecting the user
of the service. Secondly, the loosely-coupled nature of services allows for
their reuse in multiple applications. Because of these properties, SOAs are
particularly good for building large scale distributed systems.
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Typically, multiple services are used in conjunction to provide more exten-
sive functionality than each provides individually. For re-usability, the way in
which services are combined to perform a function can be encoded aswork-
flow [1, 8]. In e-Science, workflows are used to define experimental processes
in enactable form.

2.2. PROVENANCE

The idea ofprovenanceis fundamental to provenance architectures. Prior
research has referred to this concept using several other terms including audit
trail, lineage [25], dataset dependence [10], and execution trace [33]. We
define theprovenance of a data itemas the process that produced that data
andprocess documentationas the recorded documentation of such processes.
In this section, we review a number of systems and domains that respectively
provide and manage provenance-related functionality.

The Transparent Result Caching (TREC) prototype [35] uses the Solaris
UNIX proc system to intercept various UNIX system calls in order to build
a dependency map and, using this map, capture a trace of a program’s ex-
ecution. The sub-pushdown algorithm [27] is used to document the process
of array operations in the Array Manipulation Language. A more compre-
hensive system is the audit facilities designed for the S language [12], used
for statistical analysis, where the result of users command are automatically
recorded in an audit file.

These systems work on a single local system with a single administrator,
and so have limited application in capturing documentation of distributed e-
Science processes.

Much of the research into recording process documentation has come in
the context of domain specific applications. Some of the first research in
provenance was in the area of geographic information systems (GIS)[25].
Lanter developed two systems for tracking the provenance of results in a
GIS, a meta-database for tracking the process of workflows and a system for
tracking Arc/Info GIS operations from a graphical user interface with a com-
mand line [24, 26]. Another GIS system that includes provenance tracking is
Geo-Opera, an extension of GOOSE, which uses data attributes to point to
the latest inputs/outputs of a data transformation, implemented as programs
or scripts [9]. In chemistry, the CMCS project has developed a system for
managing metadata in a multi-scale chemistry collaboration [29], based on
the Scientific Application Middleware project [28]. Another domain where
provenance tools are being developed is bioinformatics. ThemyGrid project
has implemented a system for recording process documentation in the context
of in-silico experiments represented as workflows aggregating Web Services
[21]. In myGrid, provenance is gathered about workflow execution and stored
in the user’s personal repository along with any other metadata that might be
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of interest to the scientist [39]. The focus ofmyGrid is personalising the way
the provenance of results is presented to the user.

By their nature, domain-specific provenance architectures must be re-developed
for each new domain. Recording process documentation is a problem com-
mon to many, if not all, domains and a generic system would allow for greater
re-use.

Provenance in database systems has focused on the data lineage problem
[16]. This problem can be summarised as given a data item, determine the
source data used to produce that item. In [37], the authors look at solv-
ing this problem through the use of the technique of weak inversion, and
later use it to improve database visualization [38]. The data lineage prob-
lem has been formalised and algorithms for generating lineage data in rela-
tional databases are presented in [16]. AutoMed [17] tracks data lineage in
a data warehouse by recording schema transformations. In [14], Buneman
et al. redefine the data lineage problem as “why-provenance” and defines a
new type of provenance for databases, namely, “where-provenance”. “Why-
provenance” is the collection of data sets (tuples) contributed to a data item,
whereas, “where-provenance” is the location of a data element in the source
data. Based on this terminology a formal model of provenance was developed
applying to both relational and XML databases. In [13], the authors argue for
a time-stamped based archiving mechanism for change tracking in contrast
to diff-based mechanisms. These mechanisms may not capture the complete
provenance of a database because there may be multiple changes between
each archive of the database.

There have been several systems developed to provide middleware prove-
nance support to applications. These systems aim to provide a general mech-
anism for recording process documentation and querying the provenance of
results for use with multiple applications across domains and beyond the
confines of a local machine.

According to [31], each user is required to have an individual e-notebook
which can record data and transformations either through connections di-
rectly to instruments or via direct input from the user. Data stored in an
e-notebook can be shared with other e-notebooks via a peer-to-peer mech-
anism.

Scientific Application Middleware (SAM) [28], built on the WebDav stan-
dard, provides facilities for storing and managing records, metadata and se-
mantic relationships. Support for provenance is provided through adding meta-
data to files stored in a SAM repository.

The Chimera Virtual Data System contains a virtual data catalogue, which
is defined by a virtual data schema and accessed via a query language [20].
The schema is divided into three parts: a transformation, a derivation and a
data object. A transformation represents an executable, a derivation represents
the execution of a particular executable, and a data object is the input or output
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of a derivation. The virtual data language provided by Chimera is used to both
describe schema elements and query the data catalogue. Using the virtual
data language, a user can query the catalogue to retrieve the transformations
that led to a result. The benefit of using a common description language is
that relationships between entities can be extracted without understanding
the underlying data.

In [32], the authors argue for infrastructure support for recording process
documentation in Grids and present a trial implementation of a system that of-
fers several mechanisms for handling process documentation after it has been
recorded. Their system is based around a workflow enactment engine sub-
mitting data to aprovenance service. The data submitted is information about
the invocation of various web services specified by the executing workflow
script.

None of the existing technologies provide aprincipled, application-independent
way of recording, storing and using process documentation. We attempt to
achieve this with our provenance architecture.

3. Applications

In this section, we briefly introduce theexperiments, i.e. scientific projects to
check hypotheses or investigate material properties, to which our use cases
apply. They have been classified by their scientific domain.

