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Abstract

The purpose of this paper is two-fold, firstly it describes the development

and modelling of an experimental test facility as a platform on which to assess

the performance of Iterative Learning Control (ILC) schemes. This facility

includes a non-minimum phase component. Secondly, P-Type, D-Type and

phase-lead types of the algorithm have been implemented on the test-bed, results

are presented for each method and their performance is compared. Although

all the ILC strategies tested experience eventual divergence when applied to a

non-minimum phase system, it is found that there is an optimum phase-lead

ILC design that maximizes convergence and minimizes error. A general method

of arriving at this phase-lead from knowledge of the plant model is described. A
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variety of filters have been applied and assessed in order to improve the overall

performance of the algorithm.

1 Introduction

Iterative Learning Control (ILC) is a control method that is applicable to sys-

tems which perform the same action repeatedly. Operating in this way it is able

to use past control information such as input signals and tracking errors in the

construction of the present control action. This sets ILC apart from most other

control techniques and has allowed it to provide improved performance with

reduced knowledge of the plant when compared with other control approaches.

Practical testing of ILC algorithms has generally been performed in order to

validate a single algorithm as part of a theoretical development. Exceptions to

this occur in publications reporting experimental work, but these often do not

justify the choice of algorithm used, or are in such specific areas as to preclude

the use of more general ILC methods. It is the aim of this research to investi-

gate and critically compare using experimental data a variety of ILC algorithms.

This paper deals with the simplest methods that, as well as providing a refer-

ence point for more advanced algorithms, play an important role in ensuring

the widespread acceptance of this approach to control systems design.

One of the first ILC algorithms was proposed by Arimoto, Miyazaki and Kawa-

mura [1], and consisted of a correction term comprising of some measure of the

error from the same instant in the previous trial.

uk+1(t) = uk(t) + Γek(t) (1)
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Where Γ is the learning gain, uk(t) is the control signal at the kth iteration

while ek(t) = yd(t)−yk(t) is the tracking error. Here, time t ∈ [0, T ], where T is

known and finite. Another of the original continuous-time algorithms considered

was the so-called D-type Algorithm proposed by the same authors [2], in which

the error derivative is used.

uk+1(t) = uk(t) + Γėk(t) (2)

Much work has been done extending the proof to various types of system, pro-

ducing a discrete version, and establishing bounds on the gain for convergence.

There has followed a process of extending and augmenting the structure of these

early algorithms. Examples of such work include the use of more than one pre-

vious cycle and also higher derivatives as seen in [3, 4, 5]. The former increases

the robustness, as defined by these authors, at the price of convergence speed.

The latter is equivalent to a higher-order approximation of the plant inverse,

and this naturally creates great difficulty in selecting the gains and reduces ro-

bustness. It should, however, reduce the final error bound.

Feedback controllers have been found to be extremely useful in stabilizing the

plant during the process of ILC, and have been included in a variety of positions

within the control structure. Current cycle information achieves the same effect,

but is integral to the update algorithm, as discussed in, for example [6, 7, 8].

Additions to the basic ILC setup have been parameter estimators and filters,

as well as many modifications to deal with time-delays, initialization error, and

uncertainty. Work has also been done to summarise some of the material on

ILC and produce practical guidelines intended to make the simpler laws easy to

use on a wide range of plants [9].

The following section describes the non-minimum phase experimental test-bed
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and approach to system modelling. Section 3 focuses on the feedback controller.

Sections 4 and 5 evaluate the performance of P-type and D-type algorithms re-

spectively, while section 6 proposes and assesses phase-lead ILC. Sections 7 and

8 use both causal and non-causal filters to improve the algorithm’s performance.

Conclusions and further work are given in section 9.

2 Experimental design

The experimental apparatus was chosen to be non-minimum phase since this

characteristic has presented difficulties throughout the history of ILC. Advanced

techniques that are proven to handle this type of system, or are formulated es-

pecially for it, exist but are generally complex. To fully justify their use, the

practical failure of simple algorithms must be established and this is an area

which has received little attention.

The plant has been designed to be linear time invariant (LTI) so as to increase

the range of applicable algorithms; it is expected that a certain amount of non-

linear behaviour will arise in the real world - enough for appreciable use by

non-linear algorithms. There will inevitably be measurement noise and distur-

bances which will benefit from robust approaches, and certain other control

challenges will be afforded by the motor’s and inverter’s characteristics. The

non-minimum phase characteristic was obtained by means of an electrical ana-

logue which could be realized mechanically with just an inertia, a damper, a

torsional spring, a timing belt, pulleys and gears. This is shown schematically

in Figure 1, in which the gearing on the right reverses the direction of rotation

whilst the timing belt on the left maintains it. Two spring-mass-damper sys-
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tems have also been constructed which can be inserted before the non-minimum

phase component in order to increase the relative degree and system complexity

for future ILC research, but are not used in the work described here.

