

DC Operating Point Analysis using Evolutionary
Computing

D. A. Crutchley and M. Zwolinski

Abstract – This paper discusses and evaluates a new
approach to operating point analysis based on evolutionary
computing (EC). EC can find multiple solutions to a problem by
using a parallel search through a population. At the operating
point(s) of a circuit the overall error has a minimum value.
Therefore, we use an Evolutionary Algorithm (EA) to search the
solution space to find these minima. Various evolutionary
algorithms are described. Several such algorithms have been
implemented in a full circuit analysis tool. The performance and
accuracy of the algorithms are compared to Newton-Raphson
(NR). Evolutionary algorithms are shown to be robust and to have
an accuracy comparable to that of NR. The development of a
hybrid algorithm is also discussed.

I. INTRODUCTION

The first task in simulating the behaviour of a circuit

is to find the quiescent or DC operating point. The DC
operating point is used as the starting point for transient
analysis (circuit response in the time domain) [1] and for
AC analysis. Traditionally, the operating point is found
using the Newton-Raphson Method (NR). This method has
three potential disadvantages. The first is that at the start of
each iteration we must re-compute the Jacobian matrix.
The second disadvantage is that the solution can diverge or
fail to converge by oscillating between several potential
solutions. Finally, for circuits with more than one possible
solution, the initial guess can influence the final solution
and hence finding multiple global solutions is generally
difficult.

In this paper we discuss various aspects of
Evolutionary Computing (EC), in particular, Evolution
Strategies (ESs) and Differential Evolution (DE), and how
these techniques can be applied to DC circuit analysis [2].
As will be seen, EC has certain advantages over NR. The
main benefits are improved convergence and the ability to
find multiple solutions. These can be attributed to the
parallel nature of EC algorithms; i.e. a search through a
population of solutions rather than a sequential search for
an individual solution, as in NR.

At the end of this paper we will discuss of the results
obtained from a SPICE-like evolutionary circuit simulator
that implements versions of the basic Evolutionary
Algorithms.

First, we will define the notation used throughout this

work. In the Newton-Raphson algorithm we represent the
candidate solutions, e.g. the vector of node voltages and/or
branch currents, as a real-valued candidate vector

()T1 ,..., k
n

kk xx=x , at the iteration. In general, the aim is

to find a set of n variables , such that, for

some objective function, f, we have . In the case
of evolutionary algorithms, the candidate vector has a
subscript, i, that denotes the member of the population

and so the candidate vector is written as .
In the case of circuit analysis, the objective function is a
vector, , representing the characteristic equations
of the nonlinear circuit components. In EAs the objective
function, f, represents the fitness of a particular candidate
vector.

thk

(T**
1

* ,..., nxx=x)
0)(* =xf

thi

()T,1, ,..., k
ni

k
i

k
i xx=x

nℜ∈)(xf

II. CONVENTIONAL CIRCUIT ANALYSIS

A. The Newton-Raphson Method

The most common technique for nonlinear circuit

analysis is the Newton-Raphson method coupled with LU
factorization. We aim to solve the set of nonlinear
equations , which is the vector formed from the
devices’ characteristic equations. By formulating the
linearized matrix vector equation (1), using element
stamps, we can find the root(s) of

0xf =)(k

0xf =)(k

kkk IxG =+1 . (1)

Eq. 1 finds ; the node voltage vector at the 1+kx

()stk 1+ iteration. The matrix is the Jacobian and the

RHS vector, , is the vector of excitations. Both are
initially set to zero and are updated using element stamps
[3], which allow us to update the matrix and RHS
automatically with contributions from each device’s
characteristic equation. By repeatedly solving equation (1)
and using the solution to formulate the matrix and
excitation vector for the next iteration, the solution vector
should converge to an accurate representation of the state
of the circuit [1], [2], [4].

kG
kI

This process is computationally intensive. The matrix
equation needs to be set up and solved once per Newton

D. A. Crutchley was and M. Zwolinski is with the School of
Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, United Kingdom, E-mail:
mz@ecs.soton.ac.uk

iteration. Building the Jacobian matrix requires the
evaluation of the partial derivatives of the device equations.
Typically, evaluating the device equations and derivatives,
along with the associated matrix operations, requires about
70% or more of the total CPU time [5], [6].

B. Convergence

Newton-Raphson’s sensitivity to the initial values in

the solution vector used to start the analysis is especially
noticeable when we are dealing with nonlinear circuit
equations that have multiple solutions.

The main problem with the selection of the initial
values is that one can never be sure of the radius of
convergence for a particular problem and so picking an
initial solution that is outside this radius can lead to
divergence or, if there are multiple solutions, could lead to
finding a solution other than that being sought. There are
several techniques that can be used to help convergence,
but these techniques do not all work for every problem.