3.1. BIOLOGY

Intron Complexity Experiment
The bioinformatics domain already involves the analysis of a massive amount
of complex data, and, as experiments become faster and automated to a larger
degree, the experimental records are becoming unmanageable. The Intron
Complexity Experiment (ICE) is a bioinformatics experiment to identify the
relativeKolmogrov complexityof intronsandexons, and the relation between
the complexities of the two. Exons are subsequences of chromosomes that
encode for proteins, introns are the sub-sequences that separate exons on a
chromosome. This experiment uses a number of services, some externally
provided, some written by the biologist, that analyse data drawn from publicly
accessible databases such as GenBank [3]. When a potentially interesting
result is found, the biologist re-runs parts of the workflow with different
configuration parameters to try and determine why that result was produced.
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Candidate Gene Experiment
ThemyGrid [5] project attempts to provide a working environment for bioin-
formaticians, particularly providing portals and middleware that can be used
by many parties. Experimental processes are automated or partially auto-
mated by encoding them as workflows and executing them within a workflow
enactment engine.myGrid has been concentrating on a few bioinformatics
experiments that fit into a class called Candidate Gene Experiments (CGE).
These experiments aim to discover as much information as possible about a
gene (thecandidate gene) from existing data sources, to determine whether it
is involved in causing a genetic disorder.

Protein Identification Experiment
Proteomics is the study of proteomes, which are defined as all the proteins
produced by a single organism. The Protein Identification Experiment (PIE)
is performed to identify proteins from a given sample, e.g. to determine what
proteins are present only in someone with a certain disease. To this end, the
characteristics of protein fragments can provide evidence for the identifica-
tion of the protein. This requires first breaking the protein at well-identified
points, i.e. at given amino acids, resulting in a set of peptides. The peptides are
examined using a mass spectrometer to determine their mass-to-charge ratio.
To obtain more accurate results, the peptides are then further fragmented,
at random points, by bombarding the peptides with a charged gas, and these
fragments are again fed to the spectrometer. Databases of previously analysed
results are used to match peptide characteristics to possible proteins, as well
as to provide further information on the proteins such as the functional group
to which they belong.

3.2. PHYSICS

Particle Detection Experiment
In High Energy Physics (HEP) experiments, vast amounts of data are col-
lected from detectors and stored ready to be analysed in different ways by
groups of specialised physicists,Physics Working Groups(PWG), in order
to identify traces of particles produced by the collision of particles at high
energies. Experimental processes in a Particle Detection Experiment (PDE)
are complex, with the data provider, CERN, providing some processing of the
raw data, followed by further analysis localised around the world. The group
of PWGs that manage the data as a whole, along with everyone that provides
the resources to do so, is called theCollaborationfor this experiment.
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3.3. CHEMISTRY

Second Harmonic Generation Experiment
The Second Harmonic Generation Experiment (SHGE) analyses properties
of liquids by bouncing lasers off them and measuring the changes that have
occurred in the polarisation of the laser beam [15].

3.4. COMPUTERSCIENCE

Service Reliability Experiment
The e-Demand [2] project attempts to make service-oriented Grids more re-
liable and better tailored to those using them by examining the relative reli-
ability and quality of services. In the Service Reliability Experiment (SRE),
several services implement the same function using different algorithms. The
results returned by the services are compared in order to increase the assur-
ance that the results are valid.

Security Testing Experiment
The Semantic Firewall project aims to deal with the security implications of
supporting complex, dynamics relationships between service providers and
clients that operate from within different domains, where different security
policies may hold and different security capabilities exist [11]. In the Security
Testing Experiment (STE), a client wishes to delegate their access to data to
another service, and so a complex interaction between the services is neces-
sary to ensure security requirements are met. Asemantic firewallwill reason
about the multiple security policies and allow different operations to take
place on the basis of that reasoning. The reasoning can be dependent on the
entities interacting and other contextual information provided to and from the
existing security infrastructures. The semantic firewall can be seen as guiding
the interacting parties through a series of interaction protocol states on the
basis of reasoning, ensuring that interactions follow the security policies of
individual domains.

4. Use Case Analysis

The above experiments provided us with a selection of use cases involving
the capture and use of process documentation. In this section, we present
each of the issues raised by the use cases, introducing each use case where
it is most illustrative. The issues identified are expressed as generaltechnical
requirementsso that design decisions can be made regarding a suitable prove-
nance architecture. In each case, we have given the technical requirement in
the form of a statement “PASOA should provide for...” with reference to a
particular behaviour of the system, where PASOA refers to the provenance
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architecture we wish to design. Each statement makes no implications about
how the architecture achieves the requirement, so that others can use them to
develop alternatives to PASOA.

4.1. METHODOLOGY

Given the project aims, we followed the methodology below for gathering
use cases from each user.

− We provided a broad description of our goals, making it clear that we
intended to design an architecture to aid recording what occurred dur-
ing experiments. Since we aim to uncover tasks that the user cannot
currently perform, we presented some of the use cases gathered from
previous users to each subsequent user as inspiration.

− We catalogued the provenance-related use cases that the user has al-
ready considered and thoughts regarding possible other benefits that
may be obtained from having process documentation available, i.e. func-
tional requirements. Also, we asked the user about the non-functional
requirements of any software we may provide.

− We extracted the concrete functional and non-functional use cases from
the interviews, identifying the actors involved and the actions they per-
form, and wrote them in a consistent form.

− We presented the written use cases to the user for confirmation that they
were correct, and for them to correct where not.

4.2. FUNCTIONAL REQUIREMENTS

In this section, we present those use cases providing functional requirements
on the provenance architecture. Each use case in this section is defined in
terms of the relevant actors and the actions they perform. The final sentence
of each use case is aprovenance question: an action that can be realised by
processing recorded process documentation. The provenance questions place
explicit demands on the provenance architecture and so imply general techni-
cal requirements. For ease of identification, the provenance question in each
use case isitalicised. All experiments produce some data, so the record of an
experiment is the provenance of one or more data items. Where a question is
asked of the information recorded by the provenance architecture, we mean
that it is asked of the provenance of one or more data items produced by the
experiment.
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4.2.1. Types of Provenance
The types of process documentation that users considered to be relevant to
the provenance of a result varied, and it is helpful to distinguish and describe
these types with reference to a few particular use cases.

