
Semantic Web Meets Autonomic Ubicomp

Roxana Belecheanu†, Gawesh Jawaheer*, Asher Hoskins*, Julie A. McCann* and
Terry Payne†

†School of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ
{rab2,trp}@ecs.soton.ac.uk

*Dept. of Computing, Imperial College London
180, Queen’s Gate, South Kensington Campus

London SW7 2AZ UK
{gawesh,asher,jamm}@doc.ic.ac.uk

Abstract: The placement of autonomic systems’ management functionality into
a ubiquitous computing environment is a difficult task due to the lack of sys-
tems’ resources and the need for ‘intelligence’ to ensure that the system is self-
healing/organising or configuring. For such systems to adapt to changes to their
current environment they need to be able to (re) configure the workflow of their
services. In this paper, we propose the ANS, an autonomic middleware for ubi-
comp devices. We briefly describe the architecture of ANS and its autonomic
behaviour. The ANS follows a service centric design and therefore lends itself
to semantic service description. This paper introduces the concept of services
with ancillary behaviour and illustrates the use of OWL-S to semantically de-
scribe them. Commitment is discussed as an example of ancillary behaviour
which can be used to achieve self-healing at service level. We illustrate our ap-
proach with examples from the homecare scenario of a cardiac patient.

1 Introduction

In recent years we have witnessed substantial development towards realising the vi-
sion of Ubiquitous Computing (Ubicomp). Described by Mark Weiser in a now fa-
mous article [11], ubicomp is about a world where computing devices are everywhere
and yet disappear in their environment. This has lead to the emergence of fields such
as sensor networking where researchers are taking up the challenge of building small
battery powered computing devices which integrate with (as well as monitor) their en-
vironment. Furthermore, the ability of such devices (which may also be mobile) to
communicate using low bit radio has opened a vast array of potential applications.

An open question in the field of ubicomp is how to manage devices and their ap-
plications. This is not a trivial problem and the characteristic properties of such
devices such as size and processing constraints limit portable or deployable solutions
that have been proposed within the field of traditional distributed systems. For ex-
ample, the small size and relatively low costs of these devices imply that they are
highly likely to be deployed in large numbers. Once deployed, communication with

the devices are done either through low bit radio or wireless LAN technologies, both
of which are highly expensive in terms of power consumption. Thus, message passing,
which is one of the traditional means of building distributed applications, cannot be
used lightly. Another important factor is that of a device being aware of its peers (with
respect to a given task) and of both their status and its own. This awareness is neces-
sary for coalitions of devices and services to react to, or pre-empt failure, both at the
individual (service or device) level and at the coalition level.

Our proposed solution to the problem of managing a distributed, open, ubiquitous
environment is the Autonomic Networked System (ANS), an architecture that can be
used to manage and develop applications for ubicomp. The ANS architecture includes
autonomic middleware (which we are developing) that simplifies the management and
development of ubicomp applications. For example, managing an evolving set of
devices and services that may grow dynamically through the incremental addition of
new devices, or managing transient devices that enter the ANS environment. One of
the challenges of handling such devices is that it is difficult to assume a-priori know-
ledge of the services that may be available. Likewise, one cannot simply assume that
all service descriptions will adhere to a single ontology (especially if different devices
originate from different vendors, etc). To address this, we are leveraging research on
interoperable service descriptions (i.e. Semantic Web Services) for tasks such as ser-
vice discovery, management, invocation, and monitoring.

The Semantic Web effort is developing standards and technologies to facilitate ma-
chine understanding of content on the Web, in a way that allows for richer discovery,
integration and navigation of data and automation of tasks [1]. To this end, the Se-
mantic Web extends the data existing on the Web through conceptual annotations, by
defining ontologies for each domain of knowledge and by specifying logical rules for
processing this knowledge [17]. In the context of a ubiquitous environment like the
ANS, the Semantic Web provides an essential infrastructure for representing and link-
ing devices with data sources and describing and reasoning about their functionalities
and capabilities. OWL-S [2] is a service framework consisting of a set of Semantic
Web ontologies that support the description of, and reasoning about services, thus
providing a uniform view to service functionality [16].

