Implicit Function Theorems for Non-Differentiable Mappings
Implicit Function Theorems for Non-Differentiable Mappings
Sufficient conditions are given for a mapping to be $\gamma$-G inverse differentiable. Constrained implicit function theorems for $\gamma$-G inverse differentiable mappings are obtained. The constraints are either closed convex cones or closed subsets in different cases. A theorem without $\gamma$-G inverse differentiability in finite dimensional space is also presented.
277-292
Bian, W
3f636243-2f84-4d56-8c78-b29fbe6571c7
30 November 2006
Bian, W
3f636243-2f84-4d56-8c78-b29fbe6571c7
Bian, W
(2006)
Implicit Function Theorems for Non-Differentiable Mappings.
Journal of Optimization Theory and Applications, 129 (2), .
Abstract
Sufficient conditions are given for a mapping to be $\gamma$-G inverse differentiable. Constrained implicit function theorems for $\gamma$-G inverse differentiable mappings are obtained. The constraints are either closed convex cones or closed subsets in different cases. A theorem without $\gamma$-G inverse differentiability in finite dimensional space is also presented.
Text
fulltext.pdf
- Version of Record
More information
Published date: 30 November 2006
Organisations:
Electronics & Computer Science
Identifiers
Local EPrints ID: 260497
URI: http://eprints.soton.ac.uk/id/eprint/260497
PURE UUID: 44704bce-e461-4a4c-a596-abc159cd5dbc
Catalogue record
Date deposited: 09 Feb 2005
Last modified: 14 Mar 2024 06:38
Export record
Contributors
Author:
W Bian
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics