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Abstract

The current paper focuses on design and laboratory evaluation of a
dual-modality sensor, developed for the needs of oil and gas extraction
industry to measure the composition of heterogeneous mixtures in harsh
conditions. The sensor combines ultrasonic and electrical measurement
techniques, which are non-destructive, rapid and can potentially provide an
on-line industrial measurement. Such a ‘dual-modality’ measurement could
potentially be reliable in a wider range of process conditions. A distinct
feature of the sensors presented here is their construction, which makes use
of the thick-film technology, enabling the construction of multi-layered
structures of both conductive and non-conductive layers, some of which may
exhibit piezoelectric properties for ultrasonic measurement purposes. These

are later fired on a ceramic substrate to provide rugged sensors, capable of
working in aggressive industrial environments. Laboratory experiments to
investigate the feasibility of the dual-modality sensors were conducted and
some comparisons with the theoretical predictions are presented.

Keywords: electrical impedance, ultrasonic transmission, dual modality,

thick-film sensor in heterogeneous mixtures

1. Introduction

Heterogeneous mixtures of multiple phases or components
are a common occurrence within many industrial processes.
Measurement of the composition of such mixtures is
industrially important as it directly impacts the operational
and economic aspects of the plant performance. Numerous
examples of the areas where composition measurements are
critical can be given from as diverse areas as chemical,
petrochemical, oil and gas extraction, pharmaceutical, food
and drink and water treatment plants. The ability to monitor

and control the multiphase phenomena is therefore one of the
most fundamental issues.

The aim of this study is to develop a reliable sensing
technique to be deployed in the hostile environment of an
oil and gas extraction plant, in particular within primary
separation systems, both top-side and sub-sea, or potentially
in down-hole environment. Here, the heterogeneous mixtures
consist of at least four components: crude oil, formation
water, gas and solid particulates. Typical operating conditions
of such installations are characterized by high temperatures
reaching in excess of 150 °C, pressures in excess of 150 bars
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and the presence of highly aggressive and corrosive chemical
compounds. Therefore, it is clear that any possible sensor
design must meet at least two criteria: to survive the
high operating pressures and temperatures and to ensure the
chemical stability of the components exposed to the process
media.

The sensors described in this paper are based on the
concept of thick-film fabrication technology, which was
thought to be one of the possible routes for developing a
robust device fulfilling the requirements stated above. Thick-
film technology has been available for some decades now [1],
especially for manufacturing hybrid electronic circuits. The
fabrication technique is based on screen printing of thick-film
pastes or ‘inks’, which are typically deposited on ceramic
substrates and later fired in temperatures of the order of
several hundred degrees. In addition, the inks used in the
fabrication process could be based on noble metals such as
gold or platinum. Therefore, the pressure, temperature and
chemical stability requirements could be met relatively easily.

However, the thick-film fabrication offers some additional
benefits. Firstly, it is possible to deposit the thick-film layers
‘layer-by-layer’, and so ‘sandwiches’ containing both metallic
and non-metallic layers can be constructed. Secondly, the
non-metallic layers could be designed as ceramic materials
exhibiting piezoelectric behaviour and thus providing a
means for manufacturing compact ultrasonic transducers.
These characteristics of the thick-film fabrication techniques
suggested the possibility of designing the sensors, which could
be utilized as both electrical sensors (metallic layers forming
the electrodes) and ultrasonic sensors (piezo-ceramic layers
sandwiched between two metallic layers), thus providing a
means for ‘dual-modality’ characterization of heterogeneous
mixtures.

The current paper gives an overview of design procedures
for the development of dual-modality sensors, and presents
the laboratory evaluation of such sensors for simulated
heterogeneous mixtures, namely salty water and vegetable
oil. The work described here involved three universities
with the overall responsibilities as follows: University
of Southampton was responsible for manufacture of the
sensors using thick-film technology, University of Newcastle
was responsible for high-pressure and high-temperature
environmental testing of the sensors, while the University of
Manchester was responsible for laboratory qualification and
theoretical modelling and analysis. It is hoped that further
research work and subsequent commercialization of the thick-
film sensor technology described here will lead to construction
of industrial measurement systems, which could be used in a
much wider range of process conditions.

2. Literature review

Use of electrical and ultrasonic techniques as separate methods
to characterize the heterogeneous mixtures has received
significant attention over the recent decades. One important
common denominator of the two is that the measurement can
be made non-invasively, non-destructively and in substances
that are optically opaque. This section is intended as a brief
overview of both the methods. Some background information
concerning the underlying theory, design and application of
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various types of sensors in the process industries can be found,
for example, in [2, 3].