Component values for the inertias J and Jg, the gearing G, the spring K and

damper B were chosen using simulations to produce a relatively stable system

with a large amount of error when following a demand. The entire system is

shown in Figure 2 with the non-minimum phase section located in the upper

left corner of the test-bed.

Two 1000 pulse per revolution encoders record position at the motor shaft and

the system output. A DEVA 004 motion control card processes this information

and increases their resolution to the equivalent of 4000 pulses per revolution.

A standard squirrel cage induction motor supplied by an inverter, operating in

variable voltage variable frequency (VVVF) mode, drives the load. A PC is

used to control the system and the software so far developed is capable of im-

plementing a large number of ILC schemes within a single executable program.

The package that has been developed uses a Graphical User Interface (GUI)

similar to other mathematical programming environments, and uses specially

designed ILC subsystems that use traditional ILC notation, each being capable

of using every present and past signal. The system is sampled at 2.5 KHz.

Two approaches have been used to model the system. The first is a time-based

simulation approach which involves deriving theoretical expressions for groups

of components which are then verified against experimental data. The resulting

simulation is then used to model the effect of algorithms before they are applied

to the system. The second, frequency-domain model, is less accurate but can be

used with classical techniques to derive and analyse ILC algorithms. A linear
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model was fitted to the Bode plot obtained by frequency tests on the plant. The

plant transfer function of the linear model is

Gstage1(s) =
123.853× 104(3.5− s)

(s2 + 6.5s + 42.25)(s + 45)(s + 190)
(rads−1v−1) (3)

The experimental test facility has been used to evaluate the performance of

three simple structure ILC algorithms. The results obtained are presented and

discussed in the remainder of this paper.

3 PID Tuning

A feedback controller may be used in order to stabilize the plant prior to the

use of ILC. For this work a PID controller was implemented and initially tuned

using the Zeigler-Nichols method but this was found not to produce satisfactory

results, especially when using rapidly changing demands. The tuning procedure

was therefore conducted experimentally using a program that ran a given de-

mand and recorded the error using a cost function, Jk, that consisted of the

sum of the modulus of the error at every sample instant, i.e

Jk =
N∑

i=1

|yd(i)− yk(i)| (4)

Where N is the number of samples in a single trial. Minimising this with respect

to the PID gains produced extremely oscillatory results and therefore the cost

function was amended to

Jk =
N∑

i=1

|yd(i + γ)− yk(i)| γ = 1, 2, . . . N − i (5)

This permits the demand to be shifted relative to the output and therefore the

process of minimization ensures that the output is tuned to follow the shape of
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the demand, whatever time delay that incurs. This was tuned for a sinewave and

two repeating sequence demands using three different unit rates. The slowest

version of each demand is shown in Figure 3. In the remainder of this paper

the repeating sequence demands b) and c) will be referred to as R1 and R2

respectively.

4 P-Type ILC

The algorithm is given in its discrete form at sample i by Equation 6, where a

sample delay is required to counter the one time step delay through a differential

equation when fed by a zero order hold. Since uk is initially equal to the demand

yd, this equation can be interpreted as the demand for trial k + 1 being made

from the original demand plus the integral of all the errors up to and including

trial k.

uk+1(i) = uk(i) + Γek(i + 1) (6)

ek(i) = yd(i)− yk(i)

Normalised Error (NE) has been used as a measure of how well the demand is

followed. This is calculated according to Equation 4 for each trial but this value

is then divided by the same equation with yk(i) = 0 so that the NE counteracts

the misleadingly large error of a long demand profile. The demand profile is

positional but the tests are stopped when the output velocity makes it unsafe

to continue.

Figure 4 shows the normalized error against the number of trials, for a sinewave

demand at 10 Units Per Minute (UPM). The initial error is very large but

is gradually reduced as the number of trials increases, thereby demonstrating
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the benefit of well-designed ILC. As expected, divergence occurs as the trials

continue. Reducing the gain Γ leads to a slower rate of convergence but it

also takes far longer before divergent performance becomes significant. Similar

results were obtained for higher unit rates and the repeating sequence inputs.