USE CASE 1. (ICE) A bioinformatician, B, downloads sequence data of
a human chromosome from GenBank and performs an experiment. B later
performs the same experiment on data of the same chromosome, again down-
loaded from GenBank. B compares the two experiment results and notices
a difference. Bdetermines whether the difference was caused by the experi-
mental process or configuration having been changed, or by the chromosome
data being different (or both).2

First, this use case requires a record of theexecutionof the experiment, i.e.
the interaction between services that took place including the data that was
passed between them.

The same use case provides an example of another type of process doc-
umentation, i.e. extra information from either service participating in the
experiment at the time that the experiment was run. Each service typically
relies on an algorithm, which may be modified over time, and it is likely
that only the service running the algorithm will have access to it. If B can
determine whether the algorithm has changed between experiment runs, B
can also determine whether the results are due to that change.

USE CASE 2. (CGE) A bioinformatician, B, enacts an experimental work-
flow using a workflow enactment engine, W. W processes source data to
produce intermediate data, and then processes the intermediate data to pro-
duce result data. B retrieves the result data. Bthen examines the source and
intermediate data used to produce the result data.2

Use Case 2 demonstrates the desire for a third type of process documenta-
tion: therelationshipbetween data items in a process, e.g. relating a result to
the intermediate data in the process that produced it. We can summarise the
types of process documentation as follows.

− Interaction:A record of the interaction between services that took place,
including the data that was passed between them.

− Actor State:Extra information about a service participating in the exper-
iment at the time that the experiment was run.

− Relationship:Information on how one data item in a process relates to
another.

TECHNICAL REQUIREMENT 1. PASOA should provide for the recording
and querying of interactions, actor states and relationships.
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4.2.2. Structure and Identity of Data
Services exchange data in the form ofmessages. Messages specify the oper-
ation that the client wishes to perform as well as a set of structured data to be
analysed and/or to be used to configure the analysis.

USE CASE 3. (ICE) A bioinformatician, B, performs an experiment on a
set of chromosome data, from which the exon and intron sequences have been
extracted. As a result of that experiment, B identifies a highly compressable
intron sequence. Bidentifies which chromosome the intron originally came
from.2

In Use Case 3, data elements within the messages exhanged between ser-
vices need to be consistently identified. We cannot guarantee that the content
of the data itself provides unique identification, so an identitifier may have to
be associated with the data. To satisfy the questions regarding a data element,
its identifier should be usable in queries about the process documentation.
Finally, to associate an identifier with an element of a message recorded in
the process documentation, there must be a way toreferencethat element.

USE CASE 4. (PDE) A physicist, P, extracts a subset of data from a large
data set, owned by the Collaboration, and performs experiments on that sub-
set over time. The Collaboration later updates the data set with new data. P
determines whether the experiments should be re-run based on the new data
set.2

TECHNICAL REQUIREMENT 2. PASOA should provide for association
of identifiers with data, so that it can be referred to in queries and by data
sources linking experiments together.

TECHNICAL REQUIREMENT 3. PASOA should provide for referencing of
individual data elements contained in message bodies recorded in the process
documentation.

4.2.3. Metadata and Context
The questions that users wish to ask often draw together process documen-
tation regarding particular experiments with other information. For example,
in the Candidate Gene Experiment, information such as the semantic type of
each data item in an ontology, such as the Gene Ontology [4], may be used by
the bioinformatician to provide further reason to believe the candidate gene
is involved in the genetic disease. Similarly, the lab and project on which
the producer of a given data item worked may be used to help determine its
likelihood of being accurate.
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USE CASE 5. (SHGE) In order to conform to health and safety require-
ments, a chemist, C, plans an experiment prior to performing it. The plan is
at a high-level, e.g. including the steps of mixing and analysing materials
but excluding implied steps like measuring out materials. C performs the
experiment.Later, another chemist,R, determines whether the experiment
carried out conformed to the plan.2

In Use Case 5, the pre-defined plan of the experiment does not necessarily
exactly match the actual steps performed. As shown in Figure 1, a single
planned activity may map to one or more actual activities. As described
in the use case, the plan is produced before any process documentation is
recorded, but is used in comparison with the process documentation. It is an
example ofprocess metadata: data independent from but used in conjunction
with process documentation. Given that process metadata is of an arbitrary
wide scope, any framework for supporting the use of provenance must take
into account stores of metadata that will be queried along with the process
documentation.

Figure 1. Plans in CombeChem: planned activities do not map exactly to performed activities

The contextof an experiment is anything that was true when the experi-
ment was performed. Some contextual information is relevant to the prove-
nance questions. In Use Case 6, the experimentconfiguration, the spectrom-
eter voltage, is relevant to the question asked later.

USE CASE 6. (PIE) A biologist, B, sets the voltage of a mass spectrometer
before performing an experiment to determine the mass-to-charge ratio of
peptides. Later another biologist, R, judges the experiment results and con-
siders them to be particularly accurate. Rdetermines the voltage used in the
experiment so that it can be set the same for measuring peptides of the same
protein in future experiments.2
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A particular type of metadata issemantic informationabout the entities in-
volved in an experiment. For instance, the following use case requires seman-
tic metadata about the data exchanged between services in the experiments.

USE CASE 7. (ICE) A bioinformatician, B, performs an experiment on a
FASTA sequence encoding a nucleotide sequence.A reviewer,R, later deter-
mines whether or not the sequence was in fact processed by a service that
actually only meaningfully processes protein sequences.2

Use Case 7 requires not only that an ontology of biological data types is
provided, but also that process documentation can be annotated with semantic
types. This does not require, however, that the semantic annotation be stored
in the same place as the data.

TECHNICAL REQUIREMENT 4. PASOA should provide for process doc-
umentation and associated metadata in different stores to being integrated in
providing the answer to a query.

4.2.4. Sessions
We have found that many use cases compare the run of one experiment to
that of another, requiring that records regarding those experiments include a
delimitation of one experiment from another. In service-oriented architecture
terms, this means that we need to delimit one set of service interactions from
another. We define asessionas a group of service interactions (experiment
activities).

