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ABSTRACT

The growing number of large multimedia collections has led to an increased interest in content-based retrieval
research. Applications of content-based techniques to image retrieval is an active research area but much less
work has been reported on content-based retrieval of 3-D objects in a multimedia database context. Increasingly
such objects are being captured and added to multimedia collections and the European project, SCULPTEUR, is
developing a museum information system which includes the introduction of facilities for content-based retrieval
of the 3-D representations.

This paper provides a comparison and evaluation of a range of 3-D shape descriptors and distance metrics
which have been introduced into the SCULPTEUR project to demonstrate their use for content-based retrieval
applications.

Results show that while particular descriptors and distance metrics provide good overall performance, it can
be more appropriate to choose different descriptors for different search tasks.
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1. INTRODUCTION

The growing number of large multimedia collections has led to an increased interest in content-based retrieval
research. Applications of content-based techniques to image retrieval is an active research area but much less
work has been reported on content-based retrieval of 3-D objects in a multimedia database context. Increasingly
such objects are being captured and added to multimedia collections and the European project, SCULPTEUR,'
is developing a museum information system which includes the introduction of facilities for content-based re-
trieval of the 3-D representations. The project is also concerned with another rapidly developing area: the
semantic web, which will aid the use of semantically described data both for machine processing and enhanced
human interaction.

This paper provides a comparison and evaluation of a range of 3-D shape descriptors and distance metrics
which have been introduced into the SCULPTEUR project to demonstrate their use for content-based retrieval
applications.
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2. BACKGROUND & RELATED WORK

The project involves five major European galleries, the Uffizi in Florence, the National Gallery and the Victoria
and Albert Museum in London, the Musée de Cherbourg and the Centre de Recherche et de Restauration
des Musées de France (C2RMF) which is the Louvre related art restoration centre. Each of these galleries
maintains a substantial digital archive of its collections. Other technical partners include Centrica in Italy and
GET-ENST in Paris. The project builds on the work of an earlier project, ARTISTE,? involving many of the
current partners in the design of distributed content and textual metadata-based image retrieval and navigation
facilities.

Increasingly museums are recognising the value of 3-D visualisation of their artefacts not only for researchers,
curators and historians but also potentially as an information source for a wider public and as a basis for e-
learning and commercial activity.

The project is concerned with the perceived benefit of structuring and integrating the knowledge associated
with museum artefacts, enabling users to more fully exploit the richness of the data, facilitating more versatile
browsing, retrieval and navigation within collections, and also enabling cross collection searching and interoper-
ability with external systems. Starting with the CIDOC conceptual reference model,® ontological descriptions
of the museum collections are being developed. Metadata associated with the artefacts is being mapped to the
ontology to form an integrated knowledge base and graphical tools are being developed to provide browsing of
the concepts, relationships and instances within the collections. Integrated concept, metadata and content-based
retrieval and navigation facilities are being implemented to explore the knowledge base.

A novel aspect of the project is the ability to search and retrieve objects from the system through a range
of methods. In addition to the standard textual search interface, objects can also be retrieved by browsing
the ontology (concept-based retrieval) or by providing an example to the system (content-based retrieval) or
through a combination of these methods. For example a user can give an example model of a vase to the system
and give a text based entry of “Greek” to retrieve Greek vases that are of a similar shape to the example.

Other goals of the project include the development of a web agent which automatically identifies missing
instance information in the knowledge base and attempts to locate it on the web*; the development of an agent
to assist with the classification of new acquisitions based on existing classifications within the collection and
finally to demonstrate exploitation of the knowledge base by development of an e-learning product to make use
of it.

The main contribution of this paper is to provide a comparison and evaluation of the 3-D shape descriptors
and distance metrics which have been introduced into the architecture and to demonstrate their use for content-
based retrieval applications. Recent work in the area of descriptor evaluation has used the Princeton Shape
Benchmark (PSB)® to perform comparisons of a large range of shape descriptors. The benchmark provides a
large dataset of classified objects (approx 1,800) from a wide range of classes and the tools to evaluate descriptor
performance using a range of criteria (Precision-recall, nearest neighbour, first-tier, second-tier, E-Measure, F-
Measure and DCG). Many other datasets have been used in the literature. However, they typically contain a
small range of classified objects, or use a private dataset. The importance of classified objects is that manual
classification is not required and more direct comparisons to other work using the dataset can be achieved.