Three important influences on performance were observed:

• As the unit rate is increased the number of trials until instability (Tins)

decreases and the minimum error (NEmin) increases

• For repeating sequences and high unit rates Tins decreases and NEmin

increases

• After a certain value is reached, the effect of further decreasing the gain

does not result in any further decrease in NEmin

Figure 5 shows results from the trial which performed the best; a sinewave at 10

UPM. The output before learning, ‘PID output’, is included for comparison and

is shown to significantly lag the demand. The updated demand is the value of uk

for the cycle shown. Use of P-Type ILC removes the lag of the output but the

original demand is not followed well. The updated demand is very oscillatory.

Figure 6 shows how the error evolves for a 10 UPM sinewave input by showing

the output at every 10th trial. Instability is manifested by large oscillations in

the output. This is characteristic of all the results seen.

5 D-Type ILC

The discrete D-Type algorithm is given by Equation 7, in which T is the sam-

pling period.

uk+1(i) = uk(i) + Γ(ek(i + 1)− ek(i))/T (7)
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Figure 7 shows how the cycle error changes as the trial number increases. Sim-

ilar results were again obtained for increased unit rates and for the repeating

sequence demands. The same observations as noted for P-Type concerning

changing the gain, unit rate and demand are again relevant. Comparing D-

Type to P-Type ILC also reveals some important features:

• The value of Tins is significantly reduced for all demands, especially those

at high unit rates

• The value of Emin is slightly reduced for all demands, more so for repeating

sequences and higher unit rates

Therefore D-Type ILC is found to improve the error at the expense of the sta-

bility. Figure 8 shows the signals from the trial with the optimum performance,

again with the PID output (equal to the output at trial 0) shown as a reference.

The output oscillates around the demand, but at the expense of a highly os-

cillatory updated demand. The demand also suffers from a large amount of

noise due to the differentiation of the error. Figure 9 shows how the output be-

comes unstable as the trial number increases due to increasingly high amplitude

oscillations. This is a feature common to all the results recorded.

6 Phase-lead ILC

Both P-Type and D-Type algorithms use some measure of the error signal in the

previous trial at one sample instant ahead of the correction. Although several

algorithms have been proposed which use some measure of the error from a

greater number of sample instants ahead, they generally use only a very small

number of samples [10], or enough samples to remove an explicit delay in a
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system prior to implementing an ILC controller as in [11]. There has been some

discussion relating to the control law shown in Equation 8 with regards to the

phase-lead, λ, which provides the best performance [9, 12].

uk+1(i) = uk(i) + Γek(i + λ) (8)

Practical work [13] has been conducted in which λ was assumed to be the number

of samples which, when shifting the demand forward, minimized the difference

between the demand and the system output, this type of ILC is referred to as

Delay-Type ILC in this paper.

Figure 10 shows error results for a sinewave demand at 10 UPM. Instead of

different gains, the graph shows a variety of phase leads. When λ = 0, phase-

lead ILC equates to P-Type ILC. At another phase-lead it equates to Delay-Type

ILC, for the 10 UPM demand this delay equals 3100 samples. Figure 10 shows

that this is not the optimum delay and furthermore, for the repeating sequence

and variety of unit rates the delay calculated, is never found to be optimum

(even though it varies from 2225 - 3635 samples depending on the demand).

The experiments comprising Figure 10 were conducted over 400 cycles. Figure

11 helps illustrate the way in which more challenging demands effect the system

performance. The choice of phase lead required for convergence is narrowed and

Tins severely reduced.

The results from all the demands, each for several choices of gain, show that

certain features are consistently true:

• Phase-lead ILC outperforms P-Type and D-Type by over 20 times in terms

of NEmin

• The optimum phase-lead does not change when the demand is altered and
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is approximately 1500 samples

• The effect of changing the gain, unit rate and demand is consistent with

comments made previously

In order to explain this lead, it is necessary to consider the typical impulse re-

sponse of various systems, as detailed in Figure 12.

The first shows a generic first order response, the second a higher order response,

and the third is the response of the non-minimum phase system considered in

this paper. If the response were to be so simplified as to be, itself, a single

impulse, they would occur at 0, m and n seconds for a), b) and c) respectively.

Therefore the most accurate single impulse model of the inverse of these systems

occurs at the times 0, m and n seconds before the output. Although this is an

imprecise inversion, it approximates the method by which the simple structure

algorithms function. P-Type ILC works well on first order systems because they

have the property that the error at sample i is most directly due to the input

at the same instant. The success of phase-lead ILC is therefore evident; if the

time taken for the maximum impulse response peak can be found and used as λ

in the phase-lead law, then it should be as successful as P-Type is for first order

systems. Unfortunately this is not the case. The value n for the non-minimum

phase system is found to be 1950 samples using the system model, well above

the experimentally achieved optimum of 1500. When modelling phase-lead ILC

on higher order systems, the optimum in terms of both convergence speed and

minimum error has also consistently been found to be slightly below the value

of m. The minimum error is also never zero, and divergence always occurs.

