ONTOLOGY_BASED DECISION SUPPORT FOR
MULTIDISCIPLINARY MANAGEMENT OF BREAST CANCER
S Dasmahapatra*, D Dupplaw*, B Hu*, H Lewis+,

P Lewis*, M Poissonnier®**, N Shadbolt*
+School of Engineering, *School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, UK

**Oxford University, Medical Vision Lab, Ewert House, Oxford OX2 7DD UK

The decision-making process for the management of patients with breast cancer involves
a consultation based on results of X-ray and other imaging technologies, clinical patient
information, pathological evidence from cell and tissue extracts and so on. The evidence
is presented in the specialised vocabulary of each of the experts and constitutes the input
to the decisions taken for the management of the disease. We have developed a
knowledge-based framework which builds on an index of key concepts from each of the
fields of expertise organised in domain ontologies, which also organizes the relationships
between these concepts with unambiguous machine-readable semantics. Appropriate
evidential information and case notes can then be annotated with respect to this
conceptual index, and we provide retrieval facilities for drawing upon the stored
information via the concepts relevant to the domain at hand. Moreover, our system
architecture is an example of a Semantic Web (Berners-Lee et al 2001) application which
provides web-based access to and processing of relevant information, enabling different
specialist departments in dispersed locations to collaborate. We demonstrate the

relevance of such a system by showing the performance of classification services



integrated into this framework. As indicated, at the multi-disciplinary meeting the
different specialists use their independent means and concepts to describe features of the
case at hand. We used the Digital Database for Screening Mammography (DDSM)
(Heath et al 1998) of the University of South Florida' to extract the image descriptors for
X-ray mammograms to construct several classifiers for predicting likely malignancy of a
case given its description. These classifiers can be run on remote servers with results

returned to the user client in the meeting room.

After a brief presentation of the domain ontology in Section 1, Section 2 provides an
overview of the MIAKT architecture and application framework within which the server
side functionalities, such as classification as reported in Section 4 and image feature
extraction are accommodated. Section 3 provides browsing facilities via a client-side case
exploration method using a lattice-based visualisation technique called Formal Concept
Analysis (FCA) (Ganter and Wille 1999).

1. Domain ontology

The concept terms of the ontology are compliant with the BI-RADS lexicon (ACR 2001)
and are organized from the abstract to the concrete, eg., concrete descriptors like
“Spiculated Margin” are subsumed under high-level concepts such as “Medical Image”
or “Image Descriptor.” “Image Descriptor” has a subclass “Morphologic Descriptor”
which in turn has a subclass “Mammogram Specific Margin Morphology” which has a

concrete type “Spiculated Margin”. Also, five top level roles (properties) are used to

! http://marathon.csee.usf.edu/Mammography/Database.html




represent five different generic categories of role referencing relationships among
concepts. These abstractions allow ontology-based tools to be largely independent of
details of data-typing at the specific end of the descriptive hierarchy. The ontologies are
compliant with the Web Ontology Language (OWL) standard (McGuinnes and van
Harmelen 2003), and stored as RDF triples (Lassila and Swick 1999) in the 3store

database (Harris and Gibbins 2003).

2. The Architecture

The MIAKT architecture provides a generic remotely-accessible structure for rapidly
prototyping new applications in new domains, and is thus deliberately abstracted from
any particular application domain (and its description). The application ontology, which
provides the link to the resources that will be available in this application, is divided into
two distinct ontologies: the client ontology and the framework ontology. The client
ontology describes the resources available to the client application. The framework
ontology describes where and how many of those resources are accessed, mapped and

initiated.

To provide access to web-services, a server-side service architecture is designed to be
extended to provide access to different services. It is accessed via mapped task names,
providing a flexible bridging mechanism between the client and the services. Bringing
web-services into the application as component objects provides access to functionality
that might otherwise be impossible to integrate into a desktop solution. Servers with large
storage capacity or with large processing capability can be simply accessed through the

generic client to provide domain specific and non-domain specific algorithms.
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Figure 1 - The MIAKT Server-Side Server Invocation System
A user transparently interacts with the architecture through an application client that is
also built around a generic architecture and invoked as instances of the application
ontology.
2.1 Image retrieval over the Web
The distribution of the X-ray image data is achieved using a network protocol called the
Internet Imaging Protocol (IIP) for transmitting large images across relatively small
bandwidth pipes as image tiles (Martinez et al 1998). The image tiles that are returned
from the servlet interface can be at various resolutions allowing low resolution,
"overview" images to be downloaded quickly, providing better response times to the user
interface. Image feature extraction modules can use tile retrieval to retrieve only the
parts of the image necessary for their operation, thereby lowering bandwidth and latency
costs. For example, should a user make an annotation on an image that some feature

module will be providing feature extraction on, only that small area of the image needs to



be transferred (unless the feature module specifically requires otherwise). Similarly,
using image tiles provides a method for only the necessary parts of images that are being
displayed to be transferred, again increasing the response of the user interface. Although
this provides a quicker response in initial image display, it potentially slows manipulation

of the image view as tiles are retrieved during scrolling.