The Viewpoint dataset® also has a large number of classified objects, however this is a commercial database
and is considered too expensive for research purposes. Another commonly used dataset is the one by Osada et
al..” However, it only contains 133 classified objects. Another larger dataset used by Chen® contains around
550 classified objects and these are limited to mostly vehicle and household objects.

In the next section the shape descriptors implemented within the project are introduced. This is followed by
sections describing the distance metrics, the evaluation criteria and the model collections used. The methodol-
ogy, results and future aims complete this paper.

3. 3-D MODELS & MATCHING

3-D object matching is a growing research area, and a wide range of differing techniques have been developed.
3-D content-based retrieval typically goes through three stages. The first stage is to normalise the object into a



canonical coordinate frame. This stage is optional however, depending upon the requirements for a particular
algorithm. Stage two is to generate the descriptor from the object, and stage three is to compare the descriptor
with other descriptors using an appropriate distance metric.

As part of the ongoing work in the SCULPTEUR project, several 3-D matching algorithms have been
implemented and integrated with our pre-existing retrieval facilities to provide 3-D content-based retrieval.
These include the D2 shape distribution descriptors from the Princeton Shape Retrieval and Analysis Group’
and the histogram descriptors from Paquet and Rioux developed as part of the Nefertiti system.?” An area to
volume ratio descriptor,'® which is a single valued statistic giving the ratio of the surface area of the model to
its enclosed volume is also introduced to provide a fast discriminator which can reduce the search space.

The Shape Distributions are a collection of descriptors that capture distributions of various features of the
shape of an object. The work done by Osada et al.” determined that the D2 variant performed best overall
and hence this variant is used in the project. The Shape D2 descriptor captures the distribution of distances
between random pairs of points on the shape surface. It is rotation and translation invariant and robust to
changes in mesh resolution. However, it is not scale invariant and so requires some pre-processing.

There are three versions of the histogram descriptors of Paquet and Rioux.” They define a cord as the vector

between the centre of mass of an object and a point on its surface. Their first histogram records the distribution
of the cord lengths for all points within the mesh (Cord Hist 1). The other two variations record the distribution
of angles between cords and the first (Cord Hist 2) and second (Cord Hist 3) principal axis respectively. We
have implemented the cord histograms as individual descriptors (one per type) and as a combined descriptor
referred to as Cord Histogram from now on. The histograms are rotation and translation invariant but again
normalisation for scale is required.

The reader is referred to Tangelder et al.!! for a more comprehensive overview of 3-D retrieval methods.

3.1. Distance Metrics

In order to establish the similarity (closeness) of two feature vectors in some feature space, a wide range of
distance metrics have been presented in the literature. The most commonly used metrics are the Minkowski
norms, typically the L; norm (the city block distance) and the L, norm (the Euclidean distance). (See e.g.” 12).
The norms are particularly attractive as they are simple to calculate and generally produce good results.
However other distance metrics may provide better results when used in combination with specific descriptors
and types of object.

Osada et al.” suggest a range of distance metrics that could be used for comparison purposes. These are the
Kolmogorov-Smirnov distance, Kullback-Leibler divergence distance, Match distances, Earth Mover’s distance
and the Bhattacharyya distance. Hetzel et al.!® suggest the histogram intersection and the x? distance, while
Ankerst et al.'? suggest the Quadratic distance.

3.2. Evaluation Criteria

A wide range of criteria can be used to evaluate the quality of a descriptor for retrieval purposes. A common
core of evaluation techniques can be established from Jirvelin et al.,'* Shilane et al.> and van Rijsbergen.'?