Furthermore, due to the high variability of Quality of Service (QoS) of wireless
data communications (e.g. line rate, delay, throughput, error rate), there is also a high-
er need for adaptability of the services running on the connected devices. Abstracting
device functionality (i.e. physical functionality) as services (i.e. logical functionality)
and adding semantic information to the syntactic definition of these services can help
achieve the higher level flexibility of the ubiquitous system, discovering and re-estab-
lishing links between devices and their services dynamically.

In this paper, we describe how ANS services benefit from semantic annotations
within the context of the ANS project [12]. In Section 2 we outline the application do-
main chosen for the project and present autonomic computing and how it relates to the
ANS. We also describe the various autonomic behaviours exhibited by ANS and illus-
trate these with an example. In Section 3, we present the building blocks of the ANS
and we describe the ANS middleware. Section 4 describes the semantic service de-
scription using OWL-S. And finally, we examine related work in Section 5 and
present our conclusions.

2 Autonomic Ubicomp in homecare

To build a proof of concept, we have chosen a challenging application domain for the
ANS, namely the provision of care in the home for coronary heart disease (CHD) pa-
tients. For the purpose of testing our implementation of ANS, we have been building
the associated hardware and preparing a laboratory setup to act as a testbed for our ap-
plications (a discussion of the hardware aspects of ANS is out of the scope of this pa-
per but can be found in [13]). One can imagine a CHD patient living in an intelligent
home equipped with sensors, which are running the ANS. This is a dynamic environ-
ment where sensors may fail but recover from that failure (self-heal) and friendly alien
devices such as a visiting nurse’s PDA may interact with sensors in the home (self-
configure).

Borrowing from biology, an autonomic system is one that provides background
support without requiring external intervention (e.g. the human nervous system). Like-
wise, in computing, an autonomic system is one that has the following properties:

• Self-healing - devices can leave the system without applications breaking.
• Self-configuration - The system can set itself up and discover other devices

automatically.
• Self-optimisation - At all times the system is in the "best" state. Note that dif-

ferent devices have different ideas about what constitutes "best", i.e. given a
certain situation the services provided are as best they can be at that time.

Autonomic behaviour is implemented systemically across all layers of the ANS ar-
chitecture (as opposed to having an "autonomic network" or "autonomic software"
layer). For example, in the network layer packets that are not acknowledged can be
retransmitted. A device that fails to acknowledge a packet after a certain number of
tries is assumed to have left the network (either by moving or failing). Control then
moves up to the application layer, which must send commands back down to the net-
work layer to search for alternate, equivalent services. If one is found then the applica-
tion may have to reconfigure to cope with any differences between the failed and the
newly discovered service. If no such service can be found, then the application should
handle this gracefully, either by identifying an alternate way of achieving the overall
task, or through graceful degradation. Self-configuration is similar, whereby the appli-
cation starts with no services, but searches for them on the network, essentially
achieving the overall task by building it from components that best fit the require-
ments. For example, a nurse with a PDA might enter the intelligent home, but for the
PDA to communicate with the home’s ANS, it might require a service that supports
secure communication (such as secure drivers, etc).

For a system to be self-optimising the service discovery phase must include some
information about how to pick the optimal service. The ANS does this by requesting
services that meet a set of parameters (representing QoS requirements for example)
and picking those devices that come closest to those parameters. By regularly seeking
alternate services, the system can refine its performance by identifying and utilising
better services as they appear.