2.2 Image feature extraction

Association of features of an image or region of interest with the concepts in the ontology
is the mechanism that provides a powerful model for storage of knowledge. Regions of
interest withing an image may be manually or semi-automatically generated, or retrieved
from legacy data. Association of a feature to concepts defined in the ontology is provided
by a simple point and click mechanism. The user highlights the feature which they are
going to associate with a concept, and finds the relevant concept in one of the concept
browsers. They are then able to right click and associate this feature with a concept.
During this process the feature vector is stored in a feature database, which provides
indexed, feature-dependant retrieval of features, and the unique ID of the feature vector is

inserted as an instance of the given concept.

Image feature extraction algorithms are provided to the client mainly through the web-
service interface. A defined web-service interface called the Feature Service API has
been developed which provides a simple, extendible web-service framework for
publishing feature extraction modules. The API provides functionality for storing,
retrieving, and comparing feature vectors from images, and automatically provides

feature modules with the relevant regions from the source media. The image feature



extraction modules can use tile retrieval to retrieve only the parts of the image necessary

for their operation, thereby lowering bandwidth and latency costs.

3. Lattice-based browsing of patient records

In this section we briefly report on a lattice-based visualization technique we have
deployed to enable browsing an entire set of cases based on the various attributed by
which these cases have been annotated. The technique used is called Formal Concept
Analysis (FCA) which relies on a description of concepts in terms of a pairing of
instances and their attributes (Ganter and Wille 1999). A lattice is constructed by
identifying various intersections of predicative sets (each set containing elements
possessing one common feature value) where the partial ordering relation is derived from
set inclusion. This partial order is used to stitch a lattice together. The number of
attributes increases as we go down the page and the corresponding number of elements in

the intersection of these predicative sets reduces.

Instead of giving the appropriate mathematical description of FCA, we illustrate how it
might be useful by means of an example. In Figure 2, we present a fragment of the
DDSM cases. The descriptors for the anonymous cases of the DDSM such as age,
metadata of the mammogram images, and abnormalities as found on the images, are
mapped to instances of our ontology and re-expressed as description-logic (DL) instances
in RDF format, which is the input to the FCA module. In the figure, the circular large
nodes hold links to the cases which are described by the attributes that can be traced via
the lines on the lattice above them. Thus the rightmost lowest node contains the cases

which contain benign masses with the features Lobulated and Focal Asymmetric Density.



For the cases represented in the figure, it so happens that the Lobulated ones subsume the
ones with Focal Asymmetric Density. However, there are other Lobulated cases which
also have the value Irregular for the Shape feature which are all malignant, as can be seen
from the node second from the left among the four on the same line. Thus the cases can
be browsed in an exploratory fashion by following different pathways to the nodes

reached by following the lines below the attributes in the figure.
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Figure 2 — FCA lattice for a sample of the DDSM cases.

4. Classification Services

The architecture described above has been designed to accommodate, among other
methods, classification services based on features extracted from images via automatic
means by image processing methods run on entire images or parts of the image
segmented out by the hand-drawn region highlighting. In addition, in the multi-
disciplinary meeting for patient management, the cases already come with expert labels
attached — shape features for masses seen in X-rays, for example. The classifiers that we
present all take BI-RADS descriptors for X-ray images as input and classify cases
according to their likelihood of being benign or malignant. We illustrate the ideas by

describing two of the classification methods we have tried out (Mitchell 1997).



We normalise the data extracted from the DDSM collections by assigning binary values
for each of the metadata features like Shape, Margin, Architectural Distortion, and so on,
representing whether or not such a feature has been recorded in the case notes
accompanying each image. We used approximately 1500 of these cases to build our
classifiers, with statistics accumulated from the (co)-occurrence or not of the features

available.

4.1 Naive Bayes

The task of probabilistic classification of a case based on the statistics of occurrence of
the features that represent it is one of finding which label maximizes the conditional
probability of a label given the observed features P(label | features). Bayes’ rule is used to
interchange the order of conditioning, and in applying the Naive Bayes condition, we
make the simplifying assumption (often violated) that the joint probability of the
symptoms given the identification of the disease state (the target classification labels --
benign, malignant or unproven) factorizes into the product of the probabilities of the

individual features given the classification label.

For the dataset at hand, each of the features is assumed to be drawn from a binomial
distribution except for the feature Age, which is assumed to be drawn from a Gaussian.
To work around small sample errors, and in particular, the appearance of zero
frequencies, we assume a uniform Laplace/beta prior (equivalent to introducing a pseudo-

count of 1 for each feature, with the necessary normalization). After dividing up the data



set into those involving masses and those with microcalcifications present, we obtain the

results summarized in Table 1.

Lesion Correct Classification False Pos False Neg
Mass 77.9% 10.2% 11.1%
Calcification 73.6% 8.4% 17.7%

Table 1 -- Classification results for Naive Bayes.
4.2 Linear classifiers and Multi-layer Perceptrons
As an alternative method for classifying instances we tried training a multi-layer
perceptron (MLP) on the data. We compared a simple linear classifier with a binary
output variable obtained by taking a logistic function on a linear combination of input
data with trainable coefficients, to a MLP with different numbers of hidden variables — 2,

4,8, 16 and compared the results (see Figure 3 for illustration).
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Figure 3 — Perceptron and MLP
The networks were trained by backpropagation with momentum. The classification

accuracy is summarized in Figure 4.
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Figure 4 - Relative accuracy of MLP and linear classifiers.

5. Summary

This paper has illustrated how an ontology-based distributed system architecture can be
invoked to run useful services such as diagnostic classification for decision support for

breast cancer management.
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