USE CASE 8. (SRE) A computer scientist, C, calls service X which calcu-
lates the mean average of two numbers as (a/2)+(b/2). C then calls service
Y with the same two numbers, where Y calculates the average as (a+b)/2. C
does not know if X or Y are reliable, so by getting results from both, C can
compare them and, if they are the same, be more sure having the correct result
(because the same value is produced by two different services). However, X
and Y may use a common third service, Z, behind the scenes, e.g. to perform
division operations. If Z is faulty then the results from X and Y may be
consistent but wrong.For extra assurance,C determines whetherX and Y
did in fact use a common third service.2

In Use Case 8, two sessions must be distinguished in order to answer
the provenance question. The first session is the execution of X and all its
dependencies, the second is the execution of Y and all its dependencies.
The scenario is depicted in Figure 2. The provenance question can then be
expressed as: was the same service used in both sessions? Similarly, Bioin-
formatics Use Case 1 requires that we compare two experiments, recorded as
two sessions, and show the differences.
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Figure 2. Sessions using the same common service in e-Demand: the client is unaware that
two services, A and B performing the same function using different algorithms, rely on a
common service C

TECHNICAL REQUIREMENT 5. PASOA should provide a mechanism by
which to group recorded process documentation into a session, and should
allow comparison between sessions.

4.2.5. Query
The actor asking a provenance question does not always know in advance
which specific experiments or data their question addresses. For example,
in Use Case 9, we do not know which experiments we are looking for in
advance, only which source material was used as input to them, and perhaps
contextual information such as the experimenter.

USE CASE 9. (SHGE) A chemist, C, performs an experiment but then ex-
amines the results and finds them doubtful. C determines the source material
used in the experiment and then which other recent experiments used material
from the same batch. Cexamines the results of those experiments to determine
whether the batch may have been contaminated and so should be discarded.
2

Given that we expect a large volume of process documentation to be recorded
over the course of many experiments, a search mechanism is required to
answer the provenance question of Use Case 9. Data from one experiment
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may be used to improve the quality of future results by filtering intermediary
data, as follows.

USE CASE 10. (PIE) A biologist, B, performs many experiments over time
to discover the characteristics of peptide fragments. The fragments are used
asevidencethat a peptide is in the analysed material. Usually the discovery of
several fragments is required to confidently identify a peptide, but some frag-
ments are unique enough to be adequate alone. Bdetermines that a fragment
with particular characteristics is produced most times a particular peptide
was analysed and rarely or never when that peptide was not present. 2

To understand the range of queries required, we can present those required
to help achieve some of the use cases described above. To achieve Use Case
1, the user asks for the full contents of the records of two experiments, so that
a comparison can then be made. To achieve Use Case 2, the user asks for the
interaction that has a given data item as its output. To achieve Use Case 8,
the user asks for all services used in two given experiments. To achieve Use
Case 5, the user asks for all experiments using a given data item as input.
To achieve Use Case 10, the user asks for all peptides output as intermediary
data in previous protein identification experiments.

TECHNICAL REQUIREMENT 6. PASOA should provide for the process
documentation to be returned in the groups specified at the time of recording
or searched through on the basis of contextual criteria.

4.2.6. Processing and Visualisation
In most use cases, the full process documentation of an experiment is not
presented to the user in order to answer the provenance question. It must
first be analysed and then presented in a form that makes the answer to the
provenance question clear.

USE CASE 11. (SHGE) A chemist, C, performs an experiment to determine
the characteristics of a liquid by bouncing laser light off of it and examining
the changes to the polarisation of the light. As this method is fairly new,
it is not established how to then process the results. C analyses the results
through a plan, i.e. a succession of processes, that seem appropriate at the
time and ends with potentially interesting results.At a later date,C deter-
mines the high-level plan that they followed and re-performs the experiment
with different liquid and configuration.2

USE CASE 12. (STE) A service, X, is accessed by by an intruder, I, that
should not have rights to do so.Later, an administrator becomes aware of the
intrusion and determines the time and the credentials used by the intruder to
gain access.2
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In Use Case 11, the process documentation provides the full information
of what has occurred, but to answer the question, C requires a high-level
plan. The process documentation therefore needs to beprocessedto answer
the question. Again in Use Case 12, the process documentation must be pro-
cessed in order to provide an answer to the provenance question. All answers
to provenance questions have to be made presentable to the user. For example,
in Use Case 13, the process documentation is presented in a report.

USE CASE 13. (ICE) A bioinformatician, B, performs an experiment. B
publishes the results and makes a record of the experiment details available
for the interest of B’s peers.2

TECHNICAL REQUIREMENT 7. PASOA should provide a framework for
introducing processing of process documentation of all three types discussed
in Section 4.2.1 (interactions, actor states and relationships), using various
methods, then visualising the results of that processing.

4.2.7. Non-repudiation
In some cases, such as where the experimental results justify the efficacy of
a new drug for example, the provenance does not just need to verify that the
experiment was performed as stated butproveit. To aid this, all parties in an
experiment could record the process documentation from their own perspec-
tive, and these perspectives can then be compared. Along with other measures
to prevent collusion or tampering with the process documentation, the joint
process documentation provides evidence of the experiment that cannot be
denied, orrepudiated.

One use case that requires multiple parties to record process documen-
tation independently is where the intellectual property rights of the experi-
menter may conflict with those of the services they use in experiments, as
now described.

USE CASE 14. (ICE) A bioinformatician, B, performs an experiment from
which they develop a new drug. B attempts to patent the drug.The patent
reviewer,R, checks that the experiment did not use a database that is free
only for non-commercial use, such as the Ecoli database.2

As well as being able to prove particular services were used in an experi-
ment, we may also need to be able to prove the time at which it was done, so
that researchers can (or cannot) claim they performed an experiment earlier
than a published one.

USE CASE 15. (SHGE) A chemist, C, performs an experiment finishing at
a particular time. D later performs the same experiment and submits a patent
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for the result and the process that led to it to patent officer R. C claims to
R that they performed the experiment before D. Rdetermines whetherC is
correct.2

TECHNICAL REQUIREMENT 8. PASOA should provide a mechanism for
recording adequate process documentation, in an unmodifiable way, to make
results non-repudiable.