In order to illustrate an example of self-healing behaviour, assume that two location
services are available in a room: one based on video and running on device V that can
return an accurate location, and one based on simple light sensors, running on device

L, which can only return a vague location. An application running on device A wishes
to know the location of a person in the room to the greatest possible accuracy. Hence:

1. A sends a service request for a location service that will deliver location data
with a high degree of accuracy

2. V responds stating that it can provide that service and can meet the degree of
accuracy required

3. L responds stating that it can provide that service but not at that level of ac-
curacy

4. A chooses Vas a location service
5. At some point later, V stops working
6. A now sends out another service request
7. This time, only L responds.
8. A chooses L. The location information it now receives is not as good as that

from V but will enable the application to keep running.
In the future, if device V becomes available again, the system will self-optimise
through re-tendering of its services.

3 ANS building blocks

The main building blocks of the ANS architecture are shown in Figure 1. The ANS
middleware is described in this
section whilst the semantic ser-
vice description is explained in
Section 4. The ANS comprises
of the middleware that is decen-
tralised among the ubicomp de-
vices in the intelligent home and
includes the semantic service
description of all the functions
that the devices can carry out.
The application as such is de-
coupled from the ANS but com-
municates its autonomic logic to
the ANS in terms of trigger ac-
tion rules. Typical ubicomp de-
vices in the ANS environment
would be microcontroller based
wireless sensor nodes, PDAs
and embedded PCs.

At the lowest level, the ANS
middleware protocol provides a common language that ANS devices can use to com-
municate. The protocol runs on top of a packet-based network layer such as IP. This
packet-based layer need not provide lossless transmission since the ANS contains
mechanisms for dealing with lost packets. The ANS protocol is deliberately very sim-
ple so that all ANS devices can support it fully. All complex and device specific oper-

Application

Service manager Service manager

ANS semantic service description

ANS middleware

Figure 1 ANS components

ations are implemented as services. Along with basic low level networking commands
such as acknowledge and ping, and service discovery commands, the ANS provides
two commands that are used to implement services; these are “Labelled Command”
and “Labelled Data” commands respectively.

Firstly, a “Labelled Command” is used for all operations on a service that cause an
action of some kind. The “Labelled Data” command is used for the transfer of data to
and from a service. Labelled data packets may be cached by devices on the network
whether they understand the service that the data relates to or not, and then used at a
later date to reconstruct data streams in the event of a network or device failure.

All labelled data and command packets contain an ID number to identify the ser-
vice that they refer to. This ID number is unique only to the device providing the ser-
vice and is made available during the service discovery phase. Some services may also
implement a sequence number so that out of sequence packets or repeated packets
may be discovered and dealt with. Not all services require this functionality however.
For example, a service that controls a light does not care if it is mistakenly sent two
"turn light on" commands in sequence, the net result (the light being lit) is the same.

4 Semantic Web Services

One of the problems with deploying devices within a home-care environment is that as
different vendors may describe similar devices in different ways, one cannot make any
assumptions about standardized or shared vocabularies. This leads to problems both
in terms of describing and discovering services (as there is no guarantee that the ser-
vice description will use the same terms as those found in the service request), and in-
terpreting the service description of a newly introduced service. Such scenarios may
be resolved by either enforcing a policy of using devices that conform to a given vo-
cabulary, or though the use of mediators that translate between different ontologies.
Semantic Web Services utilise formal concepts logically defined within the Semantic
Web to describe their capabilities and to define usage protocols. By using such con-
cepts, logical entailments can be made to determine if two services or devices are sim-
ilar (such as a “photo-quality printer” is a printer that produces very high resolution
images on, for example, glossy paper).

4.1 OWL-S

OWL-S [2] is an OWL [3] based ontology language for describing Semantic Web
Services. It consists of three top-level ontologies that contain constructs for describing
various aspects of a service. These ontologies are the Profile, the Process Model and
the Grounding:

• The Profile contains a high level declarative description of the service: e.g.
the service capability (i.e. what it does), its inputs, outputs, requirements for
invocation (i.e. preconditions) and the effects of its execution. The Profile
may also provide information about non-functional aspects of the service,
such as QoS measures, cost, availability, etc., as well as information about

the service provider. The description of service properties and capabilities
are useful for automatic service discovery; an agent can use it to determine
the applicability of a particular service for a particular task [4].