Choosing the phase-lead in accordance with the maximum impulse response

value is a simplification of a more general update: the case in which corrections
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are made at all sampling instants before the error, and the amount of correction

dictated by the magnitude of an impulse response produced by the correction

point at the error. In order to remove an error, corrections are made at every

point that could possibly have been responsible for the error. The correction

is equal to the error multiplied by a gain multiplied by this ‘measure of re-

sponsibility’ for the error. If only the single ‘most responsible’ of data points is

considered, this method is the same as the phase-lead law described. This gen-

eral method effectively reflects the impulse response in the time axis, and uses

it to approximate the impulse response of the plant inverse. This is of course

fundamentally flawed as the impulse that would be generated at the correction

point is not an impulse at all.

Figure 13 shows data recorded during the best performing cycle of phase-lead

ILC. The demand is followed closely, although the updated demand is quite

oscillatory.

Figure 14 shows how the output signal changes as the number of trials increase

up until the maximum convergence of the test. Data from other experiments

shows that oscillations go on to grow in the updated demand and in the output

until their velocity becomes too great for the testbed.

The failure of phase-lead ILC to converge to zero and remain there can, however,

be explained. Figure 15 illustrates the failure mechanism that occurs when using

phase-lead ILC; oscillations of a certain frequency grow gradually until they force

the output position, and hence velocity, to become unmanageable. Analysis of

results using different gains and phase-leads yields the following conjecture:

• The frequency of the destabilizing oscillations (f) is only dependent on

the phase-lead used, and can be estimated using
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1
f

( 6 f − 180) =
λ

fs
(9)

where 6 f is the phase-lag at f and fs the sampling frequency. This states that f

is the lowest frequency that can be propagated by the phase lead λ, and Figure

16 illustrates how this occurs.

If q represents an instant of an oscillatory new demand input, it will directly

affect the value r of the output (with some gain change). If r is larger than the

originally specified demand then, by the nature of phase-lead ILC (with lead λ),

q will be made increasingly negative. This only succeeds in increasing r in the

next trial. The growth of the oscillations in the updated demand is a function

of the gain, Γ, and the magnitude of the gain at f .

Figure 17 shows how the phase-lead oscillations can be predicted from the Bode

plot of the system. Equation 9 is plotted for a range of phase-leads and their

intersections with the phase plot show the frequencies of instability that would

arise. Since, for the system considered here, instability is caused by the output

velocity, then the gain plot of sG(s) should be examined instead of the gain plot

of G(s). This shows that as the phase-lead reduces from 2500 to 1250 samples,

the gain of the velocity decreases from 1.5 to 0.63. This explains why the opti-

mum lead is reduced from 1950 to 1500 samples; there is a compromise between

the rate of learning and the rate of increase in the magnitude of oscillations

caused by phase-lead ILC. Figure 18 shows the inability of phase-lead ILC in

coping with rapidly changing demands, a shortcoming which motivates the use

of the filters in the following sections. Even with the optimum phase-lead, the

R2 demand cannot be followed accurately for very many trials. Whilst instabil-

ity can occur rapidly, Figure 19 shows how closely the output matches the 20

UPM R2 demand before the previously described oscillations cause instability.
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7 Causal Filters

A filter can either be applied to the error, seen in Equation 6, or to the input of

the plant, uk+1. The only difference is whether the demand itself is filtered, the

effect of which will later be investigated. The open-loop system will therefore be

considered to be the plant G(s) in series with the filter, F (s). The simplest way

to reduce the destabilizing oscillations that have been observed is to use a causal

low-pass filter to reduce the magnitude of the Bode plot of F (s)G(s) at the

frequency of oscillation. The act of adding a causal filter to the plant, however,

changes the phase plot of the system and therefore the frequency at which a

given phase-lead intersects with it. Furthermore, it is likely that the impulse

response of the system will change also. It is therefore an iterative process to

design a causal filter for use with phase-lead ILC. Firstly a cut-off is selected

below the frequency of unstable oscillations, and a class of filter to implement

it. The usual criteria of a sharp cut-off and minimal phase-lag are favorable,

although, as yet it is not clear as to their relative importance. Little emphasis

has been placed on ripple in the stop-band. The impulse response of F (s)G(s) is

then obtained and the number of samples to its maximum determined. A Bode

plot of F (s)G(s) is drawn together with a line representing those frequencies that

can be propagated by a phase-lead of the number of samples calculated, in the

same manner as that shown in Figure 17. The frequency of unstable oscillations

is found by the intersection of this line with the phase plot. This frequency

should correspond to the local minima seen on the magnitude plot caused by

the filter. This ensures that no undue magnitude (and hence bandwidth) has

been sacrificed below the unstable frequency. For a given filter it also ensures

that no additional low frequency lag has been added other than what is necessary
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according to the filter chosen. If no such correspondence occurs, the cut-off must

either be moved slightly, or the filter order changed in order to produce more

lag and the design process repeated.