4.2.8. Re-using Experimental Process
Process documentation can be used in deciding what should happen in the
future. An experiment is performed to achieve some goal, such as verifying
a hypothesis. The process documentation can be used to identify the process
and to repeat it.

USE CASE 16. (CGE) A bioinformatician, B, performs an experiment us-
ing as input data a specific human chromosome from the most recent version
of a database. Later, another bioinformatician, D, updates the chromosome
data. Bre-enacts the same experiment with the most recent version of the
chromosome data.2

USE CASE 17. (PIE) A biologist performs an experiment to identify pep-
tides in a sample. Identifications are made by comparing characteristics of the
peptides and their fragments with already known matches in a database. In the
experiment, some peptides are identified, others cannot be. Later, after other
experiments have been conducted, the database contains more information.
The system automatically re-enacts the analysis of those peptides that were
not identified.2

In Use Case 16, the scientists can use process documentation to re-enact
the experiment. The re-enactment can even be automatic, since changes in the
databases can be matched to experiments that use those databases. In order
to re-enact the experiment the following information is needed: the service
called in at each stage of an experiment and the inputs given to each service.
The process documentation regarding previous experiments may be used in a
less automated fashion to determine how future experiments are to be run.

In fact, there are several different ways in which experimental process
can be re-used.Re-enactmentis performing the same experiment, but using
contemporary data and services, whilerepetitionmeans performing the same
experiment with the same data and services as before, e.g. to test that the
results can be reproduced. Also, rather than performing the whole experi-
ment again, a scientist may wish to perform it only up until the stage that
intermediate results differ, to detect at what point the difference lies.
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TECHNICAL REQUIREMENT 9. PASOA should provide for the use of pro-
cess documentation tore-enactan experiment using the same process but new
inputs, and toreproducean experiment with the same process and inputs.

4.2.9. Aggregated Service Information
The process documentation provides information on services used in exper-
iments as well as experiments themselves. Combining the information of
several traces allows the scientist to aggregate data about individual services
used in multiple experiments, as illustrated in the next use case.

USE CASE 18. (CGE) Several bioinformaticians perform experiments us-
ing service X. Another bioinformatician, B, constructs a workflow that uses
X. B can estimate the duration that the experiment might take on the basis of
the average timeX has taken to complete its tasks before.2

TECHNICAL REQUIREMENT 10. PASOA should provide for querying,
over process documentation of multiple experiments, about the aggregate
behaviour and properties of services.

4.3. NON-FUNCTIONAL REQUIREMENTS

Other use cases provide us with non-functional requirements, regardinghow
the architecture should operate. Since the use cases presented highlight de-
mands on the way in which process documentation should be recorded, stored
and used, there is not a provenance question in every case, i.e. there is not
always a new function realised by the provenance architecture.

4.3.1. Storage
All provenance use cases require some reliable storage mechanism for the
process documentation; however, some require long-term storage of prove-
nance to satisfy their needs, while others require the data to be preserved and
accessible only in the short-term. An example of the former type of use case
is the following.

USE CASE 19. (SHGE) A chemist, C, performs an experiment. C then
publishes their results on-line. Another chemist, R, discovers the published
results years later. Rdetermines whether the results are valid by checking the
experimental process that was performed.2

In order for process documentation to be accessible as a part of a publi-
cation, it should persist as long as the publication, preferably forever. On the
other hand, for many use cases the process documentation may only retain its
relevance for a matter of hours, months or years.
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TECHNICAL REQUIREMENT 11. PASOA should provide for the manage-
ment of the period of storage of process documentation to be managed, in-
cluding preservation of data for indefinite periods or deletion after given
periods.

4.3.2. Distribution
Given that e-Science experiments can involve many services owned by many
parties, it is impractical to expect a single data store to be used to retain all of
the process documentation. An example of this is given in Use Case 20.

USE CASE 20. (PDE) A physicist, P, performs a set of experiments. A
selective subset of the results, including the process documentation of the
experiments that produced them, are made available to the physicist’s Physics
Working Group, G. The administrators of G then make a subset of those
results, including their provenance, available to the Collaboration. The Col-
laboration stores the results and process documentation with security, fidelity
and accessibility for a longer period of time that P or G are able to.2

As services are distributed, process documentation may be stored in a
distributed manner and must be linked up in order to answer queries. It is
clear that provenance storage should be distributed but that queries should
draw process documentation from all relevant stores.

TECHNICAL REQUIREMENT 12. PASOA should provide for distribution
in the storage of process documentation and allow queries to draw data from
multiple stores.

4.3.3. Very Large Data Sets
Where data is relatively small it can be stored easily for long periods. How-
ever, in some cases, it can be very large, such as in the Use Case 21.

USE CASE 21. (PDE) A physicist, P, performs an experiment using detec-
tor data as input. The size of the detector data is in the order of petabytes. The
process documentation of the experiment is recorded for later use without
copying the data set.2

It is impractical to store or process data multiple times for very large data
sets, and provenance architectures must address this.

TECHNICAL REQUIREMENT 13. PASOA should provide for recording
process documentation and querying the provenance of very large data sets.
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4.3.4. Integration with Existing Software
In some domains, de-facto standards exist for recording some of the process
information electronically, and in some cases there is also software support.
For example, the provenance question in Use Case 22 can be answered using
data from legacy software.

USE CASE 22. (PDE) An existing service, X, regularly records the versions
of libraries installed on computer node N. X records the version of library L
at time T. A physicist, P, performs an experiment using data produced by N.
P examines the experiment results and judges that they may be incorrect. P
queries the process documentation to discover the library versions used byN
when producing the data.2

Developers of a new provenance architecture have to be aware of existing
standards for recording and accessing process documentation and ensure that
their software interoperates with that which already exists. Also, forthcoming
standards that have the support of the community should be acknowledged,
and provenance architectures should be able to interoperate with them.