2.1. Electrical measurements of heterogeneous mixtures

Determination of the volume fraction of one liquid in another
in the heterogeneous mixtures was the subject of numerous
studies; some earlier reviews can be found, for example, in
[4, 5]. The theoretical work attempting to link the electrical
properties of a two-phase mixture with the volume fraction
of one material dispersed within another was first presented
by Maxwell [6]. In his calculations, Maxwell assumed that
small spheres of one material were uniformly distributed in the
continuous phase of another material, and that an otherwise
homogeneous electrical field was disturbed by their presence.
The spheres were assumed to be of equal diameter, and small
compared to the distance between them. The Maxwell model
resulted in the following relation

281 + &) — 2Cv(81 — 82)
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Feft = €1 261+ +cy(e] — &)
Here, ¢; and &, denote the dielectric permittivity of the
components, g is the effective dielectric permittivity of
the mixture and ¢, is the volume fraction of material ‘2’
in material ‘1’. Similar formulae were also obtained for
calculating the effective conductivity of a mixture. Many
others [7-9] developed various models for calculation of the
electrical properties of mixtures of two different materials. In
many of these approaches, heterogeneous systems are treated
either as ideal dielectrics or as purely conducting materials.
This is equivalent to solving the electrostatic problem for
two materials with dielectric properties ¢; and &, without
considering the electrical conduction, or conversely, to solving
a dc conduction problem for materials with conductivities o
and o,, while neglecting dielectric properties. Moreover, as
the electrostatic and dc problems have similar mathematical
form, the formulae derived are mathematically similar. When
looking at equation (1) or similar formulae, an obvious
property is the lack of frequency dependence of the electrical
properties.

In reality, none of the heterogeneous systems is an
‘ideal dielectric’ or ‘ideal conductor’ and the full analysis,
taking into account all material properties i.e. €, &, 0}
and o, should be conducted. =~ When such analysis is
performed, it is apparent that the effective electrical properties
are functions of frequency due to the phenomenon called
interfacial polarization (induction of charges on fluids internal
interfaces). Mathematically, this effect is called dielectric
dispersion to indicate that electrical properties differ in low-
and high-frequency regions. An example of such an analysis
can be found in the work of Hanai [5].

For the purpose of such analysis, the dielectric permittivity
and electrical conductivity are discussed simultaneously, in
terms of complex dielectric permittivity ¢*. This concept is
fully explained by Hanai [5]. Generally, in a system of two
electrodes, the electrical charge is induced by polarization and
conducted through the medium. So the total charge is

Q=UC+UG/(jo) =U[C+G/(jo)] @
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where U, I, C, G and o are voltage, current, capacitance,

conductance and frequency, respectively. The same
relationship can be presented as
0 =Uc" 3)

where, by definition, C* is the complex capacitance understood
as

C*=C—-j(Glw)=C—jC". “)
In this form, the conductive phenomena are ‘seen’ as the
imaginary part of the complex capacitance. (It is also
possible to introduce the concept of complex conductance
and treat capacitance as imaginary part of it, i.e. G* = jwC*.
Similarly, complex permittivity can be replaced by the
complex conductivity: o* = jwepe™*.)

Considering the arrangement of two flat-plate electrodes
of area S, spaced distance d from one another, the complex
capacitance can be linked to the dielectric permittivity, &, and
electrical conductivity, o, by the following relationship:

c* + -7 S
=¢g|¢ —
0 ja)&‘o d

where ¢ is the dielectric permittivity of the vacuum. Thus,
complex permittivity is defined as

* o . g . I
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Following the analysis originally conducted by Wagner [10],
it can be shown that the complex permittivity of the mixture
e* is linked to the volume fraction of dispersed spheres of one
fluid (with permittivity e5) in another (with permittivity e}) by

the following equation:
* * * *
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or in terms of complex conductivity
oF = o,>|<2’01>k + G; B 2’6"’(0'1>k B 62*)
! 20] +0) +cv(al* — 02*)
jwT (o — 0] .
=0+ M + jweoen (8)

1+ jor

where coefficients ¢y, €, oy, o1 and T are as defined in [10].
From equations (7) and (8), it can be seen that both the
permittivity and the conductivity of a mixture are functions
of frequency of the applied electrical field. Moreover, it can
be shown that equation (1) represents a limit of equation (7)
for high frequencies. Similar considerations of the electrical
models for heterogeneous mixtures were developed by Rao
and Ramu [11] and Ramu and Rao [12].

Of course, for practical applications, formulae such as
those given by (7) and (8) can be simplified after considering
the orders of magnitude of all parameters. For example,
Hammer et al [13] suggested simplified expressions for
permittivity and conductivity of mixtures of crude oil and
process water in a frequency independent form. For the oil-
continuous phase, the permittivity and conductivity are given
as:
1+28
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Figure 1. Permittivity and conductivity of oil-water mixtures as a
function of water cut [13].

For water continuous phase, the permittivity and conductivity
are given as:

28 28

m§ Gr‘r)lv = Gwaterm~

Here g is the water fraction in the mixture (also referred to as
‘water cut’). Equations (9) and (10) are illustrated in figure 1
taken from [13].

Many applications of the electrical methods to measure
the composition of mixtures have been reported. For example,
Strizzolo and Converti [14] used a variety of capacitance
sensors to determine the volume fraction in petroleum—water
and kerosene—water pipelines. It was found that for a
well-agitated mixture, two flow patterns occur for different
compositions of the mixture, resulting in a discontinuous
calibration curve—similar to the effect shown in figure 1.
Beck et al [15] used a non-intrusive capacitance transducer
for the simultaneous on-line measurement of water and un-
dissolved gas in crude oil. The water concentration of the
flow is determined from the mean capacitance of the flowing
mixture. The same transducer can be used simultaneously
to determine the void fraction of the flow by measuring the
instantaneous variation in the dielectric constant of the mixture
created by fluctuations of the gas component. Jaworski et al
[16] showed the viability of using capacitance measurement to
monitor interface levels in industrial conditions of the oil and
gas extraction plant. Some practical applications of electrical
sensors are shown in patents [17-19]. Some more detailed
discussion of the concept of impedance spectroscopy and more
recent developments in sensor technologies are given in [20].