• The Process Model contains a declarative specification of the operations
provided by the service, i.e. how the service works. Each of the operations,
or processes, are defined in terms of initial resources (i.e. inputs and precon-
ditions), and resulting outcomes (outputs and knowledge-effects). A control
and dataflow model is represented as a hierarchical workflow, using one of
several workflow constructs (e.g. sequence, choice, split-join operators, etc).
This approach facilitates the construction of new services in terms of a com-
position of existing services; hence a meta-goal could be described using dif-
ferent compositions of different services.

• The Grounding is a mapping of the abstract information of the inputs and
outputs described in the Process Model, onto the actual messages exchanged
by the provider and the requester (described using the Web Services De-
scription Language – WSDL). Typically, a grounding specifies a communic-
ation protocol, message formats, port numbers and other service-specific de-
tails necessary to access the service.

Attempting to resolve semantic mismatch through logical reasoning, however, does
not guarantee any form of autonomic behaviour; it merely assists with composing dif-
ferent services within an environment of heterogeneous services. One important issue
within a home-care environment is that there may be a limited number of devices,
each providing services that take a finite time to execute, and that may have to be
shared by several contexts. Given this, no guarantees can be made that any single ser-
vice will be available for invocation at any given time, due to the fact that the service
may be busy responding to another service request. Such problems also occur within
Agent and Grid-based environments - for example, it is possible to make a “reserva-
tion” on an OGSA grid service for access at a given time. Likewise, agent teams can
form through agreements (such as “commitments”) made ahead of invocation time.
To facilitate such agreements between services, it is necessary to support and apply
additional (or ancillary) services to the main (i.e. core) service descriptions.

4.2 Using OWL-S to map Ancillary services in ANS

Ancillary services within ANS are those that provide additional functionality to the
core service as described within an OWL-S description, and which augment the ser-
vice’s capability, or enhance the QoS achieved by the core service. Typically, a ser-
vice description presents the necessary information for executing that core capability.
However, services are frequently accompanied by supporting functionality, which is
relevant only to the context of the core service, but may not play a direct role in the
services invocation (such as managing accounts, monitoring behaviour, or making
reservations for deferred execution).

One of the risks in a ubiquitous environment is the high failure rate of message
transmission due to packet loss, which results in failure of communication between
devices and/or sensors. Due to this risk, and because of high power consumption that
characterises message transmission, it becomes necessary to reduce the number of ser-
vice requests, or to support a mechanism whereby several activities may be requested

via a single call. Examples of ancillary behaviour include operations like commit-
ment, authentication, encryption/decryption, costing, etc. These can be either mandat-
ory (i.e. operations that must be executed in addition to the service’s core functional-
ity, such as authentication, or the service will not work otherwise), or optional; they
can contribute to the delivery of a service either by providing a supporting role (i.e.
enable the core service) or an enhancing role (increase the value of the core service)
[5].

Autonomic services in ANS manifest ancillary behaviour; commitment is an ex-
ample of particular importance to ANS and to a ubiquitous system in general, as ex-
plained in the next section.

4.3 Commitment based services in ANS

The concept of commitment and its use in teamwork models has been widely re-
searched, both theoretically [6, 7,8] and as application to different practical situations
of cooperative problem solving [9]. Commitment is a core concept in the theory of
local and social agent behaviour and is defined by the notion of achieving a persistent,
joint goal. A persistent goal is a commitment to an action and has the following im-
plications on the beliefs and behaviour of an agent: once a persistent goal is adopted,
the agent believes that the goal is currently false and it wants the goal to be true. The
agent will then hold these two beliefs until either the goal becomes true, or the agent
comes to believe that it will never be true, or the goal becomes irrelevant with respect
to some other higher-level goals.

Within ANS, commitment helps achieve two objectives regarding ANS services:
1. persistency: by defining that, once a service agent adopts a goal it will not be

able to drop it unless certain conditions arise and it will have to keep trying to
attain that goal, until it succeeds.