USE CASE 23. (PIE) A biologist, B, performs an experiment. B then queries
the process documentation regarding that experiment by using software that
follows the widely supported Proteomics Standards Initiative [6].2

TECHNICAL REQUIREMENT 14. PASOA should provide for the integra-
tion of the architecture with existing standards and software.

4.4. SUMMARY

The types of use use case listed above can be summarised as the following
general tasks.

− Checking whether results were due to interesting features of the material
being experimented on or nuances of the experiment performed.

− Determining the probable effectiveness of similar future experiments.

− Accessing a historical record, or aide memoire, of work conducted.

− Proving that the experiment claimed to have been done was actually
done.

− Proving that the experiment done conformed to a required standard.

− Checking that the experiment was performed correctly, and the services
involved used correctly.
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− Tracing where data came from and the processes it had been through to
reach its current form.

− Tracing which source data was used to produce given result data and
vice-versa.

− Linking together data and experiments by their process documentation,
to provide extra context to understanding those experiments.

− Deriving the higher-level processes that have been gone through to per-
form an experiment, so that they can be checked and re-used.

− Providing the process information required for publishing an experi-
ment’s results.

− Verifying that services used are working as they should be.

− Allowing experiments to be re-enacted to check that services and/or data
has not changed in a way which affects the results.

5. Proposed Architecture

In the PASOA project, we aim to provide a framework architecture capable of
tackling the presented use cases. Our analysis has led to a number of archite-
cural design decisions, which we outline in this section. We then describe our
provenance architecture.

5.1. DESIGN DECISIONS

The technical requirements of Section 4 have informed a number of design
decisions regarding the PASOA architecture. We describe the most significant
ones below.

5.1.1. Separation of concerns
The breadth of use cases shows the potentially unlimited scope of func-
tionality that a provenance architecture could provide. We need to separate
concerns so as to provide a framework which can be built upon to satisfy
not only use cases above, but also new ones as they appear. It should be
noted that very few of the concerns expressed in the technical requirements
apply universally and uniformly to all applications; there is just a general need
for recording, queryingandprocessingprocess documentation. As querying
requires that data be recorded in a queryable form and processing requires
that data can be queried using a pre-defined mechanism, recording can be
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seen as the most fundamental part of a provenance architecture. We also note
that recording needs to be consistent across applications to meet our goal for
re-usable open system querying and processing of the process documentation.

Hence, we define alayered architecturewith three layers, each building on
the previous one: (i) Fundamentals of recording and access, (ii) Querying, and
(iii) Processing. Application specificity should be pushed up these three lay-
ers where possible, in order to separate out general from application-specific
concerns.

5.1.2. Documentation as assertions
In Section 4.2.7, we noted that multiple actors can submit different docu-
mentation on the same process. The provenance architecture relies on actors
to record accurate process documentation about what has occurred in order
for provenance questions to be answered. Process documentation may be
inaccurate when an actor is faulty or is maliciously recording incorrect in-
formation. The provenance architecture should not, therefore, require those
asking provenance questions to believe all the process documentation pro-
vided to them: they can judge the likely accuracy based on their opinion
of the actor submitting each piece of process documentation. We therefore
consider process documentation to be made up of a set ofassertionsabout a
process that has occurred, made by the actors that took part in that process. A
p-assertionis an assertion that is made by an actor and pertains to a process,
and process documentation is a set of p-assertions.

5.1.3. Documentation structure based on interactions
As described in Section 4.2.1, we have determined there to be at least three
types of process documentation: interactions, actor states and relationships.
Our architecture, therefore, has to support the recording and use of p-assertions
regarding all these types of data. We argue that any p-assertion can be viewed
as being with regard to an interaction, as follows. Interaction p-assertions
state what information is exchanged between actors in an interaction. Ac-
tor state p-assertions are metadata to documentation of interactions, as they
describe the state of actors at the time when interactions took place. Relation-
ships between data can be documented as relationships between the interac-
tions in which the data is exchanged. Therefore, our architecture should be
based on the recording of the interactions between actors and allow metadata
regarding each interaction to be additionally recorded in association.

5.1.4. Interaction-specific or non-provenance metadata
Given the basis of interactions, we can further separate concerns. Metadata
specific to an interaction, including the state of an actor or the data exchanged,
must clearly be associated directly with the interaction and so should be
recognised in our recording process documentation procedures. Other meta-
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data can be stored elsewhere and references made to the process documenta-
tion to make the association explicit. The metadata will then be used together
when performing queries or processing.

5.1.5. Reference of elements in the store
In order to associate metadata with actors and data in interactions, there must
be a way to refer to those entities. First, we can provide a way to reference
recorded interactions and the messages passed in those interactions. Then,
while the structure of data used in experiments will vary widely, we can
provide some uniformity in referring to elements of the data at the query
level.

5.1.6. Tracers to delimit sessions
In Section 4.2.4, we identified the need to delimit independent processes, or
sessions, within an application’s execution. One means by which we can do
this is to introduce identifiers, calledtracers, into all messages sent within
one session. Any actor receiving a message containing a tracer is expected to
perpetuate it into all subsequent messages the actor sends in the same session:
in this way a tracer acts like dynamic context in transactional systems. By
querying a provenance architecture for all interaction p-assertions containing
a tracer, we can then retrieve all (documented) interactions in a session.

5.1.7. Extensible architecture for querying
As the data comes in many forms and structures, because we should attempt
to fit in with existing standards and software in some cases, and because the
questions asked about past experiments vary considerably between applica-
tions, we cannot and should not provide a single query interface for them all.
However, we can take a layered approach, whereby we provide a few general
search mechanisms over the process documentation with the aim that it will
ease the development of application-specific query engines. There should be
no compulsion for these query mechanisms to be used if it is easier to search
for results without them.

5.2. PROPOSED ARCHITECTURE

We have developed a protocol for recording process documentation accord-
ing to the design decisions of Section 5.1, which is detailed in [22] and not
expanded on further here. We can now design an architecture to address the
use cases as a whole. Our proposed architecture is shown in Figure 3, which
embodies the design decisions of Section 5.1, and each entity depicted is
explained below.

