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The decision-making process for the management of patients with breast cancer involves 

a consultation based on results of X-ray and other imaging technologies, clinical patient 

information, pathological evidence from cell and tissue extracts and so on.  The evidence 

is presented in the specialised vocabulary of each of the experts and constitutes the input 

to the decisions taken for the management of the disease. We have developed a 

knowledge-based framework which builds on an index of key concepts from each of the 

fields of expertise organised in domain ontologies, which also organizes the relationships 

between these concepts with unambiguous machine-readable semantics. Appropriate 

evidential information and case notes can then be annotated with respect to this 

conceptual index, and we provide retrieval facilities for drawing upon the stored 

information via the concepts relevant to the domain at hand. Moreover, our system 

architecture is an example of a Semantic Web (Berners-Lee et al 2001) application which 

provides web-based access to and processing of relevant information, enabling different 

specialist departments in dispersed locations to collaborate.  We demonstrate the 

relevance of such a system by showing the performance of classification services 



integrated into this framework.  As indicated, at the multi-disciplinary meeting the 

different specialists use their independent means and concepts to describe features of the 

case at hand.  We used the Digital Database for Screening Mammography (DDSM) 

(Heath et al 1998) of the University of South Florida1 to extract the image descriptors for 

X-ray mammograms to construct several classifiers for predicting likely malignancy of a 

case given its description.  These classifiers can be run on remote servers with results 

returned to the user client in the meeting room.   

 

After a brief presentation of the domain ontology in Section 1, Section 2 provides an 

overview of the MIAKT architecture and application framework within which the server 

side functionalities, such as classification as reported in Section 4 and image feature 

extraction are accommodated. Section 3 provides browsing facilities via a client-side case 

exploration method using a lattice-based visualisation technique called Formal Concept 

Analysis (FCA) (Ganter and Wille 1999).   

1. Domain ontology 

The concept terms of the ontology are compliant with the BI-RADS lexicon (ACR 2001) 

and are organized from the abstract to the concrete, eg., concrete descriptors like 

“Spiculated Margin” are subsumed under high-level concepts such as “Medical Image” 

or “Image Descriptor.” “Image Descriptor” has a subclass “Morphologic Descriptor” 

which in turn has a subclass “Mammogram Specific Margin Morphology” which has a 

concrete type “Spiculated Margin”. Also, five top level roles (properties) are used to 

                                                 
1 http://marathon.csee.usf.edu/Mammography/Database.html 

 



represent five different generic categories of role referencing relationships among 

concepts. These abstractions allow ontology-based tools to be largely independent of 

details of data-typing at the specific end of the descriptive hierarchy. The ontologies are 

compliant with the Web Ontology Language (OWL) standard (McGuinnes and van 

Harmelen 2003), and stored as RDF triples (Lassila and Swick 1999) in the 3store 

database (Harris and Gibbins 2003). 

2. The Architecture 

The MIAKT architecture provides a generic remotely-accessible structure for rapidly 

prototyping new applications in new domains, and is thus deliberately abstracted from 

any particular application domain (and its description). The application ontology, which 

provides the link to the resources that will be available in this application, is divided into 

two distinct ontologies: the client ontology and the framework ontology. The client 

ontology describes the resources available to the client application. The framework 

ontology describes where and how many of those resources are accessed, mapped and 

initiated. 

 

To provide access to web-services, a server-side service architecture is designed to be 

extended to provide access to different services. It is accessed via mapped task names, 

providing a flexible bridging mechanism between the client and the services. Bringing 

web-services into the application as component objects provides access to functionality 

that might otherwise be impossible to integrate into a desktop solution. Servers with large 

storage capacity or with large processing capability can be simply accessed through the 

generic client to provide domain specific and non-domain specific algorithms. 



 

 

Figure 1 - The MIAKT Server-Side Server Invocation System 

A user transparently interacts with the architecture through an application client that is 

also built around a generic architecture and invoked as instances of the application 

ontology.  

2.1 Image retrieval over the Web 
 
The distribution of the X-ray image data is achieved using a network protocol called the 

Internet Imaging Protocol (IIP) for transmitting large images across relatively small 

bandwidth pipes as image tiles (Martinez et al 1998). The image tiles that are returned 

from the servlet interface can be at various resolutions allowing low resolution, 

"overview" images to be downloaded quickly, providing better response times to the user 

interface.  Image feature extraction modules can use tile retrieval to retrieve only the 

parts of the image necessary for their operation, thereby lowering bandwidth and latency 

costs. For example, should a user make an annotation on an image that some feature 

module will be providing feature extraction on, only that small area of the image needs to 



be transferred (unless the feature module specifically requires otherwise). Similarly, 

using image tiles provides a method for only the necessary parts of images that are being 

displayed to be transferred, again increasing the response of the user interface. Although 

this provides a quicker response in initial image display, it potentially slows manipulation 

of the image view as tiles are retrieved during scrolling. 

2.2 Image feature extraction 

Association of features of an image or region of interest with the concepts in the ontology 

is the mechanism that provides a powerful model for storage of knowledge. Regions of 

interest withing an image may be manually or semi-automatically generated, or retrieved 

from legacy data. Association of a feature to concepts defined in the ontology is provided 

by a simple point and click mechanism. The user highlights the feature which they are 

going to associate with a concept, and finds the relevant concept in one of the concept 

browsers. They are then able to right click and associate this feature with a concept. 