Three causal filters have been designed and tested on the system. The first is a

5th order Chebychev lowpass filter with a cut-off of 2.5Hz, and 270◦ phase-lag

and 60dB attenuation at the unstable frequency. This filter is a compromise

between sharpness of cut-off and lag. The second filter is more aggressive with

an extra 90◦ lag but an additional 22dB attenuation centered on the unstable

frequency. The third filter is a 4th order Butterworth bandstop filter which has

been selected for its high attenuation over a very small range of frequencies.

The attenuation of 60dB is centered on the unstable frequency at a cost of just

90◦ lag beforehand. This filter was designed in order to maximize the system

bandwidth whilst still reducing the effect of the unstable frequency.

Figure 20 shows an unexpected and illuminating effect observed when using

the bandstop filter; there appears to be at least two higher frequencies than

the unstable frequency which also progressively increase in magnitude as the

cycle number increases. The figure suggests, and a frequency analysis confirms

it, that along with the unstable frequency identified using Equation 9 and a

Bode plot of F (s)G(s), there are two other unstable frequencies. The unstable

frequencies are 2.3, 2.65, and 5.2Hz. These can readily be explained if the cause

of the original unstable oscillation (the largest frequency that can be propagated

given the time of the phase-lead) be extended to include all frequencies that can

be propagated. Equation 9 can then be rewritten as

1
fi

( 6 fi − 180(1 + 2i)) =
λ

fs
i = 0, 1, 2, . . . (10)
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where again fi is the ith frequency of oscillation, 6 fi is the phase lag at fi, and

fs the sampling frequency. The first three instability frequencies, f1, f2 and f3,

will be referred to as the primary, secondary, and tertiary frequencies.

Figure 21 shows the Bode plot of F (s)G(s) using the bandstop filter with the

first three phase-lead lines, generated using Equation 10. The gains at the

frequencies of intersection are highlighted on the magnitude plot for clarity.

The primary, secondary and tertiary frequencies are found to be 2.3, 2.68, and

4.8Hz respectively, closely matching those experimental values observed. The

reason for the prominence of these first three unstable frequencies can be seen

from the gain plot; the magnitudes that correspond to these frequencies are all

similar and close to -40dB. It is because the bandstop filter reduces the primary

frequency alone to such a degree that the secondary and tertiary are so visible.

Frequencies higher than the tertiary have been rarely observed due to their high

attenuation.

Further tests have shown that altering the demand profile used does not alter

the findings by any great degree. If the demand contains a sizable component

of one or more of the unstable frequencies then instability progresses sooner,

the updated demand containing components that would have otherwise taken

many cycles to build up. Looking at the frequency components present in those

demand used, shown in Figure 22, it is clear that there are only very small

quantities of these frequencies are present in the demands.

Although only the 20 UPM demands are shown, the 15 and 10 UPM cases

are obtained by multiplying the frequency scale by 0.75 and 0.5 respectively.

Because these frequencies are close to the primary frequency, the filter is best

located at the input to the plant. Results have confirmed that performance is

16



far worse if the demand is left unfiltered. The exceptions to this rule occur when

using non-causal FIR filtering and are discussed in section 8.

The theoretically best lead using the bandstop filter (found from the impulse

response) is 2250 samples. As with the unfiltered case, this is reduced when

carried out in practice due to the higher attenuation of the unstable frequencies

(the phase-lead lines in Figure 21 move to the right), and becomes 1750. Two

extra objectives can now be put forward in order to improve the design of future

causal filters:

• To ensure that the best possible phase-lead, derived from the impulse

response, is as close as possible to that experimentally determined

• To seek to move the intersection of the F (s)G(s) phase plot and the op-

timum phase-lead line further towards the right and thus at a higher fre-

quency

The former task involves reducing the magnitude at the fundamental frequency

(and beyond) sufficiently to allow the convergence and stability advantages of

using the most favorable phase-lead to become more important than the extra

attenuation gained by increasing it. Until this is true instability will always

govern the process. The second task depends on the first; extra lag produced

by a high-order causal filter causes a given phase-lead to give rise to unstable

frequencies which are slightly higher, and therefore more attenuated, than oth-

erwise. Unfortunately a system with more low frequency lag will usually have

an impulse response with a larger number of samples to its maximum value.