2. self-awareness: through commitment, services can be aware of other services
they are dependent on.

To illustrate how commitment may be used to achieve self-healing behaviour, ima-
gine that the ANS provides a location service, which is a composition of a floor sensor
service and a vision service. The floor sensor service provides approximate details of
the patient’s location to the vision service, which uses this to target the camera and
identify the actual physical position and orientation of the patient. If the floor sensor
service fails, then an acoustic sensor service is used instead.

By implementing the location service as a commitment-based service, its invoca-
tion would implicitly require that the location service becomes committed to the ac-
tion described by its workflow, and which has as an implicit goal to serve the patient’s
accurate location to the application. As soon as it detects that the floor sensor service
has failed, the location service will attempt to achieve the goal to which it has commit-
ted, by discovering an alternative service for determining the rough position of the
person (e.g. through using the acoustic service).

4.4 Describing ancillary services in OWL-S

Ancillary service descriptions should be loosely linked to ANS service specifications,
such that the resulting workflow for both the core and ancillary services will be real-
ized (through entailment) when an agent reasons about the service (with respect to a
usage context). Ancillary ANS service behaviour has two salient characteristics:

1. It is dynamic, i.e. it involves communication with other services of which in-
stances can only be discovered at runtime. Thus it cannot be included in the
static description of the service’s process.

2. It is core function independent, i.e. it is common to a range of services with
different core functions. It can therefore be annotated in a separate ontology,
in order to be referenced by several higher-order services and thus to elimin-
ate redundancy.

Figure 2: ANS ontologies and the derivation of core and ancillary services

For these reasons, ancillary behaviour is abstracted and described separately from a
given service’s core functionality, thus facilitating several different services sharing
the same ancillary behaviours. For this reason, the semantic description layer of ANS
consists of the following ontologies (Figure 2):

1. The Domain ontology – this ontology represents an OWL-based representation of
the domain in which the ANS is being applied. For example, with the healthcare
scenario, it would include concepts such as:
 ANS roles and users (patient, nurse, doctor, etc.)
 Devices (e.g. PDA, lamp, TV set)
 Sensors (e.g. temperature, heart rate, cabinet sensor, light, acoustic, pressure)
 Knowledge/Information concepts that are used or consumed by the services

(e.g. heart rate, weight, light intensity, temperature, location, time).

Heart Rate Monitor
without Commitment

Heart Rate MonitorHeart Rate Monitor
withoutwithout CommitmentCommitment

Heart Rate Monitor
with Commitment

Heart Rate MonitorHeart Rate Monitor
withwith CommitmentCommitment

Domain OntologyDomain Ontology

ANS
Service

Ontology

ANS
Service

Ontology

Commitment
Services

[
requestCommitment
dischargeCommitment
checkCommitment

]

Commitment
Services

[
requestCommitment
dischargeCommitment
checkCommitment

]
GetHeartRate

Service
Instance

(core function)

GetHeartRate
Service
Instance

(core function)

ANS
Ancillary Service

Ontology

ANS
Ancillary Service

Ontology

Commitment
Service

Instances
(ancillary behaviour)

Commitment
Service

Instances
(ancillary behaviour)

InstanceOf InstanceOf

GetHeartRate
Service
Instance

GetHeartRate
Service
Instance

InstanceOf

Heart Rate Monitor
without Commitment

Heart Rate MonitorHeart Rate Monitor
withoutwithout CommitmentCommitment

Heart Rate Monitor
with Commitment

Heart Rate MonitorHeart Rate Monitor
withwith CommitmentCommitment

Domain OntologyDomain Ontology

ANS
Service

Ontology

ANS
Service

Ontology

Commitment
Services

[
requestCommitment
dischargeCommitment
checkCommitment

]

Commitment
Services

[
requestCommitment
dischargeCommitment
checkCommitment

]
GetHeartRate

Service
Instance

(core function)

GetHeartRate
Service
Instance

(core function)