During this process the feature vector is stored in a feature database, which provides 

indexed, feature-dependant retrieval of features, and the unique ID of the feature vector is 

inserted as an instance of the given concept. 

 

Image feature extraction algorithms are provided to the client mainly through the web-

service interface. A defined web-service interface called the Feature Service API has 

been developed which provides a simple, extendible web-service framework for 

publishing feature extraction modules. The API provides functionality for storing, 

retrieving, and comparing feature vectors from images, and automatically provides 

feature modules with the relevant regions from the source media. The image feature 



extraction modules can use tile retrieval to retrieve only the parts of the image necessary 

for their operation, thereby lowering bandwidth and latency costs. 

3.  Lattice-based browsing of patient records  
 
In this section we briefly report on a lattice-based visualization technique we have 

deployed to enable browsing an entire set of cases based on the various attributed by 

which these cases have been annotated.  The technique used is called Formal Concept 

Analysis (FCA) which relies on a description of concepts in terms of a pairing of 

instances and their attributes (Ganter and Wille 1999).  A lattice is constructed by 

identifying various intersections of predicative sets (each set containing elements 

possessing one common feature value) where the partial ordering relation is derived from 

set inclusion.  This partial order is used to stitch a lattice together.  The number of 

attributes increases as we go down the page and the corresponding number of elements in 

the intersection of these predicative sets reduces.   

 

Instead of giving the appropriate mathematical description of FCA, we illustrate how it 

might be useful by means of an example.  In Figure 2, we present a fragment of the 

DDSM cases. The descriptors for the anonymous cases of the DDSM such as age, 

metadata of the mammogram images, and abnormalities as found on the images, are 

mapped to instances of our ontology and re-expressed as description-logic (DL) instances 

in RDF format, which is the input to the FCA module.  In the figure, the circular large 

nodes hold links to the cases which are described by the attributes that can be traced via 

the lines on the lattice above them.  Thus the rightmost lowest node contains the cases 

which contain benign masses with the features Lobulated and Focal Asymmetric Density.  



For the cases represented in the figure, it so happens that the Lobulated ones subsume the 

ones with Focal Asymmetric Density.  However, there are other Lobulated cases which 

also have the value Irregular for the Shape feature which are all malignant, as can be seen 

from the node second from the left among the four on the same line.  Thus the cases can 

be browsed in an exploratory fashion by following different pathways to the nodes 

reached by following the lines below the attributes in the figure.   

 

Figure 2 – FCA lattice for a sample of the DDSM cases. 

4. Classification Services 

The architecture described above has been designed to accommodate, among other 

methods, classification services based on features extracted from images via automatic 

means by image processing methods run on entire images or parts of the image 

segmented out by the hand-drawn region highlighting.  In addition, in the multi-

disciplinary meeting for patient management, the cases already come with expert labels 

attached – shape features for masses seen in X-rays, for example.  The classifiers that we 

present all take BI-RADS descriptors for X-ray images as input and classify cases 

according to their likelihood of being benign or malignant.  We illustrate the ideas by 

describing two of the classification methods we have tried out (Mitchell 1997). 



 

We normalise the data extracted from the DDSM collections by assigning binary values 

for each of the metadata features like Shape, Margin, Architectural Distortion, and so on, 

representing whether or not such a feature has been recorded in the case notes 

accompanying each image.  We used approximately 1500 of these cases to build our 

classifiers, with statistics accumulated from the (co)-occurrence or not of the features 

available.  

4.1 Naive Bayes  

The task of probabilistic classification of a case based on the statistics of occurrence of 

the features that represent it is one of finding which label maximizes the conditional 

probability of a label given the observed features P(label | features). Bayes’ rule is used to 

interchange the order of conditioning, and in applying the Naive Bayes condition, we 

make the simplifying assumption (often violated) that the joint probability of the 

symptoms given the identification of the disease state (the target classification labels -- 

benign, malignant or unproven) factorizes into the product of the probabilities of the 

individual features given the classification label.  

 

For the dataset at hand, each of the features is assumed to be drawn from a binomial 

distribution except for the feature Age, which is assumed to be drawn from a Gaussian.  

To work around small sample errors, and in particular, the appearance of zero 

frequencies, we assume a uniform Laplace/beta prior (equivalent to introducing a pseudo-

count of 1 for each feature, with the necessary normalization). After dividing up the data 



set into those involving masses and those with microcalcifications present, we obtain the 

results summarized in Table 1.  

Lesion Correct Classification False Pos False Neg 
Mass 77.9% 10.2% 11.1% 

Calcification 73.6% 8.4% 17.7% 
 

Table 1 -- Classification results for Naive Bayes. 

4.2 Linear classifiers and Multi-layer Perceptrons 
 
As an alternative method for classifying instances we tried training a multi-layer 

perceptron (MLP) on the data.  We compared a simple linear classifier with a binary 

output variable obtained by taking a logistic function on a linear combination of input 

data with trainable coefficients, to a MLP with different numbers of hidden variables – 2, 

4, 8, 16  and compared the results (see Figure 3 for illustration).   

 

Figure 3 – Perceptron and MLP 

The networks were trained by backpropagation with momentum.  The classification 

accuracy is summarized in Figure 4. 
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Figure 4 - Relative accuracy of MLP and linear classifiers. 

5. Summary 
 

This paper has illustrated how an ontology-based distributed system architecture can be 

invoked to run useful services such as diagnostic classification for decision support for 

breast cancer management. 
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