The bandstop filter raised the fundamental frequency at optimum lead from

1.66Hz to 1.8Hz, and the two lowpass filters both raise it to 2.3Hz, which helps
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to account for their success. It should also not be forgotten, however, that a

surfeit of lag before the cut-off point will destabilize the system. The two low-

pass filters were designed with these points in mind. The first has a magnitude

plot very similar to the bandpass filter, enabling performance comparisons to

be made in terms of lag and attenuation above the cut-off alone. The second

lowpass filter is similar to the first but with more lag and more attenuation,

enabling comparisons with the first to be made on that basis only.

Figure 23 illustrates the shortcomings of the bandstop filter. Its lower attenua-

tion of the instability frequencies, especially the secondary and tertiary, causes

instability. As discussed, it also has lower instability frequencies than the other

two filters. The superior performance of the second lowpass filter shows that

frequency attenuation is more important than low frequency lag. Instability

frequencies only account for a certain amount in explaining the lack of con-

vergence, and it is has been found that the removal of frequencies below the

primary improves convergence. This is due to two factors;

• The influence of the primary frequency extends a certain amount below

that frequency where, instead of continually growing, it merely disrupts

learning

• High frequencies naturally destabilize the process of learning, more so if

they are present in the demand. This makes intuitive sense since all the

ILC algorithms seen in this paper are effectively built on the notion of a

heavily simplified plant. Attenuating increasingly low frequencies in the

plant is a method of simplifying it. The simplified plant then more closely

matches that required by the ILC algorithm, and learning is improved.
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Without being able to substantially change the unstable frequencies it is im-

possible to separate these two factors. The emphasis for the need of a precise

cut-off is also diminished, the only certain requirement being a large amount of

attenuation at the unstable frequencies.

Figure 24 shows the output of the plant during a very unsatisfactory period of

learning. No unstable frequencies are seen and the phase-lead is the experimen-

tal optimum, although this has only been found to a resolution of 125 samples.

From this and other similar cases it is clear that higher frequencies than those

present in the demand disrupt the learning process, and it may be beneficial to

select a cut-off frequency only marginally above the highest frequency present

in the demand. Since the approximation to the actual plant that exists at the

heart of these simple ILC schemes is most accurate at low frequencies, it is likely

that these techniques are only capable of learning low frequencies. As the trial

number grows, either the integration of the error at each sample caused by this

ILC inaccuracy causes instability, or the instability frequencies overcome the

attenuation which has been imposed on them to cause instability themselves.

Having focused on the inadequacies of phase-lead ILC, Figure 25 shows the

success of the causal filters that have been implemented. For the second low-

pass filter, the learning process is nearly always stable over the 400 cycles that

are undertaken with no divergence seen, and convergence is faster than in the

non-filtered case. This is true for all the demands used.
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8 Non-causal Filters

In order to assess whether additional lag in the system worsens the process of

learning and subsequent stability, it is necessary to examine non-causal filters

in place of the causal ones already tested. The filter design process is simplified

as the oscillation frequencies are unchanged by the addition of the filter. The

maximum impulse response is unlikely to be altered and so the design of the

filter simply involves reducing the gain at these frequencies. Two classes of non-

causal filter have been selected for use; one filter that can be implemented in

batch mode, and one that has no such restriction. Although there are several

techniques available for batch-mode filtering, the zero-phase IIR filter has been

chosen for its simplicity and effectiveness.

8.1 Linear phase FIR filter with offset

A linear phase FIR filter is produced by creating a non-causal filter of order

n, symmetrical about its mid-point(s), and then shifting it n
2

(
n+1

2

)
samples

in order to make it causal. If this last stage is omitted then a zero-phase FIR

filter is obtained which has no limitation on having to be performed in batches.

This price of the non-recursive operation is a very large order compared the IIR

equivalent. Four filters of this type have been implemented, two lowpass filters

and two bandstop. The first lowpass filter is of order n = 2101 and has a gain

of -36dB at the primary frequency, its magnitude before the cut-off is extremely

aggressive, taking a value of -18dB at 0.8Hz. The second lowpass filter has

the same magnitude at the fundamental frequency but only -13dB at 0.8Hz, it

also has greater attenuation at higher frequencies. The first bandstop filter is

of order n = 2325 and has extremely high attenuation at low frequencies. At
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1.6Hz this is -60dB which reduces slightly to -48dB at the primary frequency.