ANS
Ancillary Service

Ontology

ANS
Ancillary Service

Ontology

Commitment
Service

Instances
(ancillary behaviour)

Commitment
Service

Instances
(ancillary behaviour)

InstanceOf InstanceOf

GetHeartRate
Service
Instance

GetHeartRate
Service
Instance

InstanceOf

2. The ANS services ontology – describes core services without ancillary behaviour,
like GetTemperature, GetHeartRate, SetLightIntensity, etc. Many of these may be
offered by a sensor or device within the environment. For example, an intelligent
lamp may offer two different light services: SetLightIntensity and GetLightIntens-
ity. One way to classify these services is by the function they perform (Figure 3).

Figure 3: A classification of ANS services

3. ANS ancillary services ontology – describes services like commitment services,
encryption services, etc. From the point of view of OWL-S annotation, this onto-
logy can be viewed as a repository of partially bound workflows (see below).

Services within the healthcare environment may be software-only services (i.e. they
are independent of any specific hardware), or they may represent, or be offered by a
physical device (such as a sensor or actuator). The ontologies define a set of semantic
concepts that can be used to describe these services; the concepts themselves may be
class definitions (such as defining a role – e.g. Nurse), or they could define a specific
instance (e.g. an instance of a Nurse might be “Ms Nightingale”). Service definitions
consist of an OWL-S service instance, with other instances defined by their concept
classes (defined, for example, in one of the ontologies described above). Traditional
OWL-S services assume one or more core service instances (as in GetHeartRate in the
“Heart Rate Monitor without Commitment” service in Figure 3 above). The following
describes how such services can be augmented by: i) defining ancillary services (as in
the “Commitment Service” instance, defined by the ANS Ancillary Service Ontology);
and ii) linking core service descriptions with ancillary services.

To illustrate how core services can be augmented by ancillary services, consider the
following example: A Heart Rate monitoring service has been defined that will sup-
port commitment (i.e. HRMonitor_with_Commitment). The resultant workflow for
this service is a sequence of three processes: RequestCommitment, GetHeartRate and
DischargeCommitment. The first and last processes in this sequence (RequestCom-
mitment and DischargeCommitment) represent subprocesses of the ancillary beha-
viour of the HRMonitor_with_Commitment, and are provided by the ANS Ancilary
Service Ontology. The GetHeartRate process represents the core function of this ser-
vice, which is defined here as an atomic process:

<process:AtomicProcess rdf:ID="GetHeartRate">
<hasOutput rdf:resource="ansConcepts#HeartRate"/>

</process:AtomicProcess>

Environment Monitoring Services
(e.g. GetLightIntensity,
GetRoomTemperature)

Environment Effecting Services
(e.g. SetLightIntensity,
SwitchOnLight, SwitchOnTV)

Patient Monitoring Services
(e.g. DrugIntakeMonitor,
BodyTemperatureMonitor,
HeartRateMonitor)

Entertainment Services
(e.g. NewsService,
WeatherService)

ANS Services

Environment Monitoring Services
(e.g. GetLightIntensity,
GetRoomTemperature)

Environment Effecting Services
(e.g. SetLightIntensity,
SwitchOnLight, SwitchOnTV)

Patient Monitoring Services
(e.g. DrugIntakeMonitor,
BodyTemperatureMonitor,
HeartRateMonitor)

Entertainment Services
(e.g. NewsService,
WeatherService)

ANS Services

To combine the core and ancillary workflows, we use the OWL-S Simple Process
class as an unbound service abstraction that can be realised at runtime by another ser-
vice instance. The commitment workflow can be written as follows:

<process:CompositeProcess rdf:ID="Commitment_Process">
<process:composedOf>
<process:Sequence>
<process:Components>
<process:AtomicProcess rdf:resource="#RequestCommitment"/>
<process:SimpleProcess rdf:resource="#Core_Function"/>
<process:AtomicProcess rdf:resource="#DischargeCommitment"/>