(10)

wo__
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2.2. Ultrasonic measurements of heterogeneous mixtures

First experiments with propagation of ultrasonic waves
in matter were performed in the 19th century (so-called
‘pitch and catch’ technique known today as ultrasonic
transmission/reflection techniques [21]). The ultrasonic
techniques gained recognition in the 1930s and the subsequent
developments in electronics allowed their widespread
acceptance in sonar applications, materials testing and flaw
detection and more recently characterization of emulsions,
colloids and creaming systems. In the latter applications,
the ultrasonic techniques allow measurement of either the
ultrasonic velocity or attenuation coefficient (or both) and then
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use empirical or theoretical formulations to obtain information
about the characteristics of heterogeneous mixtures such
as concentration of components or, in more advanced
applications, particle or droplet size.

One of the most exhaustive reviews of the pre-1987
literature, with a particular emphasis on the physical
assumptions and theoretical models of ultrasound propagation
and scattering in heterogeneous systems, was given by
McClements and Povey in [22]. Subsequent review papers by
Povey and co-workers [21, 23, 24] clearly demonstrated the
ultrasonic propagation as an effective tool for characterization
of food emulsions, while experimental and theoretical work
presented in [25-29] refined the theoretical models available
and enabled a better understanding of scattering processes. In
the models discussed here, it is assumed that the wavelength
of ultrasonic excitation is much greater than the size of the
droplets of the dispersed medium. This is true in most
aqueous/organic emulsions with droplet sizes typically below
0.1 mm where the typical speed of sound is of the order
1500 ms~', while the ultrasonic frequencies are around a few
MHz. In this paper, only the measurement of the speed
of sound is considered, without discussing the attenuation
measurements.

One of the simplest analytical approaches to predict the
ultrasonic speed of sound in mixtures has been proposed by
Urick [30]. According to a theory proposed by Wood [31], the
velocity, v, is given as

1
= 11

v T (11
where k is the compressibility of the material and p is
the density of the material. It has been assumed that for
suspensions of rigid, compressible spherical particles whose
diameter could be considered infinitesimally small compared
to the wavelength of the sound used, the mixture behaves
as a homogeneous material with the volume averaged values
of density, p,, and compressibility, «,, simply inserted into
equation (11):

k=Ko = (1 — @)1 + i (12)

p=po=(1—@)pi+dp (13)

where ¢ is the dispersed phase volume fraction and indices 1
and 2 indicate the continuous and dispersed phases,
respectively.

Povey and co-workers developed modified forms of the
Urick equation [27, 28]. They noticed that the Urick equation,
when written in terms of the unknown volume fraction,
assumes the following form:

1

1 2
— = —2(1+a¢+8¢ )
V1

> (14)

and, according to scattering theory, their analysis showed that
the coefficients in equation (14) can be defined as follows:

Ko — K; —
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Here v, is the velocity in the pure solvent, v is the velocity in the
mixture and ¢ is the volume fraction of the solution occupied
by the mixture. Indices 1 and 2 relate to the continuous
and dispersed phases, respectively. Symbols g and y denote
volume thermal expansivity and the ratio of the specific heat
capacities, respectively.

Tavlarides and co-workers [32-36] conducted a series
of experiments concerned with ultrasonic characterization of
mixtures as well as the theoretical analysis and modelling
of the scattering processes. In their earliest paper [32],
they concluded that the time-average model of ultrasonic
transmission fitted best their experimental results:

t* — 1

b= (16)
Here ¢* is the measured time-of-flight in the mixture, while
t; and t, denote time-of-flight measured in pure liquids 1 and
2, respectively. Equation (16) is, in fact, one of the simplest
models, which is equivalent to a ‘layered’ configuration of the
two media, and by definition cannot incorporate any scattering
effects. The subsequent work [33, 34] addressed the need for
the modelling of the scattering effects and proposed a modified
equation:

t* — 1.
p=—. a7

gd,itd - gc,itc
Here, indices ‘c’ and ‘d’ denote continuous and dispersed
phases, respectively. Selection of the parameters g4, and g ; is
governed by another parameter, y, which represents the ratio
of sound velocities in the dispersed and continuous phases:

_ Udispersed . (18)

Ucontinuous

Depending on whether y < 1 (which is equivalent to index
‘I’ becoming ‘1’) or y > 1 (which is equivalent to index
‘i’ becoming ‘2’), the parameters gq; and g.; are defined as
follows:

1
gei =1+—[1—(1—yH
14

3 2
2 = (1 =2 L2 19
5y3[ A=y =3y (19)
1
and gd,i=—2[1—(1—7/2)3/2] fory <1
14
2 2 2\3/2
gei=l+—=—yIl—-0~1/y")"]
i 5y3
3
+37 0= A =1y (20)
1
and gq; =— fory > 1L
4