III. EVOLUTIONARY COMPUTING

There are many different types of evolutionary

algorithms, for example: evolution strategies; genetic
algorithms (GAs); differential evolution; evolutionary
programming and genetic programming, [7], [8], [9], [10],
[11], [12]. They all use similar techniques (operators to
mimic sexual reproduction and mutation; selection
processes), but they differ in the way that they represent a
candidate vector. For our problem of DC analysis, a
candidate vector would have a genotype that is a vector of
binary values for the integer and fractional parts of the
node voltage values and a phenotype that is a vector of real
valued data for the node voltage values. Genetic
algorithms, [12], manipulate the binary data using bit
mutation and binary string crossover schemes and then map
the resulting data into phenotypic form. On the other hand,
the evolutionary strategies and differential evolution based
methods operate at the phenotypic level.

We aim to manipulate a population and thus perform a
parallel search through the solution space instead of
performing a sequential search for solutions, as with NR.

For each member of the population, ,
at the generation, we aim to minimize n objectives
(nodal equations) for each individual. N is the size of the
population. Here represents the i

},...,{ 1
k
N

kkP xx=
thk

k
ix th candidate vector of

node voltages and/or branch currents, for , at the
generation. Usually, we set an upper limit on the total

number of generations for which the algorithm can run; we
call this . We then form the objective vector,

denoted by , which will contain the
objectives that we wish to minimize. In the case of nodal

analysis, contains only node voltages so we can use
these in the evaluation of the device equations. The
resulting device currents can then be used to form the KCL
equation for each node in the circuit. Hence, we define
as the absolute value of the net current flowing at node j,
which is the node’s KCL equation. Thus the objective
vectors are in one-to-one correspondence with the
candidate vectors.

Ni ,...,2,1=
thk

MAXK

(T
,1, ,..., k
ni

k
i

k
i yy=y)

k
ix

jy

During the optimization process we minimize the
values, hence as a candidate vector reaches optimality the

 values in the corresponding objective vector will
tend towards zero. In other words, the net current flowing
at each node should be zero for a perfect solution. We
minimize the values by minimizing the fitness of the
solutions. Hence, by keeping candidate vectors with better
fitness values we will steadily be reducing the values in the
objective vectors over successive generations.

jy

jy iy

jy

A. Evolution Strategies

Evolution strategies are probabilistic, heuristic, direct

search optimization techniques, invented independently in
1965 by Rechenberg [9] and Schwefel [10]. There is
generally no crossover or inversion in ES (or not in the
same sense as in GAs [12]). Sometimes, however, it can be
beneficial to have a crossover-like operator. When this is
the case we use discrete recombination, in which we
recombine two parents by discretely swapping randomly
selected vector components.

We use a population divided into a parent and an
offspring pool. At the end of a generation the best
individuals from the union of the parent and offspring
pools are taken as the parents for the next generation.

In general, ESs use only a mutation operator but the
self-adaptive scheme (ESA) also uses a recombination
operator.

B. Tournament Selection Evolutionary Algorithm

The EAs described use truncation selection [11].

Tournament selection is an alternative selection
mechanism. At the start of each generation, each member
of the population is compared pair-wise with randomly
selected, distinct members of the population and gains a
tally point if it is fitter than that member. When a parent is
required, we randomly pick a parent from the population
and randomly accept or reject that choice using a biased
coin toss compared with the tally total. Here, we apply
Tournament Selection to the ES parent pool described in
the previous section.

C. Differential Evolution

Storn and Price described an evolutionary algorithm

that is self-adaptive, simple and yet very powerful called

Differential Evolution (DE) [7]. Several DE schemes have
been proposed by Storn [13]; two schemes will be
discussed here: DE1 and DE2 [7]. In DE1, for each
candidate vector , in the population, we generate an

intermediate vector as follows:

k
ix

k
iv

)(
321

k
r

k
r

k
r

k
i xxxv −⋅τ+= . (2)

In Eq. 2, τ is a positive real-valued user-set scale
factor and r1, r2 and r3 are randomly selected, mutually
distinct integers in the range . The intermediate vector

 is used with in a crossover procedure to generate a

new offspring . If is fitter than then

and we discard , else we keep . This means that we
no longer require an offspring pool.