The second bandstop filter has a higher cut-off point making it less aggressive at

low frequencies. At 1.6Hz the attenuation is -13dB, increasing to -38dB at the

primary frequency. Both bandstop filters have similar characteristics above this

frequency, the upper cut-off being 8Hz. The order of these filters approaches the

maximum achievable with the hardware and sampling frequency used, therefore,

although the attenuation is satisfactory, the cut-offs are not sharp. It is also

advantageous that the filter should not be applied on data that is in the process

of being updated, that is n < 2λ.

Figure 26 shows how large attenuation causes slow convergence, the first band-

stop filter taking double the number of cycles to converge in every test per-

formed. Its low frequency attenuation effectively gives it a lower learning gain,

Γ, and increases Tins at the cost of convergence. The effect of aggressive low

frequency filtering extends beyond this, however; the large peaks that occur in

the plots of NE against trial number are much reduced, even below the values

seen in the less aggressive filters with much lower learning gains. This means

that greater low frequency attenuation produces less deviation in the cycle er-

ror. The first bandstop filter is more successful than the first lowpass filter, as,

with a limited order, it is able to supply greater attenuation at low frequencies.

The more aggressive filters are the only ones to allow the test to last 400 cycles

in Figure 26.

Without differences in the phase characteristic confusing the issue, lowpass and

bandstop filters can also be compared. All the results obtained show that per-

formance is determined by the amount of the low frequency attenuation. This

suggests two points:
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• Frequencies above 8Hz play an insignificant role in influencing the perfor-

mance in the tests conducted

• Short term performance is mainly dictated by the magnitude plot of the

system below the primary frequency

Short term performance is taken to include convergence rate and changes in the

cycle error between trials. It differentiates between long term effects such as

unstable frequencies and the effect of integrating high frequency error inherent

in the simple ILC laws. Long term performance is therefore mostly influenced by

the attenuation at the primary frequency and above. Figure 27 illustrates these

points, showing the most successful non-causal and causal filters of those tried.

The non-causal bandstop 1 filter has less cycle error deviation due to its high

frequency attenuation and lack of destabilizing phase-lag. This overcomes the

advantage of the increased instability frequencies that occur when using causal

filters. The less aggressive filters are seen to suffer from divergence during the

test.

8.2 Zero-phase IIR filter

A filter is designed in the normal way, but is run back and forth along a section

of either the error or the ILC input to the plant. Unless the signal is divided

into sections of less than N−λ
2 samples in length (where N is the samples per

trial) and each one filtered separately, there will be insufficient time between

the signal being recorded and the need for its use in the input to the plant.

This length can be increased by using sections that overlap, and filtering them

in parallel. This, however, only increases the allowable batch size to N − λ

samples. Because the ends of each batch are subject to error in the filtering
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process, which causes them to recombine imperfectly, a longer batch length is

desirous. However, longer sized batches have the effect that there is at least a

cycle’s duration between the error being recorded and its use. It will be seen

that this causes problems as well as very slow convergence. In order to increase

convergence speed, it is tempting to allow learning to recommence whilst a sec-

tion of the error is being filtered. This means that the error will then form

the update that follows on from a different input to the one which caused it.

Experiments have shown that this always leads to large oscillation of the cycle

error and no further convergence. Therefore two methods have been used which

keep the same input to the plant during the filtering process. The first filters

a single cycle-length of error as it arrives, then repeats the input while it is

filtered in reverse. The error is extended in both directions to avoid transients.

Convergence is twice as slow due to the cessation of learning. Learning must be

halted during the reverse filtering stage as it would then form half of the next

update and thus, in part, create the cycle error oscillations described. The sec-

ond method takes lengths equal to three cycle-lengths and forward and reverse

filters them in the same manner. The input is held for six cycles and only the

middle cycle-length of error is used in the learning process. This helps reduce

the filtering transients. The filter that has been used with these methods has a

cut-off of 1.5Hz, following recommendations made in the last section. The small

cut-off frequency/Nyquist frequency ratio has limited the filter order available

for the class of filter chosen, and the cut-off is not ideal. The attenuation, how-

ever, will be double due to the dual filtering.

Figure 28 shows results obtained using the two methods of non-causal filtering

with a zero-phase IIR filter that have been described. The best result obtained
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with an FIR filter has been included for comparison. Figure 29 shows results

obtained with the same filters, but using a different demand.

The results show that batch mode filtering processes are ill-suited to ILC imple-

mented in repetitive form (with no resetting of initial conditions). Despite large

attenuation, their performance leads to transitory cycle error, especially with

high unit-rates and challenging demands. This is made more obvious when it is

remembered that the triple segment IIR filter used only updates every 6 cycles,

and the single segment, every two. Discrepancies that arise at the extremities

of the system output for a fixed demand are the cause of these irregularities.