The precision-recall graph is a commonly used method of evaluating the quality of a descriptor. Precision
is defined as the proportion of relevant results, out of the results returned. Recall is defined as the proportion
of relevant results returned out of all the possible relevant results. The basic precision-recall graph (showing
precision against recall as the size of the returned set increases) is sometimes considered not to be enough. A
common extension is to add the precision-recall curve for a random retrieval. Typically, one would expect that
as recall increases, precision decreases. The E-Measure is one of several criteria that combine precision and
recall into a single value. Other measures include the F-Measure and the Borko method. The nearest neighbour
criterion is the percentage of objects for which the nearest object is of the same class. The first- and second-tier
criteria are the percentage of the first K elements that are of the same class, where K, for the first-tier, is the
size of the class. The second-tier uses K as twice the size of the class. The Discounted Cumulative Gain (DCGQ)
is a measure that weights correct results returned earlier higher than those returned later within a ranked list.
All these statistics are normalised to the range (0 to 1) for presentation purposes (Tables 2, 3, 4, and 5).



| Class Name | Size |

Bird Like 24
Head 24
Misc 38
Mold 34

Statue 54
Vases 108

Table 1. The Museum Dataset

4. METHODOLOGY

A quantitative comparison of shape descriptors and distance metrics in the SCULPTEUR system is presented.
This is undertaken using a publicly available dataset, the Princeton Shape Benchmark (PSB), to provide a
comparison with other work in this area. In particular the base training set is used. This contains 907 models
in 90 non-empty classes. See Shilane et al.? for more details on the PSB dataset. For evaluation within a real
setting, a dataset made up of real museum objects has been created. The museum data consists of 282 objects
manually classified into 6 classes. Table 1 shows the classes and their size. This represents the majority of the
objects supplied by museum partners. As can be seen in Table 1, the majority are either Vases or Statues.
The Misc class contains objects that did not easily fit into any of the others. These objects are represented in
VRML and range from containing a few thousand polygons, to many thousands of polygons.

The evaluation procedure will make use of the evaluation criteria, precision-recall graphs, nearest-neighbour,
first- and second-tier, E-Measure, F-Measure and DCG statistics to give a broad view of the abilities of the
descriptors. How the descriptors and distance metrics perform overall, and on a class basis are assessed, in
order to identify on what types of object the descriptors work best, and on which ones they perform poorly.

In order to evaluate the per-class capabilities of each descriptor and metric, we present the percentage of
classes for which each descriptor and metric performed “best”. To determine what was “best”, the sum of the
different statistics (Nearest Neighbour, First-Tier, Second-Tier, E-Measure, F-Measure and DCQ) is used, and
the combination with the highest sum is taken. Alternative methods of combining may be more appropriate
however as this method does not take into account the range in which each statistic typically operates, i.e. some
statistics could typically return larger values that would dominate the statistics that returned smaller values.

The evaluation begins by comparing the descriptors side by side. The descriptors to be evaluated are
the Shape D2, Cord Hist 1, Cord Hist 2, Cord Hist 3, Cord Histogram and Area Volume descriptors. The
evaluation then continues to compare the distance metrics side by side. These are Minkowski L; and Ly norms,
Bhattacharyya, x2, Kullback-Leibler, histogram intersection and quadratic distances metrics. In addition, both
these stages will compare the results from using both the PSB dataset and the Museum dataset.

5. RESULTS

The descriptors were all implemented with a bin count of 64, except in the case of the Area Volume descriptor
which is only a single value. This value was chosen to try and match the implementation in Shilane et al.? to
provide results that can be compared to those already published using the PSB. Experimentation on different
bin sizes (8, 16, 32 and 64 bins) showed that there was little performance differences between them, however
the lower bin sizes quite often showed marginal improvements in performance.