Central to the architecture is the notion of aprovenance store, which is
a service designed to store and maintain process documentation beyond the
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lifetime of a Grid application. Such a service may encapsulate at its core the
functionality of a physical database, but also provides additional functionality
pertinent to the requirements of the provenance architecture. In particular,
the provenance store’s responsibility is to offer long-term persistence of p-
assertions in a consistent structure, i.e. according to a pre-defined schema.

The structure of process documentation in a provenance store is based
on interactions between actors in an experiment, the states of actors during
interactions and the relationships between data sent in interactions (satisfying
TR 1). The structure allows recorded process documentation to be referred to
(satisfying TR 3) and identifiers associated with the referenced process doc-
umentation (satisfying TR 2). The structure makes explicit which actor made
each p-assertion (satisfying TR 8) and has explicit space for recording the
tracers exchanged in interactions, thereby allowing sessions to be delimited
(satisfying TR 5)

In a given application, one or more provenance stores may be used in order
to act as storage for p-assertions (satisfying TR 12): multiple provenance
stores may be required for scalability reasons or for dealing with the physical
deployment of a given application, possibly involving firewalls.

In order to accumulate p-assertions, a provenance store provides arecord-
ing interfacethat allows recording actors to submit p-assertions related to
their interactions and internal states, for recording purposes. A provenance
store is not just a sink for p-assertions: it must also support some query facility
that allows, in its simplest form, browsing of its contents and, in its more
complex form, search, analysis and reasoning over process documentation so
as to support use cases. To this end, we introducequery interfacesthat offer
multiple levels of query capability (satisfying TR 6). Because the process doc-
umentation can be referred to and the query languages are flexible, aggregated
information regarding services can be derived (satisfying TR 10). Finally,
since provenance stores need to be configured and managed, an appropriate
management interfaceis introduced.

Someactor-side librariesfacilitate the tasks of recording p-assertions in a
secure, scalable and coherent manner and of querying and managing prove-
nance stores. They are also designed to ease integration with legacy applica-
tions. We also expect actor-side libraries to provide some support to create
common forms of p-assertions. The creation of p-assertions here will need
to take into account the expression of causal relationships in an appropriate
manner, as previously discussed.

During an application’s execution, allapplication servicesare expected to
submit p-assertions to a provenance store; this not only applies todomain-
specific services, but also to generic middleware, such asworkflow enactment
engines, registriesandapplication user interfaces.

Once p-assertions have been recorded in a provenance store, process doc-
umentation can be used byprocessing servicesandpresentation user inter-
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faces. The former provide added-value to the query interfaces by further
searching, analysing and reasoning over recorded p-assertions, whereas the
latter essentially visualise query results and processing services’ outputs (sat-
isfying TR 7). Figure 3 provides examples of such processing services and
presentation UIs. For instance, processing services can offer auditing facili-
ties, can analyse quality of service based on previous execution, can compare
the processes used to produce several data items, can verify that a given ex-
ecution was semantically valid, can identify points in the execution where
results are no longer up-to-date in order to resume execution from these
points, can re-construct a workflow from an execution trace (satisfying TR 9),
or can generate a textual description of an execution. Presentation user in-
terfaces can, for instance, offer browsing facilities over provenance stores,
visualise differences in different execution, illustrate execution from a more
semantic viewpoint, visualise the performance of execution, and be used to
construct provenance-based workflows. We note that such a list of processing
services and presentation UIs is illustrative and not exhaustive.

Another kind of user interface to the provenance store is also identified in
the architecture. This is themanagement user interface, which allows users
to manage the contents of the provenance store.

To be generic, a provenance architecture must be deployable in many dif-
ferent contexts and must support user preferences. To adapt the behaviour
of the architecture to the prevailing circumstances and preferences, several
policiesare introduced to help configure the system in its different aspects.
Specifically: policies state user requirements about recording, e.g., to identify
the provenance stores to use, the level of documentation required by the user,
desired security aspects; policies specify capabilities of documenting process
that services may wish to advertise (such as their ability to provide some
type of actor states p-assertions), and any requirements they have on other
services they rely upon in order to perform this documenting (such as their
need for high throughput or highly persistent provenance stores); policies
define configurations of provenance stores, from a deployment and security
viewpoint (e.g., resources they use, their access control list, or registry where
they should be advertised).

By making explicit all these policies, it becomes possible todiscoverser-
vices thatmatchuser or other service needs. When requested policies conflict
with discovered policies,negotiationcan be initiated to find a compromise
between the offer and demand.

Non-provenance data storesare stores of data that do not relate to the
provenance of a particular experimental result, and can be used in supple-
ment to the services shown in the provenance architecture. The data may
exist before any auditable experiment is run, examples include ontologies,
which are used to provide semantic terms for testing the semantic validity
of experiments, and user stored metadata that can be referred to by process
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metadata. Because, in our architecture, it can be processed along with the
process documentation, this satisfies TR 4.

We believe this architecture addresses the functional requirements of the
presented use cases. In future work, discussed in Section 7, we need to make
the architecture robust enough to work as a production provenance system, in
particular addressing non-functional TRs 11, 12, 13 and 14.

6. Concrete Implementations

We have created a first, basic implementation of the architecture, including a
provenance store Web Service available to download fromwww.pasoa.org ,
and are beginning to evaluate its effectiveness in satisfying the use cases.
Two distinct use case implementations are described here, one for the Intron
Complexity Experiment, the other for the Service Reliability Experiment.
For each, we describe the implementation and map the physical components
involved to the elements of the logical architecture shown in Figure 3.

6.1. SEMANTIC VALIDITY

We have translated the Intron Complexity Experiment into a distributed work-
flow using the Globus toolkit and the Chimera Virtual Data System (VDS)
[19]. We recorded provenance data from each of the services in the workflow
and analysed the provenance data to determine whether the workflow run was
semantically valid, as specified in Use Case 7. The services were a mixture
of Tcl and UNIX shell scripts, and a wrapper script performed the record-
ing of process documentation by extracting each script command line and
sending it to the Web Service provenance store. The workflow was a Condor
directed acyclic graph (DAG), generated from a definition of the dependen-
cies between data encoded in the Virtual Data Language. Full details of the
experiment can be found in [23].

