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Abstract – This paper discusses and evaluates a new 
approach to operating point analysis based on evolutionary 
computing (EC). EC can find multiple solutions to a problem by 
using a parallel search through a population. At the operating 
point(s) of a circuit the overall error has a minimum value. 
Therefore, we use an Evolutionary Algorithm (EA) to search the 
solution space to find these minima. Various evolutionary 
algorithms are described. Several such algorithms have been 
implemented in a full circuit analysis tool. The performance and 
accuracy of the algorithms are compared to Newton-Raphson 
(NR). Evolutionary algorithms are shown to be robust and to have 
an accuracy comparable to that of NR. The development of a 
hybrid algorithm is also discussed. 

 
I. INTRODUCTION 

 
The first task in simulating the behaviour of a circuit 

is to find the quiescent or DC operating point. The DC 
operating point is used as the starting point for transient 
analysis (circuit response in the time domain) [1] and for 
AC analysis. Traditionally, the operating point is found 
using the Newton-Raphson Method (NR). This method has 
three potential disadvantages. The first is that at the start of 
each iteration we must re-compute the Jacobian matrix. 
The second disadvantage is that the solution can diverge or 
fail to converge by oscillating between several potential 
solutions. Finally, for circuits with more than one possible 
solution, the initial guess can influence the final solution 
and hence finding multiple global solutions is generally 
difficult.  

In this paper we discuss various aspects of 
Evolutionary Computing (EC), in particular, Evolution 
Strategies (ESs) and Differential Evolution (DE), and how 
these techniques can be applied to DC circuit analysis [2]. 
As will be seen, EC has certain advantages over NR. The 
main benefits are improved convergence and the ability to 
find multiple solutions. These can be attributed to the 
parallel nature of EC algorithms; i.e. a search through a 
population of solutions rather than a sequential search for 
an individual solution, as in NR.  

At the end of this paper we will discuss of the results 
obtained from a SPICE-like evolutionary circuit simulator 
that implements versions of the basic Evolutionary 
Algorithms. 

First, we will define the notation used throughout this 

work. In the Newton-Raphson algorithm we represent the 
candidate solutions, e.g. the vector of node voltages and/or 
branch currents, as a real-valued candidate vector 
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kk xx=x , at the  iteration. In general, the aim is 

to find a set of n variables , such that, for 

some objective function, f, we have . In the case 
of evolutionary algorithms, the candidate vector has a 
subscript, i, that denotes the  member of the population 

and so the candidate vector is written as . 
In the case of circuit analysis, the objective function is a 
vector, , representing the characteristic equations 
of the nonlinear circuit components. In EAs the objective 
function, f, represents the fitness of a particular candidate 
vector. 
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II. CONVENTIONAL CIRCUIT ANALYSIS 

 
A. The Newton-Raphson Method 

 
The most common technique for nonlinear circuit 

analysis is the Newton-Raphson method coupled with LU 
factorization. We aim to solve the set of nonlinear 
equations , which is the vector formed from the 
devices’ characteristic equations. By formulating the 
linearized matrix vector equation (1), using element 
stamps, we can find the root(s) of  
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Eq. 1 finds ; the node voltage vector at the 1+kx

( )stk 1+  iteration. The matrix  is the Jacobian and the 

RHS vector, , is the vector of excitations. Both are 
initially set to zero and are updated using element stamps 
[3], which allow us to update the matrix and RHS 
automatically with contributions from each device’s 
characteristic equation. By repeatedly solving equation (1) 
and using the solution to formulate the matrix and 
excitation vector for the next iteration, the solution vector 
should converge to an accurate representation of the state 
of the circuit [1], [2], [4]. 
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This process is computationally intensive. The matrix 
equation needs to be set up and solved once per Newton 

D. A. Crutchley was and M. Zwolinski is with the School of 
Electronics and Computer Science, University of Southampton, 
Southampton SO17 1BJ, United Kingdom, E-mail: 
mz@ecs.soton.ac.uk 



 

iteration. Building the Jacobian matrix requires the 
evaluation of the partial derivatives of the device equations. 
Typically, evaluating the device equations and derivatives, 
along with the associated matrix operations, requires about 
70% or more of the total CPU time [5], [6]. 