Evaluation begins by comparing the descriptors against each other using the Euclidean distance. Figure
1 shows the precision-recall graphs for the different descriptors and the Euclidean distance using the PSB
dataset. As can be seen here, there is little difference between the descriptors, although two groupings can be
distinguished. The Shape D2, Cord Hist 2, Cord Hist 3 and Cord Histogram descriptors perform quite similarly
to each other, as does the Area Volume descriptor and the Cord Hist 1 descriptor, although there is noticeably
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Figure 1. Overall Performance (PSB)
Descriptor Nearest First Tier Second E- F- DCG | Percent of
Neighbour Tier Measure Measure Classes
Area Volume 0.074 0.143 0.183 0.080 0.094 0.392 2.2%
Cord Hist 1 0.104 0.143 0.174 0.074 0.089 0.380 6.7%
Cord Hist 2 0.246 0.202 0.258 0.121 0.140 0.446 15.6%
Cord Hist 3 0.212 0.197 0.251 0.116 0.135 0.440 12.2%
Cord Histogram 0.258 0.216 0.282 0.133 0.154 0.463 24.4%
Shape D2 0.245 0.207 0.274 0.126 0.146 0.455 38.9%
Random 0.018 0.015 0.033 0.017 0.019 0.306 N/A

Table 2. Overall Performance (PSB)
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Figure 2. Overall Performance (Museum)
Descriptor Nearest First Tier Second E- F- DCG | Percent of
Neighbour Tier Measure Measure Classes
Area Volume 0.986 0.518 0.646 0.438 0.359 0.798 33.3%
Cord Hist 1 0.986 0.310 0.565 0.307 0.262 0.753 33.3%
Cord Hist 2 0.986 0.378 0.610 0.354 0.287 0.766 16.7%
Cord Hist 3 0.986 0.406 0.585 0.373 0.291 0.761 0.0%
Cord Histogram 0.986 0.410 0.621 0.380 0.301 0771 16.7%
Shape D2 1.000 0.350 0.587 0.322 0.267 0.764 0.0%
Random 0.241 0.233 0.460 0.182 0.144 0.641 N/A

Table 3. Overall Performance (Museum)

lower performance results from them. Table 2 shows the results from the statistic evaluators, which also shows
similar groupings in performance for the descriptors. It is worth noting that the Shape D2 performed better on
an individual class basis then the Cord Histogram which has the better overall statistics.

Figure 2 and Table 3 shows the equivalent results for the Museum dataset. It is plain to see that the
descriptors and metrics perform significantly differently against this dataset than against the PSB. The Museum
dataset shows much higher performance values for each descriptor, and even for the random retrieval due to
the small number of classes. One surprise is the Area Volume descriptor achieving the best performance. In
this case the Shape D2 performs quite badly compared to most of the other descriptors. However, overall, the
Cord Hist 1 descriptor performs the worst compared to the PSB dataset. However the Cord Hist 1 descriptor
performs equally well on the percentage of classes as the Area Volume descriptor.
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Figure 3. Distance Metric Performance (PSB)

Distance Metric Nearest First Tier Second E- F- DCG | Percent of

Neighbour Tier Measure Measure Classes

Bhattacharyya 0.286 0.224 0.295 0.138 0.159 0.471 25.6%
Chi 0.241 0.191 0.258 0.121 0.140 0.446 3.3%

City Block 0.267 0.218 0.288 0.131 0.153 0.466 11.1%
Euclidean 0.245 0.207 0.274 0.126 0.146 0.455 12.2%
Intersection 0.269 0.218 0.286 0.131 0.152 0.468 13.3%
Kullback 0.222 0.188 0.255 0.108 0.124 0.432 18.9%
Quadratic 0.272 0.214 0.282 0.131 0.153 0.464 15.6%
Random 0.018 0.015 0.033 0.017 0.019 0.306 N/A

Table 4. Distance Metric Performance (PSB)
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Figure 4. Distance Metric Performance (Museum)
Distance Metric | Nearest First Tier Second E- F- DCG | Percent of
Neighbour Tier Measure Measure Classes
Bhattacharyya 1.000 0.355 0.594 0.338 0.278 0.765 33.3%
Chi 0.965 0.349 0.590 0.330 0.271 0.756 0.0%
City Block 1.000 0.353 0.584 0.324 0.268 0.764 0.0%
Euclidean 1.000 0.350 0.587 0.322 0.267 0.764 33.3%
Intersection 1.000 0.353 0.584 0.324 0.268 0.764 0.0%
Kullback 0.858 0.350 0.562 0.306 0.248 0.736 33.3%
Quadratic 1.000 0.352 0.584 0.322 0.267 0.763 0.0%
Random 0.241 0.233 0.460 0.182 0.144 0.641 N/A