Some experimental results obtained by Tavlarides and co-
workers in the scaled models of extraction columns can be
found in [35, 36]. The model proposed implies that the
ultrasonic velocity is not only a function of the composition,
but also which of the components is the continuous and which
one is the dispersed phase in the mixture. This is of course
more physical approach than ‘single equation” models, which
do not allow taking into account processes of phase inversion.
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3. Design of the dual-modality sensor

The concept behind a dual-modality transducer was built
around the idea that it should operate in two measurement
modalities: electrical impedance and ultrasonic time-of-flight.
It was built from a single unit (in two versions as explained
later). Each unit consisted of two electrodes on an insulating
substrate with a piezoelectric layer sandwiched between them,
forming a pressure wave transducer suitable for ultrasound
transmission and reception. Transducers are used in pairs,
displaced from one another such that the upper electrodes
of the ultrasound transducers can also be used for electrical
measurements [37].

3.1. Preliminary studies: size and materials

The development of the sensors described in this paper took
place in several stages in an iterative manner. There were two
main concerns: firstly, to ensure that the sensors can provide
meaningful measurements, both in the electrical and ultrasonic
sense, and secondly, to avoid material deterioration, mainly
corrosion of electrode materials and de-poling of piezoceramic
material, due to prolonged contact with saline water at high
pressures and temperatures.

The initial studies began with tests of relatively small
sensors, with the active area approximately 10 x 10 mm?,
which mainly aimed at establishing if the piezoceramic thick-
film sandwiched between two metal electrodes could in the
actual fact provide sufficient excitation to conduct ultrasonic
time-of-flight measurements in oil-water mixtures. Having
assessed the sensors successfully, it has then been decided to
increase the active area of the transducer to 35 x 35 mm?,
in the hope that larger electrodes would be more suitable for
electrical measurements. While the electrical measurements
improved, at the same time it became obvious that the large
sensors could not produce sufficiently strong planar ultrasonic
waves to enable meaningful time-of-flight measurements. As
a compromise, it has been decided that the part of the sensor
responsible for the generation of ultrasonic pulse should be
kept small (around 10 x 10 mm?) while the electrodes for
electrical measurement should be large (35 x 35 mm?).
In addition, it has been decided to produce two versions
of the transducers: one with the so-called guard electrode
and the second without, which coupled together in a single
‘measurement cell’, would reduce fringe effects of electrical
field used for electrical measurements (similarly as discussed,
for example, in [16]). All these considerations, which are
not covered in detail here, lead to the final design which is
described in the following sections. A photograph of one of
the early sensors (with the active area of 10 x 10 mm?) is
shown in figure 2.

The suitability of materials for application in the dual-
modality sensors under development was tested through their
exposure to saline water at the pressure of 150 bar and the
temperature of 150 °C. A single immersion test, carried out in
a purpose-built autoclave located in the School of Mechanical
and Systems Engineering, University of Newcastle, would
normally last about a week. The sensor evaluation would
typically include visual inspection for signs of corrosion
on metal electrodes and comparison between measurement

Figure 2. One of the early thick-film sensors with active area of
10 x 10 mm?.

performance ‘before’ and ‘after’ the immersion. The main
outcomes from these studies were application of gold for
the electrode material—sensors using less expensive silver—
palladium showed serious corrosion problems, and use of PZT
powder SA—one of the few piezoceramic materials that did not
show deterioration of measurement performance in ultrasonic
measurement mode.

3.2. Sensor fabrication process

The fabrication of transducers was undertaken at the University
of Southampton within the School of Electronics and
Computer Science. The devices were made using thick-
film technology, with which the Southampton group have
considerable experience [1]. The overall structure of the two
versions of sensors is shown schematically in figure 3.

With reference to figure 3, the substrate material was
96% alumina of thickness 635 um. Each electrode layer was
fabricated with a gold thick-film paste and the piezoelectric
layer was a purpose formulated paste developed at the
University of Southampton. Lead zirconate titanate (PZT)
powder type 5A, manufactured by Morgan Electroceramics
Ltd, was chosen as the active material for the piezoelectric
paste. This has a Curie temperature in the region of 350 °C,
allowing the sensors to operate at the desired specification of
150 °C. The size of the lower gold electrode is 10 x 10 mm?
and this is screen printed onto the alumina substrate, dried
in an infra-red drier at about 150 °C and then fired in a belt
furnace at a peak temperature of 890 °C. The thick-film PZT
layer of size just sufficient to overlap the bottom electrode was
printed twice in order to obtain a thickness of around 50 um
and then subjected to a similar firing profile to the initial layer.
Figure 4 shows a microscopic view of the PZT layer deposited
on the substrate.

Following PZT deposition, the upper gold layer, of
dimensions 35 x 35 mm2, then printed, dried and fired in
the same manner to the other layers. In the sensor version
with the ring guard electrode, the central electrode in the top
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Second electrode layer

Piezoceramic layer
First electrode layer
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Figure 3. Schematic of the layer configuration in the thick-film sensor: (@) version with the ring guard electrode; (b) version with plane

electrode.
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Figure 4. Microscope view of deposited PZT material.

layer is a square with dimensions 20 x 20 mm?. The resulting
devices are essentially planar capacitor-type structures. After
processing, the PZT layer has to be polarized in order to
induce piezoelectric behaviour. This is achieved by placing
the substrate on a hot plate at a temperature of around 120 °C
and applying a dc electric field of 4 MV m~! across the sample
for 10 min.