 
B. Convergence 

 
Newton-Raphson’s sensitivity to the initial values in 

the solution vector used to start the analysis is especially 
noticeable when we are dealing with nonlinear circuit 
equations that have multiple solutions.  

The main problem with the selection of the initial 
values is that one can never be sure of the radius of 
convergence for a particular problem and so picking an 
initial solution that is outside this radius can lead to 
divergence or, if there are multiple solutions, could lead to 
finding a solution other than that being sought. There are 
several techniques that can be used to help convergence, 
but these techniques do not all work for every problem.  

 
III. EVOLUTIONARY COMPUTING 

 
There are many different types of evolutionary 

algorithms, for example: evolution strategies; genetic 
algorithms (GAs); differential evolution; evolutionary 
programming and genetic programming, [7], [8], [9], [10], 
[11], [12]. They all use similar techniques (operators to 
mimic sexual reproduction and mutation; selection 
processes), but they differ in the way that they represent a 
candidate vector. For our problem of DC analysis, a 
candidate vector would have a genotype that is a vector of 
binary values for the integer and fractional parts of the 
node voltage values and a phenotype that is a vector of real 
valued data for the node voltage values. Genetic 
algorithms, [12], manipulate the binary data using bit 
mutation and binary string crossover schemes and then map 
the resulting data into phenotypic form. On the other hand, 
the evolutionary strategies and differential evolution based 
methods operate at the phenotypic level. 

We aim to manipulate a population and thus perform a 
parallel search through the solution space instead of 
performing a sequential search for solutions, as with NR. 

For each member of the population, , 
at the  generation, we aim to minimize n objectives 
(nodal equations) for each individual. N is the size of the 
population. Here  represents the i
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node voltages and/or branch currents, for , at the 
generation. Usually, we set an upper limit on the total 

number of generations for which the algorithm can run; we 
call this . We then form the objective vector, 

denoted by , which will contain the 
objectives that we wish to minimize. In the case of nodal 

analysis,  contains only node voltages so we can use 
these in the evaluation of the device equations. The 
resulting device currents can then be used to form the KCL 
equation for each node in the circuit. Hence, we define  
as the absolute value of the net current flowing at node j, 
which is the node’s KCL equation. Thus the objective 
vectors are in one-to-one correspondence with the 
candidate vectors. 
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During the optimization process we minimize the  
values, hence as a candidate vector reaches optimality the 

 values in the corresponding  objective vector will 
tend towards zero. In other words, the net current flowing 
at each node should be zero for a perfect solution. We 
minimize the  values by minimizing the fitness of the 
solutions. Hence, by keeping candidate vectors with better 
fitness values we will steadily be reducing the values in the 
objective vectors over successive generations. 
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A. Evolution Strategies 

 
Evolution strategies are probabilistic, heuristic, direct 

search optimization techniques, invented independently in 
1965 by Rechenberg [9] and Schwefel [10]. There is 
generally no crossover or inversion in ES (or not in the 
same sense as in GAs [12]). Sometimes, however, it can be 
beneficial to have a crossover-like operator. When this is 
the case we use discrete recombination, in which we 
recombine two parents by discretely swapping randomly 
selected vector components. 

We use a population divided into a parent and an 
offspring pool. At the end of a generation the best 
individuals from the union of the parent and offspring 
pools are taken as the parents for the next generation.  

In general, ESs use only a mutation operator but the 
self-adaptive scheme (ESA) also uses a recombination 
operator.  

 
B. Tournament Selection Evolutionary Algorithm 

 
The EAs described use truncation selection [11]. 