Table 5. Distance Metric Performance(Museum)

The next section of results evaluates distance metric performance using the Shape D2 descriptor. Figure 3
shows the precision-recall curves for the PSB dataset with different distance metrics while Table 4 shows the
corresponding statistic evaluators. This shows a similar story to that of the descriptors; some close groupings
of distance metrics. The precision-recall curves suggests that all metrics except the x? and Kullback distances
performed approximately equally well with the Bhattacharyya just slightly in the lead. This is supported by
the data in Table 4 and the Bhattacharyya performs significantly better than the others in the class by class
analysis. The Kullback metric performs worst in the overall tests but is second to the Bhattacharyya in the
class by class tests.

Figure 4 and Table 5 show the results for the museum dataset. A similar overall improvement in performance



Figure 5. Top 10 Results (Museum)

compared with that of the PSB set can be seen with the distance metrics, as it was with the descriptors. However,
there is little overall change in the relative performance of distance metrics between the datasets, unlike the
situation for the descriptors. On a class basis, the Bhattacharyya, Euclidean and Kullback have equal shares
of the classes, whereas the others have none. Again, overall the Bhattacharyya distance shows slightly better
statistics than the others, however for this dataset, there is very little difference between them.

Figure 5 shows an example query from the Museum dataset. The top 10 results using the Cord Histogram
at 64 bins with the Euclidean distance is shown. The top left object is the closest match and it is also the query
object as would be expected. This figure also shows some of the duplication of objects within the dataset.

6. DISCUSSION

Comparisons between the different shape descriptors and distance metrics have been performed using the Prince-
ton Shape Benchmark dataset. This has shown that the Cord Histogram gives both good and consistent results
across both datasets. While the Shape D2 and the Area Volume descriptors preform best in the PSB and
Museum dataset respectively, their performance is poor against the other dataset. It is surprising that the per-
formance of the Area Volume descriptor was so good. As the Area Volume ratio is just a single value, intuition
would suggest that it would not be capable of capturing as much useful data as the multi-valued representations.

Typically, it seems that the choice of distance metric is less important than the choice of descriptor, as
would be expected. However in some cases the choice of metric is enough to improve the retrieval performance
beyond those of other descriptors. The Bhattacharyya distance metric seems to perform best overall, however,
in computational terms, it is quite expensive. Good results were seen with the city block metric. This produced
similar results to that of the Bhattacharyya distance and is much cheaper computationally.

The differences in the two datasets account for some of the differences in performance. The improved
retrieval rates of the Museum dataset can in part be attributed to the small number of classes compared to
the PSB dataset. The small number of classes helps improve the random retrieval results as it improves from
an approximate 1 in 90 chance of selecting the right class to a 1 in 6 chance, and this can be applied to
the descriptors themselves. The Museum dataset also has a less diverse range of objects which allows a clearer
distinction between classes. However this is the supplied data from the museums and this is the kind of situation
in which these descriptors need to work.



7. CONCLUSIONS & FUTURE WORK

It has been shown that there are large differences in the performance of the shape descriptors and metrics
depending on the dataset used. Overall it would seem that the best combination is the Cord Histogram and
the city block distance metric. However other combinations have been shown to work better under particular
circumstances, unfortunately benefiting from this requires prior knowledge of what you are looking for, and
what is the best way to find it.

Further investigation is required as to what causes the Area Volume descriptor to perform so well against
the Museum dataset.

Current and future work includes the development of more versatile shape descriptors, for example to
facilitate sub-object matching, the use of the texture map and the possibility of matching between 2-D and 3-D
representations. The findings indicate that for certain types of object, the best descriptor is not necessarily the
one that performs best on average across all types. One area of further work is determining what descriptor
and metric is best for which particular types of object.
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