[]N,1

+k
i

k
iv k

ix
1~ +k

ix 1~x k
ix 1~ += k

i
k
i xx

k
ix k

ix

DE2 is identical to DE1 except for the generation of
the intermediate vector . This time an additional
difference vector is used as shown in Eq. 3:

k
iv

)()(
21

k
r

k
r

k
i

k
best

k
i

k
i xxxxxv −⋅τ+−⋅τ′+= . (3)

Note that this time we only need two random integers
r1 and r2, and τ and are positive user-set scale factors. τ′

D. A Hybrid Evolutionary Algorithm

The main idea behind the Differential Evolution

initialized Newton-Raphson method (DENR) [14] is that
after a certain number of generations an EA ceases to make
dramatic changes to the population and instead refines the
existing population until convergence. This suggests that at
the point where this change in gradient occurs, one should
switch to some other faster technique to finish the
optimization. Hence, we use the differential evolution
algorithm DE1 coupled with Newton’s method. The
diagram in Fig. 1 illustrates this technique.

At this point in the simulation, a filtering algorithm is
used on the population to remove potential duplicate
solutions. Now each of the remaining candidate solutions is
used, in turn, as a starting point for NR.

The benefit of this algorithm is that it exploits the
speed of NR but tries to avoid the initial condition problem
of NR by using DE1 to provide multiple and good starting
points for NR. As will be seen later this algorithm is both
fast and accurate.

IV. DC ANALYSIS USING EVOLUTIONARY

COMPUTING

A. Benchmark Circuits

Several benchmark circuits were used to evaluate the

performance of all of the EAs. SPICE level 3 MOS models
were used unless otherwise noted. Three benchmark
circuits are discussed here:

• An Inverting Schmitt Trigger. The Schmitt
Trigger is made up of five p-type and five n-type
MOSFETs. In DC analysis, there are three possible
solutions, including a metastable state.

• A multi-state circuit with nine operating points,
consisting of 4 bipolar transistors and 14 resistors. This
circuit is taken from Chua and Ushida’s work [15].

• A positive edge-triggered D-latch with inputs D=1
and C=0. This circuit has multiple operating points. It
consists of 7 CMOS inverters and 4 transmission gates and
has a total of 22 transistors.

B. Experimental Results and Discussion

The performance of each algorithm with each of the

circuits is shown in Tables 1 - 3. The algorithm is stated in
the first column of each table. In the second column, the
number of solutions found by each algorithm automatically
is stated as an integer. If multiple solutions could be found
by changing settings, this is stated as an expression (e.g.
1+1 means 2 solutions were found by restarting the
algorithm). The third column shows the number of
generations (or for NR, the number of iterations). In the
case of DENR, the second figure gives the total number of
NR iterations. The fourth column shows the accuracy
relative to NR. Finally the CPU time in milliseconds is
given. Again, if multiple runs were needed to find multiple
solutions, this is stated as a sum.

In the case of the multi-stable bipolar circuit some of
the NR results are bracketed from the others. This is
because the starting points required for these solutions
proved to be harder to find than for the first 5 solutions.

DE1, DE2 and ES are often the best evolutionary
algorithms for finding multiple solutions automatically.
ESA is the least good at finding multiple solutions, even
when restarted and parameter settings are altered. By far
the best evolutionary algorithm for multiple solutions is the
hybrid DENR.

NR is always the fastest, in terms of CPU time (but
note that manual intervention is needed to find multiple
solutions). For all the circuits, DENR is always the fastest
of the evolutionary algorithms in terms of CPU time. ESA
is consistently the slowest (apart from for the Schmitt
trigger circuit, where it only found one solution). The best-
performing evolutionary algorithm’s (DENR) CPU time is,
however, between about 5 and 20 times that of NR.

The accuracy of the evolutionary algorithms is very
similar. DENR followed by TSEA are the most accurate in
most cases and the DE algorithm is usually accurate too.

The CPU time does not necessarily represent the total
effort required to find a solution. This is particularly true
when multiple solutions exist and are sought. It can
therefore be argued that the best algorithms in terms of
accuracy, speed and the ability to find multiple solutions
and to analyze problem circuits, such as the Schmitt trigger
and the other multi-stable circuits, are DENR or DE1.

V. CONCLUSIONS

The use of evolutionary algorithms for nonlinear

operating point analysis of MOS circuits has been
demonstrated. DE and the other EAs are globally
convergent, whereas NR is only locally convergent. NR
requires manual intervention to find all the solutions to a
circuit; it has been shown that DE and the other EAs can
find multiple solutions in a single pass.

All the EAs here are, in general, slower than NR. This
can be attributed to two factors. Firstly, a significant
amount of sorting of populations has to be done. This
accounts for the majority of the CPU time taken. Secondly
the device equations have to be evaluated many times in
each generation (once for each member of the population).
The hybrid algorithm is very competitive, however, when
compared to NR for the circuits tested here.