Tournament selection is an alternative selection 
mechanism. At the start of each generation, each member 
of the population is compared pair-wise with randomly 
selected, distinct members of the population and gains a 
tally point if it is fitter than that member. When a parent is 
required, we randomly pick a parent from the population 
and randomly accept or reject that choice using a biased 
coin toss compared with the tally total. Here, we apply 
Tournament Selection to the ES parent pool described in 
the previous section.  

 
C. Differential Evolution 

 
Storn and Price described an evolutionary algorithm 

that is self-adaptive, simple and yet very powerful called 



 

Differential Evolution (DE) [7]. Several DE schemes have 
been proposed by Storn [13]; two schemes will be 
discussed here: DE1 and DE2 [7]. In DE1, for each 
candidate vector , in the population, we generate an 

intermediate vector  as follows: 
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In Eq. 2, τ is a positive real-valued user-set scale 
factor and r1, r2 and r3 are randomly selected, mutually 
distinct integers in the range . The intermediate vector 

 is used with  in a crossover procedure to generate a 

new offspring . If  is fitter than  then  

and we discard , else we keep . This means that we 
no longer require an offspring pool.  
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DE2 is identical to DE1 except for the generation of 
the intermediate vector . This time an additional 
difference vector is used as shown in Eq. 3: 
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Note that this time we only need two random integers 
r1 and r2, and τ and are positive user-set scale factors. τ′

 
D. A Hybrid Evolutionary Algorithm 

 
The main idea behind the Differential Evolution 

initialized Newton-Raphson method (DENR) [14] is that 
after a certain number of generations an EA ceases to make 
dramatic changes to the population and instead refines the 
existing population until convergence. This suggests that at 
the point where this change in gradient occurs, one should 
switch to some other faster technique to finish the 
optimization. Hence, we use the differential evolution 
algorithm DE1 coupled with Newton’s method. The 
diagram in Fig. 1 illustrates this technique. 

At this point in the simulation, a filtering algorithm is 
used on the population to remove potential duplicate 
solutions. Now each of the remaining candidate solutions is 
used, in turn, as a starting point for NR.  

The benefit of this algorithm is that it exploits the 
speed of NR but tries to avoid the initial condition problem 
of NR by using DE1 to provide multiple and good starting 
points for NR. As will be seen later this algorithm is both 
fast and accurate. 

 
IV. DC ANALYSIS USING EVOLUTIONARY 

COMPUTING 
 

A. Benchmark Circuits 
 
Several benchmark circuits were used to evaluate the 

performance of all of the EAs. SPICE level 3 MOS models 
were used unless otherwise noted. Three benchmark 
circuits are discussed here: 

• An Inverting Schmitt Trigger. The Schmitt 
Trigger is made up of five p-type and five n-type 
MOSFETs. In DC analysis, there are three possible 
solutions, including a metastable state.  

• A multi-state circuit with nine operating points, 
consisting of 4 bipolar transistors and 14 resistors. This 
circuit is taken from Chua and Ushida’s work [15]. 

• A positive edge-triggered D-latch with inputs D=1 
and C=0. This circuit has multiple operating points. It 
consists of 7 CMOS inverters and 4 transmission gates and 
has a total of 22 transistors. 
 
B. Experimental Results and Discussion 

 
The performance of each algorithm with each of the 

circuits is shown in Tables 1 - 3. The algorithm is stated in 
the first column of each table. In the second column, the 
number of solutions found by each algorithm automatically 
is stated as an integer. If multiple solutions could be found 
by changing settings, this is stated as an expression (e.g. 
1+1 means 2 solutions were found by restarting the 
algorithm). The third column shows the number of 
generations (or for NR, the number of iterations). In the 
case of DENR, the second figure gives the total number of 
NR iterations. The fourth column shows the accuracy 
relative to NR. Finally the CPU time in milliseconds is 
given. Again, if multiple runs were needed to find multiple 
solutions, this is stated as a sum.  

In the case of the multi-stable bipolar circuit some of 
the NR results are bracketed from the others. This is 
because the starting points required for these solutions 
proved to be harder to find than for the first 5 solutions. 