Figure 5 shows a photograph of the two types of
transducers fabricated, together with the photograph of a
sensor assembly in the form of a test cell, used in laboratory
experiments.

3.3. Test cell set-up

Although the ultimate objective of the work described in
this paper is the development of a dual-modality sensor,
capable of both the ultrasonic and electrical measurements,
at the current stage such measurements were not performed
simultaneously. This is simply a matter of practicalities of
the measurement equipment. The ultrasonic pulser—receiver
system generates voltage bursts (spikes) of the amplitude of
400 V, and when such measurements are conducted, the LCR
meter for electrical measurements must be disconnected to

6

avoid possible damage. In future, an electronic circuit to
isolate the two systems must be developed, but it was not felt
important at this stage.

As shown in figure 5, the sensors had short lengths of
cables soldered at the edge. These would then be connected
to the miniature co-axial cables (RG174 type) which were fed
to either the pulser—receiver system or the LCR meter. When
using the pulser—receiver system, ports A and B on one side
of the cell and ports D and E on the other side would be used.
In this way, the PZT wafer could be excited to generate the
pressure wave on one of the sensors, which could then be
detected on the other sensor using time-of-flight measurement
principle. When using the LCR meter, the excitation voltage,
carried via the core of a coaxial cable, would be connected to
port E, while the shield of that cable would be connected to
a copper plate on the outside of the cell (which can be seen
in figure 5(c)). On the other side of the cell, the detected
signal, carried in the core of the second coaxial cable, would
be taken from port B. The shield of the second cable would be
connected to port C (the ring guard electrode) and the external
shield, ‘behind’ the cell shown in figure 5(c).

Another issue linked to the test cell set-up was the
selection of the spacing between the two sensors, as
represented by Perspex blocks shown in figure 5(c). Of
course, there are a number of competing effects. Firstly, from
the point of view of the time-of-flight technique, the spacing
should be as large as possible, because the accuracy is dictated
by the temporal resolution of the pulser-receiver system.
Unfortunately, the power of the thick-film transducers is very
limited, and it has been found that, in the oil-water mixtures,
the ‘received’ pulse becomes hard to detect with the spacing
larger than 20-25 mm, especially for high concentrations of
dispersed phase. It is worth mentioning that the sensors were
not optimized in any way from the point of view of converting
the electrical energy into the mechanical energy of the pressure
wave and this could perhaps be addressed in any future work.
It is also worth mentioning that because of the low power
of the ultrasonic transducers and the associated attenuation
problems, it was not possible to use multiple echoes (as
explained, for example, in the aforementioned papers by
Povey and co-workers) to increase the temporal resolution
of the measurement. As far as the electrical measurement
was concerned, small spacing is beneficial, as it increases the
detected signal, but unfortunately it would render the accuracy
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LCR Meter

INEINENY

Pulser-receiver

1—testcell

Thermostatic bath

Data acquizition

2 — thermometer
3 - high shear homogenizer

Figure 6. Schematic of the experimental arrangement.

of the ultrasonic measurements unacceptable. Large spacing,
on the other hand tends to reduce the guarding effect of the ring
electrode. The preliminary studies showed that an acceptable
distance between the sensors used here is in the range of
12-20 mm.

4. Experimental set-up

The experimental set-up used in the measurements described
here is shown schematically in figure 6. The heterogeneous
mixtures investigated were contained in a 500 ml glass
beaker, which was immersed in a thermostatic bath of
preset temperature. The measurements, taken by either the
LCR meter or the pulser-receiver, were stored on a data
acquisition PC.

4.1. Preparation of fluids

For reasons of safety and practical issues concerned with using
clean and inexpensive media, the fluids normally present in
oil and gas extraction (crude oil and formation water) were
simulated by the use of vegetable oil and distilled water with
200 g of sodium chloride added per litre (20% by weight). The
high content of sodium chloride in water was chosen to mimic
the density of the formation water present in oil extraction
processes, which can often reach levels of 1.1-1.2 g cm™.
Future experiments are planned, which will use more realistic
fluids.

In order to obtain stable mixtures (emulsions), an aqueous
surfactant solution was prepared by dissolving 1% by weight
of Tween-20 (ICI Chemicals & Polymers Ltd) in saline water
(1% measured relative to the original distilled water). The

vegetable oil-in-saline water emulsion was prepared by mixing
vegetable oil with saline water in a glass beaker and blending
it with a homogenizer (IKA Ultra-Turrax T25) at a rotational
speed of 22 000 rpm. A series of oil-in-saline water emulsions
with volume concentrations of oil varying between 0% and
50% with steps of 10% was prepared. Similarly, a series of
saline water-in-oil emulsions with volume concentrations of
water between 0% and 50% in steps of 10% was prepared using
a similar procedure. In the latter case, to avoid confusion,
instead of measuring water contents in oil, the mixtures are
identified by oil volume fraction which varies between 50%
and 100%.