REFERENCES

[1] Litovski, V. and Zwolinski, M., VLSI: Circuit Simulation and

Optimization, Chapman and Hall, London, 1997.
[2] Zwolinski, M., Crutchley, D.A. and Yang, Z.R., “Evolutionary

computing for operating point analysis of nonlinear circuits”,
Proceedings of ICSES 2000, Poland, Oct 17th-20th 2000.

[3] Ho, C.W., Ruehli, A.E. and Brennan, P.A., “The modified
nodal approach to network analysis”, IEEE Trans. on Circuits
and Systems, vol. CAS-22, no. 6, June 1975, pp. 504-509.

[4] Calahan, D.A., Computer Aided Network Design, Revised
Edition, McGraw-Hill, New York, 1972.

[5] Cox, P.F., Burch, R.G., Hocevar, D.E., Yang, P. and Epler,
B.D., “Direct circuit simulation algorithms for parallel
processing”, IEEE Trans. on Computer-Aided Design, Vol.
CAD-10, No.6, June 1991, pp.714-725.

[6] Johnson, T.A. and Zukowski, D.J. (1991), “Waveform-
relaxation-based circuit simulation on the Victor V256
parallel processor”, IBM J. Res. Develop. Vol.35, No.5/6,
Sept/Nov.

[7] Storn, R. and Price, K., “Differential evolution: A simple and
efficient adaptive scheme for global optimization over
continuous spaces”, Technical Report TR-95-012, ICSI,
Berkeley, 1995.

[8] Fogel, L.J., “Autonomous automata”, Industrial Research,
Vol. 4, 1962, pp 14-19.

[9] Rechenberg, I., “Cybernetic solution path of an experimental
problem”, Royal Aircraft Establishment, Library Translation
No. 1122, August 1965.

[10] Schwefel, H.-P., “Kybernetische Evolution als Strategie der
experimentellen Forschung in der Strömungstechnik”,
Diploma Thesis, Technical University of Berlin, 1965.

[11] Fogel, D.B., Evolutionary Computation: Towards a New
Philosophy of Machine Intelligence, 2nd Ed., IEEE Press, NY.,
2000.

[12] Goldberg, D.E., Genetic Algorithms in Search, Optimization
and Machine Learning, Addison Wesley, 1989.

[13] Storn, R., “On the usage of differential evolution for function
optimization”, Technical Report, ICSI, Berkeley, 1996.

[14] Crutchley, D.A. and Zwolinski, M., “Using evolutionary and
hybrid algorithms for DC operating point analysis of
nonlinear circuits”, Proc. 2002 Congress on Evolutionary
Computation (CEC’02), Hawaii, USA, May 12th-17th 2002.

[15] Chua, L.O. and Ushida, A., “A switching parameter
algorithm for finding multiple solutions of nonlinear resistive
circuits”, International Journal Circuit Theory and
Applications, Vol. 4, 1976, pp. 215-239

[16] CircuitSim90 Benchmark Circuits, North Carolina State
University, CAD Benchmarking Laboratory,
http://www.cbl.ncsu.edu/CBL_Docs/csim90.html

Fig. 1 Criteria for switching from EC to NR.

TABLE 1
RESULTS FOR SCHMITT TRIGGER

Alg. No. Sols No. Gens/Its Mean Err CPU (ms)
NR 1+1 144+13 ~ 11+2
DE1 2 271 2.06×10-1 1210
DE2 2 481 1.88×10-1 1980
ES 2 107 6.64×10-1 830
ESA 1 29 2.01×10-1 490
TSEA 1+1 28+31 1.04×10-1 270+330
DENR 2 29+407 1.18×10-1 50

TABLE 2

RESULTS FOR MULTI-STATE BJT CIRCUIT
Alg. No. Sols No. Gens/Its Mean Err CPU (ms)
NR 1+1+1+

1+1(+1+
1+1)

13+9+11+
12+12(+13+
18+15)

~ 5+4+5+5+5
(+5+6+5)

DE1 5 2214 3.48×10-1 6709
DE2 3 4669 2.97×10-1 13980
ES 2 1899 4.85×10-1 5958
ESA 0 ~ ~ ~
TSEA 1+1 336+295 1.52×10-1 1025+980
DENR 4+3+1 9+1806,

9+2106,
17+474

2.50×10-5 105+150+
160

TABLE 3

RESULTS FOR POSITIVE EDGE TRIGGERED D-LATCH
Alg. No. Sols No. Gens/Its Mean Err CPU (ms)
NR 1+1+1 8+186+186 ~ 5+20+19
DE1 3 241 1.25×10-2 1629
DE2 3 471 1.59×10-2 3047
ES 2 85 2.10×10-3 1109
ESA 1 22 1.15×10-1 760
TSEA 1+1+1 10+9+12 8.17×10-3 270+240+

340
DENR 3 46+2493 7.43×10-3 690