</process:Components>
</process:Sequence>

</process:composedOf>
</process:CompositeProcess>

Additional annotations are added to the core GetHeartRate service definition to
link in with the ancillary commitment service definition. Two sets of annotations are
required to achieve this: i) by stating that the GetHeartRate process realizes the ab-
stract Simple process included in the ancillary service Process Model; and ii) by refer-
encing the ancillary service Profile, via the serviceParameter property:

<process:AtomicProcess rdf:ID="GetHeartRate">
<process:realizes rdf:resource="ansAncillary.owl#Core_Function"/>
</process:AtomicProcess>

...
<ANSServiceProfile rdf:ID=”HRMonitor_with_Commitment_Profile”>
<service:presentedBy rdf:resource=”#HRMonitor_with_Commitment”/>
<profile:has_process rdf:resource=”#GetHeartRate”/>
<ansProfile:ANSAncillaryFunctionality>
<ansProfile:ANSAncillary>
<profile:sParameter rdf:resource="ansAncillary#Commitment_Profile"/>

</ansProfile:ANSAncillary>
</ansProfile:ANSAncillaryFunctionality>

</ANSServiceProfile>

The realize statement provides the expansion of the Core_Function definition with-
in the ancillary workflow. By asserting this statement in GetHeartRate, the ancillary
service definition is effectively unbound, until reasoned about in context with the Get-
HeartRate service. In addition, this service would also include a Grounding definition
for the GetHeartRate atomic process, thus providing an invocable binding to the oth-
erwise abstract Simple process definition.

An important consideration is how a service requester can distinguish between a
committed and non-committed service during discovery, as typically a service is re-
quested according to the functional parameters of the core service. To achieve this,
ANSAncillaryFunctionality is defined as a serviceParameter type of property, in the
profile of any ANS service. Thus, service discovery mechanisms can seek services
with respect to core functionality, but then inspect non-functional properties to de-
termine what ancillary services are also provided as part of the service description.

By separating the core function from the ancillary behaviour, the main research
task becomes the runtime composition of the workflows describing the core and ancil-
lary sub-processes into one executable workflow that can be enacted. Also, the imple-
mentation of commitment needs to be carefully thought, due to the challenges this
raises in ubiquitous environments (e.g. [10]).

5 Related Work

There have been other approaches to designing a middleware for sensor systems.
For instance, [14] describes the Impala middleware for developing sensor applica-
tions. Impala is designed to work on microcontroller based wireless sensors and
provides the functionalities of an operating system, resource manager and event filter.
The authors elaborate on the need for software adaptation in wireless sensor networks.
The sole application they focus on is a routing protocol for transmitting messages.
They propose a technique for enabling adaptation of the routing application by load-
ing different routing applications on each sensor node. Each application is character-
ised by a set of parameters and the routing application with the best parameters is
chosen to run. Rules define the conditions under which a switch of applications should
take place. In contrast to ANS, the granularity of adaptation in their work is coarse
grain. Another limitation of their work is their narrow focus on adapting a routing ap-
plication from which it is difficult to make general conclusions. In contrast, as illus-
trated by the examples in the previous sections, the autonomic behaviours in ANS are
not specific to a particular application. Furthermore, by incorporating the concept of
services in the ANS, the latter lends itself to semantic service descriptions which aids
discovery and integration. Although the Impala system was designed for microcontrol-
ler based wireless sensors, the implementation described in [14] was carried out on
PDAs (HP IPAQ). Once again, this is a limitation, which prevents any generalisation
of their results. On the other hand, ANS will be implemented on real microcontroller
based wireless sensors, which is being built as part of the project [13]

[15, 18] describe another middleware for wireless sensor networks, concentrating
on the structural aspects of such a system. For example, although they identified the
ability to adapt as an important characteristic of the middleware, their work is mainly
conceptual and no implementation details are given. By comparison, autonomic beha-
viours form the crux of the ANS. We also note that the work presented in [15, 18].