The obtained emulsions were stable for periods ranging
from a few hours to a few days. This allowed bringing
the sample fluids to the desired temperature within the
thermostatic bath, while measurements on other samples
were being conducted. When signs of separation were
appearing, the mixtures could also be easily re-mixed for a
few minutes, while waiting for their turn of the measurements.
To ensure comparable results, the distribution of droplet size
was occasionally measured using a particle size analyser
(Mastersizer by Malvern Instruments Ltd). A set of typical
droplet size distributions is shown in figure 7. The horizontal
axis is a logarithmic scale showing particle diameters, while
the vertical axis corresponds to the probability density
distribution. As can be seen, the droplet sizes were typically
in the range of 1.0-10.0 um. It is interesting to note
that the distributions look as though consisting of two
separated distributions (double peaks), which is likely to have
been caused by the aforementioned occasional re-mixing of
mixtures.

The temperature of the fluids was controlled during
the measurements using the temperature setting on the
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Figure 7. Droplet size distribution measured by Malvern Mastersizer for a few selected oil-in-water concentrations.
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Figure 8. An example of time history of send and received signals
(arbitrary scales).

thermostatic bath (Clifton model 49700), and measured
independently using a mercury thermometer inserted directly
into the sample, with an accuracy of 0.5°. The investigations
were limited to four selected temperatures: 25, 30, 40 and
50°C.

4.2. Electrical and ultrasonic measurement systems

The ultrasonic transmission measurements were made using
the ultrasonic flaw detector (model EPOCH II, 2100 series,
manufactured by Panametrics Ltd). The band widths of the
detector are selectable from a lower limit (5 or 500 kHz) to
an upper limit (2.25, 6 or 15 MHz). The energy levels can
be selected as 8, 32 or 128 wJ. In the first approximation, the
accuracy of the time-of-flight measurements can be estimated
from the ability of the device to resolve the time history of
the pulse send from the excitation transducer and the pulse
received on the detector, which for this particular model
is #0.0125 us. This alone gives about £2 m s~! error
of velocity measurements based on 20 mm gap between
the sensors and a typical velocity in the range of 1500—
1800 m s~! for the investigated fluids. The time-of-flight is
measured from the distance between the send and the received
signals, from the graphs such as the one shown in figure §
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Figure 9. Speed of sound measured by the thick-film sensor in pure
liquids as a function of temperature.

(knowing the horizontal time scale displayed on the computer
screen). Therefore, in addition to the errors related to the
temporal resolution, an error of the ‘subjective judgement’
of the researcher as to when the pressure wave arrives at the
receiver must be considered. This most likely gives rise to a
‘systematic’ error as will be discussed later.

The electrical properties of the mixtures (electrical
capacitance and conductance) were measured using Hioki
LCR meter (model 3532—-50 LCR HiTester). The meter covers
the frequency range from 42 Hz to 5 MHz, while the sinusoidal
excitation voltage can be set from 1 V to 5 V peak-to-peak.
The measurement relies on the four-terminal principle—there
are four ports: ‘high’ and ‘low’ potential and ‘high” and ‘low’
current. The first pair is used for measuring the voltage drop,
while the second pair is for current injection. However, in the
case of a two-terminal device such as the sensor discussed here,
it is customary to couple together the high-potential and high-
current terminals and connect them to one electrode, while
low-potential and low-current terminals are coupled together
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Figure 10. Speed of sound in emulsions at different oil
concentration and at different temperatures.

and connected to the second electrode. In the experiments
described in this paper, the excitation level used was 1 V
and the electrical properties were measured at three selected
frequencies: 10 kHz, 100 kHz and 1 MHz.

5. Sample experimental results and discussion

5.1. Ultrasonic measurement

The initial measurements were conducted to gain some
confidence in the data acquired from thick-film sensors. The
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speed of sound for pure liquids, distilled water, saline water
and vegetable oil, at different temperatures, was measured.
Figure 9 summarizes the data obtained. It is worth pointing
out that the obtained speed of sound for distilled water at 25 °C
was 1491 m s~!, while the existing literature gives a value of
1496.7 m s~! [32] or 1497 m s~! [38]. Interestingly, the speed
of sound in distilled water for 50 °C has been measured as
1531 m s~! against the literature value of 1541 m s~!. This
suggests that the curve for distilled water is in the actual fact
shifted by about 7-8 m s~! downwards (compared to literature
data), which suggests a ‘systematic’ error mentioned in
section 4.2. It is reasonable to assume that similar errors are
present in the data for saline water and vegetable oil. However,
no attempt was made to correct the data at this stage as the
discrepancies discussed here have little consequence for the
ability of the sensor to measure the mixture composition based
on the ultrasonic transmission time.

Figure 9 shows that the speed of sound in both distilled
and saline water increases with the increase of the temperature,
while the speed of sound in vegetable oil decreases with the
increase of the temperature. This is in agreement with existing
literature [39].