DE1, DE2 and ES are often the best evolutionary 
algorithms for finding multiple solutions automatically. 
ESA is the least good at finding multiple solutions, even 
when restarted and parameter settings are altered. By far 
the best evolutionary algorithm for multiple solutions is the 
hybrid DENR. 

NR is always the fastest, in terms of CPU time (but 
note that manual intervention is needed to find multiple 
solutions). For all the circuits, DENR is always the fastest 
of the evolutionary algorithms in terms of CPU time. ESA 
is consistently the slowest (apart from for the Schmitt 
trigger circuit, where it only found one solution). The best-
performing evolutionary algorithm’s (DENR) CPU time is, 
however, between about 5 and 20 times that of NR. 

The accuracy of the evolutionary algorithms is very 
similar. DENR followed by TSEA are the most accurate in 
most cases and the DE algorithm is usually accurate too.  

The CPU time does not necessarily represent the total 
effort required to find a solution. This is particularly true 
when multiple solutions exist and are sought. It can 
therefore be argued that the best algorithms in terms of 
accuracy, speed and the ability to find multiple solutions 
and to analyze problem circuits, such as the Schmitt trigger 
and the other multi-stable circuits, are DENR or DE1. 



 

V. CONCLUSIONS 
 
The use of evolutionary algorithms for nonlinear 

operating point analysis of MOS circuits has been 
demonstrated. DE and the other EAs are globally 
convergent, whereas NR is only locally convergent. NR 
requires manual intervention to find all the solutions to a 
circuit; it has been shown that DE and the other EAs can 
find multiple solutions in a single pass.  

All the EAs here are, in general, slower than NR. This 
can be attributed to two factors. Firstly, a significant 
amount of sorting of populations has to be done. This 
accounts for the majority of the CPU time taken. Secondly 
the device equations have to be evaluated many times in 
each generation (once for each member of the population). 
The hybrid algorithm is very competitive, however, when 
compared to NR for the circuits tested here. 
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Fig. 1 Criteria for switching from EC to NR. 
 

TABLE 1 
RESULTS FOR SCHMITT TRIGGER 

Alg. No. Sols No. Gens/Its Mean Err  CPU (ms) 
NR 1+1 144+13 ~ 11+2 
DE1 2 271 2.06×10-1 1210 
DE2 2 481 1.88×10-1 1980 
ES 2 107 6.64×10-1 830 
ESA 1 29 2.01×10-1 490 
TSEA 1+1 28+31 1.04×10-1 270+330 
DENR 2 29+407 1.18×10-1 50 

 
TABLE 2 

RESULTS FOR MULTI-STATE BJT CIRCUIT 
Alg. No. Sols No. Gens/Its Mean Err  CPU (ms) 
NR 1+1+1+

1+1(+1+
1+1) 

13+9+11+ 
12+12(+13+ 
18+15) 

~ 5+4+5+5+5 
(+5+6+5) 

DE1 5 2214 3.48×10-1 6709 
DE2 3 4669 2.97×10-1 13980 
ES 2 1899 4.85×10-1 5958 
ESA 0 ~ ~ ~ 
TSEA 1+1 336+295 1.52×10-1 1025+980 
DENR 4+3+1 9+1806, 

9+2106, 
17+474 

2.50×10-5 105+150+ 
160 

 
TABLE 3 

RESULTS FOR POSITIVE EDGE TRIGGERED D-LATCH 
Alg. No. Sols No. Gens/Its Mean Err  CPU (ms) 
NR 1+1+1 8+186+186 ~ 5+20+19 
DE1 3 241 1.25×10-2 1629 
DE2 3 471 1.59×10-2 3047 
ES 2 85 2.10×10-3 1109 
ESA 1 22 1.15×10-1 760 
TSEA 1+1+1 10+9+12 8.17×10-3 270+240+ 

340 
DENR 3 46+2493 7.43×10-3 690 



 

 


