Compositional Evolution: The impact of Sex, Symbiosis and Modularity on the Gradualist Framework of Evolution


Watson, Richard A. (2006) Compositional Evolution: The impact of Sex, Symbiosis and Modularity on the Gradualist Framework of Evolution, vol. NA, MIT Press (Vienna series in theoretical biology, NA).

Download

[img] PDF Watson.pdf - Other
Restricted to Registered users only

Download (6MB)

Description/Abstract

No biological concept has had greater impact on the way we view ourselves and the world around us than the theory of evolution by natural selection. Darwin's masterful contribution was to provide an algorithmic model (a formal step-by-step procedure) of how adaptation may take place in biological systems. However, the simple process of linear incremental improvement that he described is only one algorithmic possibility, and certain biological phenomena provide the possibility of implementing alternative processes. In Compositional Evolution, Richard Watson uses the tools of computer science and computational biology to show that certain mechanisms of genetic variation (such as sex, gene transfer, and symbiosis) allowing the combination of preadapted genetic material enable an evolutionary process, compositional evolution, that is algorithmically distinct from the Darwinian gradualist framework. After reviewing the gradualist framework of evolution and outlining the analogous principles at work in evolutionary computation, Watson describes the compositional mechanisms of evolutionary biology and provides computational models that illustrate his argument. He uses models such as the genetic algorithm as well as novel models to explore different evolutionary scenarios, comparing evolution based on spontaneous point mutation, sexual recombination, and symbiotic encapsulation. He shows that the models of sex and symbiosis are algorithmically distinct from simpler stochastic optimization methods based on gradual processes. Finally, Watson discusses the impact of compositional evolution on our understanding of natural evolution and, similarly, the utility of evolutionary computation methods for problem solving and design.

Item Type: Book
Additional Information: http://mitpress.mit.edu/catalog/item/default.asp?sid=B3D650C9-5C4E-45C7-8A63-22A29004F191&ttype=2&tid=10671
ISBNs: 026223243 (print)
Keywords: evolutionary algorithms, symbiogenesis, hierarchical modularity, evolvability, major evolutionary transitions, serial endosymbiosis theory, bio-inspired computation, computational biology, sexual recombination
Organisations: Agents, Interactions & Complexity
ePrint ID: 260415
Date :
Date Event
February 2006Published
Date Deposited: 30 Jan 2005
Last Modified: 17 Apr 2017 22:15
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/260415

Actions (login required)

View Item View Item