The measured speed of sound as a function of oil
concentration, with temperature as a parameter, is shown in
figure 10. As might be expected, the speed of sound through
the emulsions decreases with increasing oil concentration,
assuming values in-between of values for pure media as shown
in figure 9.
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Figure 11. Comparison of the experimental results (open squares) with the theoretical predictions by Tavlarides and co-workers (solid line
corresponds to equation (17), dashed line to time-average model (16). The graphs (a)—(d) correspond to temperatures 25, 30, 40 and 50 °C,

respectively.



G Meng et al

10000 ‘ 100000 ‘ ‘
—O—f=10 kHz 10000 N —0—f=10kHz [
1000 | —o—f= 100 kHz \ —o—f= 100 kHz
— 2 3\{ ——f=1MHz & 1000 \ ——f=1MHz [ ]
g 100} \;%A g 100
5 i \ § 1w}
= [ \ g F
g 10¢ 2 1
F o
o i &E o
l 3\) 0.1
b 0.01
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
(a) Oil concentration [%] (e) Oil concentration [%]
10000 ‘ ‘ 100000 E ‘ ‘
% —O—f=10kHz 10000 5 —0—f=10kHz [
1000 ¥ ~< —o—f =100 kHz \ —o—f =100 kHz
- E —p—f=1MHz & 1000 Y ——f=1MHz [
5 I e — X\K
g 100 ———— | g 1006\D§
.§ -§ 10 .
o =]
©
g 10¢ 2 1 ;
F o
2" o \ N
I 0.1
T \J\Jl \T
F 0.01 ‘\E/Ei]
““““ 0.001 ™~

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
(b) Oil concentration [%] (f) Oil concentration [%]

10000 ‘ ‘ 100000 ‘ ‘
@ —0—f=10kHz 10000 —0—f=10kHz [

1000 [ —o—f =100 kHz \ —o—1f=100 kHz
Mr— 1 MHz 1000 \A\ —A—f=1MHz ||
| AT

100 E %& 100 %

10 1

%L 0.1 n

0.01

10

s

[

Capacitance [pF]
Conductance [uS]

1

3l

0'10 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
(c) 0il concentration [%] (9) Oil concentration [%]

0.001

10000 ‘ ‘ 100000 E’N ‘ ‘
% —0—f=10kHz 10000 —0—f=10kHz ||
1000 | —o—f =100 kHz F \ —o—1f =100 kHz
F ——f=1MHz ~— 1000 E \ ——f=1MHz ||
[ I %)
= i | = 100 T
8 100 I— 3 7 /+\ \
F c F
: % § "
© ] F
g 10 M 2y 1
F o F
o I o F
I 0.1
1l E\W i D\é\ﬁ
F 0.01 N
0.1 b b b 0.001 Lol bbb
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
(d) Oil concentration [%] (h) Oil concentration [%]

Figure 12. Results of electrical measurements using thick-film transducer: (a)—(d) electrical capacitance for 25, 30, 40 and 50 °C,
respectively; (e)—(h) electrical conductance for 25, 30, 40 and 50 °C, respectively.

The experimental data obtained during the investigation Tavlarides and co-workers as reported, for example, in [34].
were compared with the theoretical model developed by It is easy to show that equation (17) becomes a linear relation
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Figure 13. Comparison between electrical properties measured by the thick-film sensor and the theoretical model developed by Hammer

et al [13].

when the inverse of the speed of sound v* is plotted against the
volumetric concentration ¢ as follows:

1 _ <gd,i _ gc.i)_'_i'
v* Ve

Vd Uc
Using the coefficient y defined by equation (18) and
calculating coefficients gq; and g.; defined by equations (19)
and (20), as appropriate, the theoretical prediction can be
visualized on the same graph as the experimental data. This
comparison is shown in figure 11 for the four temperatures
considered. Here the experimental points are shown as open
squares, while the solid lines correspond to the theoretical
prediction. It is clear that the theory and the experimental
results agree very well for water continuous mixtures (left-
hand side of the graphs), while there is very little agreement for
oil continuous mixtures (water phase dispersed). It is difficult
to speculate as to the reasons for such a discrepancy; however,
it should be noted that the variation in density between the
media used here is much wider than that considered in [34].
Judging from the graphs in figure 11, the time-average model
(see the thin dashed lines) given by equation (16) could be more

suitable for emulsions with dispersed water than equation (17)
with complicated coefficients (20).

5.2. Electrical measurement

Figure 12 shows the results of electrical measurements:
capacitance and conductance, carried out at the different
temperatures. Looking at graphs 12(a)—(d), the capacitance
measurement seems to be practically frequency independent—
only at the water continuous end of the plots (i.e. low oil
concentration) some frequency dependence appears. The
second feature of graphs 12(a)—(d) are consistent ‘out of
line” measurement points, perhaps best exemplified by values
obtained for oil concentration of 60%, and to some extent
for oil concentration 70%. This behaviour could perhaps
be associated with phase inversion processes (i.e. change of
continuity from oil-continuous to water-continuous or vice
versa). Looking at graphs 12(e)—(h), it is clear that the
measured conductance is strongly frequency dependent. Also,
while there is a clear trend between the conductance and
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oil concentration—i.e. high conductance for water phase,
low conductance for oil phase and an almost monotonic
decrease between the two extremes—it seems that the
conductance measurements obtained using the measurement
system available would be more difficult to interpret in terms of
oil concentration, because of the lack of consistency, perhaps
best exemplified by the curves obtained for f = 10 kHz and
f =100 kHz at the oil-continuous end of the graph.