For each experiment run, a processing service, written in Java, verified
that the experimental process wassemantically valid, which we explain as
follows. For each service interaction recorded in the provenance store, we
looked up, in aregistry, the semantic types of the outputs of one service in the
process and the inputs of the subsequent service. If the output of the former
service has a compatible semantic type to the input of the latter, the interaction
is semantically valid. If all interactions in a workflow, collected into asession
in the provenance store, are semantically valid, then the workflow run as a
whole was semantically valid.

We can use this set-up to help clarify the logical architecture shown in
Figure 3. In the first column of Table 6.1, we refer to the name of one box
in the logical architecture, while the second column describes how it was
instantiated in the particular application.
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Table I. Mapping of Logical Architecture to Semantic Validity Use Case
Implementation

Logical Architecture Component Instantiation

Provenance Store Implemented as a single Web Service

Recording API A port of the Provenance Store with record methods

Query API A port of the Provenance Store with browsing and

retrieval methods

Workflow Enactment Engine Using VDS, workflows are enacted using Condor DAGMan

Domain-Specific Services The protein analysis services implemented by the bioinformatician

were a mixture of Tcl scripts and UNIX shell scripts

Actor-Side Recording Library Implemented as a script wrapping each domain-specific service and

recording the interactions via SOAP messages

Processing Services A Java program that extracted the interaction provenance and

checked semantic validity

Presentation Services The results of processing were presented on the console as a yes

or no answer

Non-Provenance Data Stores The registry, implemented as a Web Service, containing semantic

types of each domain-specific service’s inputs and outputs

6.2. SERVICE RELIABILITY

In our second test, we chose to attempt to achieve Use Case 8, which asks
a simple question of potentially complex process documentation. A far more
detailed version of this evaluation was conducted by the scientists themselves
and is discussed in [34].

We implemented three Web Services and a client as stated in the use case.
We wrote all code in Java 1.4, used Axis 1.1 for all sending and parsing
all Web Service calls and deployed the services on Tomcat 5.0. We used a
single provenance store for all process documentation. Axis allowshandlers
to easily be introduced into the parsing of incoming and outgoing handlers,
by modifying the deployment descriptor and including a JAR archive on the
class path. Our architecture implementation includes an Axis handler that au-
tomatically sends to a provenance store every SOAP message that is received
or sent by the service.

The message passed between each client/service in invocation or result is
recorded in the provenance service by both parties in each interaction (via the
Axis handler). To distinguish the calling of X and the calling of Y, we use two
tracers, as illustrated in Figure 2. The first tracer is generated and recorded
along with the interaction of C and X and with the interaction of X and Z. The
second tracer identifier is generated and recorded along with the interaction
of C and Y and with the interaction of Y and Z. Each tracer is perpetuated
between services in the SOAP message header.
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After X and Y have finished, C attempts to determine whether they used
a common service. C queries the provenance store find the list of interac-
tions that were recorded with the first session identifier, and from this data
discovers which services were used. The same is then done for the other
session identifier. Finally, C takes the intersection of the set of services used
in the first session and those used in the second session, to produce the set
of services used in both, and outputs this set. The set consists of a single
element, the identity of Z, so C knows this was used by both X and Y.

The same process will work regardless of the complexity of the operation
of X and Y. For example, X may call a long succession of other services in
order to achieve its results, one or more of which occur in Y’s operation also.
The common set of services can still be discovered.

As with the previous use case, we can use this set-up to help clarify the
logical architecture. In the first column of Table 6.2, we refer to the name of
one box in the logical architecture. The second column describes how it was
instantiated in the particular application.

Table II. Mapping of Logical Architecture to Service Reliability Use Case
Implementation

Logical Architecture Component Instantiation

Provenance Store Implemented as a single Web Service

Recording API A port of the Provenance Store with record methods

Query API A port of the Provenance Store with browsing and

retrieval methods

Domain-Specific Services Web Services X, Yand Z

Actor-Side Recording Library Implemented as a generic Axis handler, intercepting SOAP messages

and recording them as interaction provenance

Processing Services A Java program performing the task of client Cin

determining whether common services were in use

Presentation Services The results of processing were presented on the console as the

set of services used by both X and X

7. Future Work

While the architecture described is a framework for satisfying use cases, there
are many details to be resolved.

First, several non-functional requirements relating to storage of process
documentation must be met, particularly the management of storage duration
(TR 11) and storage of large quantities of data (TR 13).

There are a number of compelling reasons for distributing the storage of
process documentation, as suggested in TR 12. First, our architecture should
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ensure there is not a single point of failure in providing access to process
documentation. Further, we should allow service owners to keep data related
to their service within their own security domain. However, as pointed out in
Use Case 20, the architecture should provide a way to view data from multiple
provenance stores in a unified way.

The PASOA architecture should ensure that the performance of the sys-
tem does not significantly deteriorate as the number of provenance stores,
process documentation, process documentation recorders or distribution of
data increases. As indicated in TR 14, adapters for storing and querying
process documentation may have to be provided to integrate our provenance
architecture with other existing standards, software and protocols.

Finally, the current architecture does not address the needs of controlling
access to the process documentation, which is essential for any real world
deployment.

8. Conclusions

We have presented a broad range of use cases regarding the recording and
use of the process documentation of scientific experiments. We have observed
that there is little that spans all use cases, but many issues appear in a range of
areas. Our proposed protocol and architecture attempts to separate the general
from the application specific concerns and provide a framework for building
solid recording process documentation, querying and processing software.

It is clear that we can provide generic middleware that allows the provenance-
related use cases to be more easily achieved. We have separated the tasks sup-
ported by the architecture into recording, querying and processing, with each
depending on the former. As far as possible, we intend to push application-
specific solutions into the processing. While there are many issues still to
be addressed, we believe our architecture provides the foundations of a full
solution.
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