The updates fit together imperfectly and cause oscillations. The value of Emin,

however, is in some cases the lowest seen due to the choice of the cut-off fre-

quency. It was found that the IIR filter’s performance was improved in terms

of less transient cycle error when the demand was not filtered. This differs from

all the other tests performed in this respect, and is a consequence of both its

increased attenuation, and ability to make corrections only every 6 cycles.

9 Conclusions and Further Work

Phase-lead ILC has been found to out-perform both P-Type and D-Type ILC

when applied to the non-minimum phase test-bed described in this paper.

Phase-lead ILC has been examined and reasons for its success, and indeed

failure, have been put forward. A method of arriving at the phase-lead that

produces the best performance has been proposed, using knowledge of the plant

model. This also helps predict the likely success of the P-Type algorithm on a

given plant. The existence and effect of unstable frequencies caused by phase-
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lead ILC has been discussed and a method of predicting their value and harm-

fulness given. A number of both causal and non-causal filters have been tested

and design procedures described in order to maximize performance. The role of

attenuation of various frequencies has been discussed and results presented to

illustrate the conclusions drawn. Results have indicated that demands can only

be learnt up to a certain frequency. It has also been seen that, due to unstable

frequencies, stability of phase-lead ILC cannot be assured as the cycle number

progresses. It is therefore necessary to combine the process with a mechanism

that halts the learning process when a certain level of error has been achieved.

It would then be restarted when the cycle error dictates that a change in the

system dynamics has occurred. Although this is a regrettable situation, the

great success of the simple ILC schemes shown should help compensate for it.

Further work will concentrate on the application of simple structure ILC algo-

rithms on more complex non-minimum phase systems.

References

[1] S. Arimoto, F. Miyazaki, and S. Kawamura. Bettering operation of dy-

namical systems by learning: A new control theory for servomechanism or

mechatronics systems. In Proceedigs of the 23rd Conference on Decision

and Control, pages 1064–1069, December 1984.

[2] S. Arimoto, F. Miyazaki, S. Kawamura, and S. Tamaki. Learning control

theory for dynamical systems. In Proceedings of the 24th Conferenece on

Decision and Control, pages 1375–1380, December 1985.

25



[3] H. Ahn, C. Choi, and K. Kim. Iterative learning control for a class of

nonlinear systems. Automatica, 29(6):1575–1578, 1993.

[4] Z. Bien and K. Huh. Higher-order iterative learning control algorithm. In

IEE Proceedings, volume 136, pages 105–112, May 1989.

[5] M. Norrlof and S. Gunnarsson. A frequency domain analysis of a second

order iterative learning control algorithm. In Proceedings of the 38th Con-

ference on Decision and Control, pages 1587–1592, December 1999.

[6] T. Kuc, J. Lee, and K. Nam. An iterative learning control theory for a

class of nonlinear dynamic systems. Automatica, 28(6):1215–1221, 1992.

[7] Y. Chen, J. Xu, and T. Lee. Current iteration tracking error assisted

iterative learning control of uncertain nonlinear discrete-time systems. In

Proceedings of the 35th Conference on Decision and Control, pages 3038–

3043, December 1996.

[8] Y. Chen, C. Wen, and M. Sun. A robust high-order p-type iterative learning

controller using current iteration tracking error. International Journal of

Control, 68(2):331–342, 1997.

[9] R. W. Longman. Iterative learning control and repetitive control for engi-

neering practice. International Journal of Control, 73(10):930–954, 2000.

[10] D. Wang. On d-type and p-type ilc designs and anticipatory approach.

International Journal of Control, 73(10):890–901, 2000.

[11] K. Park, Z. Bien, and D. Hwang. Design of an iterative learning controller

for a class of linear dynamic systems with time delay. In IEE Proceedings

- Control Theory Applications, volume 145, pages 507–512, Nov 1998.

26



[12] S-L. Wirkander and R. W. Longman. Limit cycles for improved perfor-

mance in self-tuning learning control. Advances in the Astronautical Sci-

ences, 154:763–773, 1999.

[13] A. Barton, P. Lewin, and D. Brown. Practical implementation of a real-

time iterative learning position controller. International Journal of Control,

73(10):992–999, 2000.

27



2

2

JB

K
J

o

i

g

G

Figure 1: Mechanical realization of non-minimum phase component

28



Figure 2: Entire mechanical testbed
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their optimum phase-lead and Γ = 0.1
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