Some comparisons with a simple model given in [13] were
attempted. The measured capacitance and conductance values
were firstly normalized by dividing them by the capacitance
or conductance values obtained for pure media (for each of
the frequencies). In this way, the curves would always start
from the value of 1 and rise (or drop) depending on whether
the curve is drawn from the ‘water side’ (i.e. to the right) or
from the ‘oil side’ (i.e. to the left). If the theory outlined by
Hammer et al [13] was applicable to the mixtures investigated
here, the experimental data for the water-continuous mixtures
should collapse onto the line 28/(3—f), while the data for the
oil-continuous mixtures should collapse onto line (1 + 28)/
(1—pB), where B is the water cut (easily calculated from
oil concentration as the difference between 100% and the
oil concentration and expressed as a decimal value between
0 and 1). The result of such procedure for the temperature
of 25 °C is in fact shown in figure 13; however, it can be
easily recognized that only partial agreement can be found for
capacitance measurements for oil concentrations between 0%
and 20% (water continuous mixtures) and oil concentrations
between 80% and 100% (oil continuous mixtures).

It is not clear as to why a better agreement between
the measurements and the theoretical predictions cannot be
found. However, the measurements in highly conductive
media are notoriously difficult and perhaps the LCR meter used
(designed primarily for testing electronic components) is not
adequate for high-accuracy measurements in heterogeneous
mixtures. Secondly, for simplicity, a two-terminal
measurement arrangement was used; a four-terminal method
could potentially offer higher quality. Finally, the model
proposed by Hammer et al [13] is only one of the simplest
available. It may be necessary to consider more complex
models in any future work, such as given in equations (7)
and (8). Nevertheless, from the sensor design point of view,
the important issue is the ability of the sensors to provide
information on the electrical properties of heterogeneous
mixtures, which could be usefully utilized in future industrial
applications.

6. Conclusion

A novel multi-modal sensor for measurement of the
composition of heterogeneous mixtures has been developed.
The sensor design utilizes the thick-film fabrication
technology, which enables incorporation of the electrical
measurement modality and ultrasonic  time-of-flight
measurement in a single device. The sensor was developed
with the needs of oil and gas extraction industry in mind
where high pressure, high temperature and aggressive media
are a common occurrence. These requirements have been
addressed by using the ceramic substrate and high-quality
sensor material such as golden electrodes and specially
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formulated PZT pastes for the ultrasonic transducer. How-
ever, it is hoped that the sensors developed could be used
in other areas including chemicals, biotechnology, pharma-
ceutical or food and drink, which may be operationally less
demanding.

The rationale behind developing such a dual-modality
sensor has been outlined and the preliminary studies, design
activities and the fabrication process have been summarized.
The sensor developed was subjected to environmental testing
at high- pressures and temperatures as well as a series
of laboratory experiments aiming to evaluate its ability
to provide useful information about the characteristics of
heterogeneous mixtures.  These procedures have been
presented, together with selected experimental data. The
experimental results have been analysed and compared with
simple models governing the behaviour of heterogeneous
mixtures. It is concluded here that the dual-modality sensors
developed can be usefully utilized for the characterization
of the heterogeneous mixtures. It is probably useful to
point out that in any practical implementation, there will
be a need for providing temperature measurements, as any
characteristics of heterogeneous mixtures will be temperature
dependent. This can be easily achieved by using a standard
thermocouple, or alternatively a way of depositing a thick-
film based thermocouple could be incorporated into the sensor
manufacturing process.

Clearly, the work presented here was of preliminary
character.  Several areas of future development can be
identified. Firstly, the design of the sensors will inevitably
evolve and will need to be refined. At this stage, it is
thought that the following additional work may be required:
(i) provision of suitable coatings on the sensor surface, such
as glassy materials, (ii) cyclic temperature testing of the
sensor to ascertain the potential problems caused by factors
such as permeation of humidity, loss of integrity of the
outer metallization layer or mismatch of thermal expansion
in various layers used: alumina, gold, PZT and any external
coating, (iii) optimization of the sensors from the point of view
of the conversion of the electrical energy fed to ultrasonic
sensor into the mechanical energy of the pressure wave is
needed.

Secondly, a better understanding of the electrical and
acoustic characteristics of realistic mixtures, obtained using
the thick-film sensors, is required. This needs to include
broader studies of the practical industrial fluids, including, for
example, a range of mixtures of crude oil and formation water
or a variety of emulsions found in the food and drink industry,
as well as utilization of use of more accurate impedance
analysers as well as simulation of the sensor performance
using electrical and acoustic field solvers. One interesting
question would be whether it is possible to push the electrical
measurement range towards microwave frequencies.

Thirdly, if the thick-film sensors are to be implemented
in the industrial environment, substantial work is required
towards development of simplified and robust electronic
circuitry, which could be incorporated into the industrial
control systems, in place of the highly sophisticated and
expansive impedance analysers or ultrasonic pulser—receiver
systems, which are commonly used in the scientific research.
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