6 Conclusions

This paper presents ANS, an autonomic middleware system for ubicomp devices.
The paper discusses the types of autonomic behaviour of ANS (self-healing/optimiza-
tion/configuration) and how these can be achieved via a service-based design and
through the application of Semantic Web to annotate ANS services. We introduce the
concept of services with ancillary behaviour (also called higher-order services). We
argue that ancillary behaviour can be used to realize the self-healing nature of the ubi-
comp environment, taking as an example the concept of commitment developed in
agent based research. We then show how OWL-S can be used to separate and abstrac-
tize the ancillary functionality from the core functionality of the higher-order service,
to reflect the dynamic and core-function independent nature of ancillary behaviour.
Future work will address the runtime composition of core and ancillary sub-processes
into one executable workflow. The model will then be applied within a real sensor net-
work and its performance will be measured in terms of the ability to reconfigure dy-
namically on devices with highly limited resources.

References

1. Koivunen, M. and Millerm E. – W3C Semantic Web Activity, in Semantic
Web Kick-Off in Finland – Vision, Technologies, Research and Applica-
tions, May 2002, pp. 27-44.

2. The OWL Services Coalition: Semantic Markup for Web Services (OWL-S):
http://www.daml.org/services/owl-s/1.0/

3. Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Hor-
rocks, I., McGuiness, D.L., Patel-Schneider P.F., Stein, L.A.. “OWL Web
Ontology Language Reference”, W3C Candidate Recommendation, 18 Au-
gust 2003, http://www.w3.org/TR/owl-ref/

4. McIlraith, S.A., Son, T.C. and Zeng, H. Mobilizing the Semantic Web with
DAML Enabled Web Services. In Semantic Web Workshop, 2001.

5. Baida, Z., Akkermans, H. and Bernaras, A., 2003., The configurable nature
of real-world services: analysis and demonstration, ICEC-Workshop.

6. P. R. Cohen and H. J. Levesque. Teamwork. Handbook of MultiAgent Sys-
tems, 25(4):487–512, 1991.

7. Levesque, H. J. and Cohen, P. R. On acting together. In Proceedings of
AAAI-90, 1990.

8. P. R. Cohen and H. J. Levesque, Intention is choice with commitment, Arti-
ficial Intelligence, 42 (1990), pp. 213-261

9. Tambe, M., Towards flexible teamwork, Journal of Artificial Intelligence Re-
search, 7 (1997), 83-124.

10. Chen, H. and Finin, T.– Beyond distributed AI, Agent Teamwork in Ubiquit-
ous Computing, In: Workshop on Ubiquitous agents on embedded, wearable
and mobile devices, AAMAS Conference, Bologna, July 2002

11. Weiser, M, "The Computer for the Twenty-First Century," Scientific Americ-
an, pp. 94-10, September 1991

12. http://www.ubicare.org/projects-ans.shtml
13. McCann J, Hoskins A and Jawaheer G, ANS (Autonomic Networked Sys-

tems) for Ubiquitous Computing, Adjunct Proceedings of UbiComp 2004,
Nottingham, UK, September 2004

14. Liu T, Martonosi M, Impala: a middleware system for managing autonomic
parallel sensor systems, Proceedings of the 9th ACM SIGPLAN symposium
on Principles and practice of parallel programming, Jun 2003

15. Blumenthal J, Handy M, Golatowski F, Haase M, Timmermann D, Wireless
sensor networks – new challenges for software engineering http://www.vs.in-
f.ethz.ch/publ/se/sensornw-etfa-uni-ro.pdf

16. Lassila, O. and Adler, M., Semantic Gadgets: Device and Information Inter-
operability, April 2003.

17. Laamanen, H., Helin H., Laukkanen, M., Semantic Web and Software
Agents meet Wireless World. In: Semantic Web Kick-Off in Finland – Vis-
ion, Technologies, Research and Applications, May 2002, pp. 241-250

18. Römer K, Kasten O, Mattern F, Middleware Challenges for Wireless Sensor
Networks.ACM Mobile Computing and Communication Review, pp. 59-61,
October 2002

