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Abstract

We introduce Embodied Evolution (EE) as a new methodology for evolutionary robotics (ER). EE uses a population of
physical robots that autonomously reproduce with one another while situated in their task environment. This constitutes a
fully distributed evolutionary algorithm embodied in physical robots. Several issues identified by researchers in the evolu-
tionary robotics community as problematic for the development of ER are alleviated by the use of a large number of robots
being evaluated in parallel. Particularly, EE avoids the pitfalls of the simulate-and-transfer method and allows the speed-up
of evaluation time by utilizing parallelism. The more novel features of EE are that the evolutionary algorithm is entirely
decentralized, which makes it inherently scalable to large numbers of robots, and that it uses many robots in a shared task
environment, which makes it an interesting platform for future work in collective robotics and Artificial Life. We have built
a population of eight robots and successfully implemented the first example of Embodied Evolution by designing a fully
decentralized, asynchronous evolutionary algorithm. Controllers evolved by EE outperform a hand-designed controller in a
simple application. We introduce our approach and its motivations, detail our implementation and initial results, and discuss
the advantages and limitations of EE. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Vision

Our work is inspired by the following vision. A
large number of robots freely interact with each other
in a shared environment, attempting to perform some
task—say the collection of objects representing food
or energy. The robots mate with each other, i.e.,
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exchange genetic material, producing ‘offspring’ con-
trol programs that become resident in other members
of the robot population. Naturally, the likelihood of
a robot producing offspring is regulated by its ability
to perform the task or collect ‘energy’. Further, there
is no need for human intervention either to evaluate,
breed, or reposition the robots for new trials.

This vision, to our knowledge first described by
Husbands et al. [1], aspires to an ideal where the robot
population evolves in a completely hands-free and
autonomous manner; in so doing, it offers intriguing
possibilities for the future of evolutionary robotics
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Fig. 1. Embodied Evolution is an evolutionary robotics method-
ology that embodies a distributed evolutionary algorithm within a
population of real robots.

(ER). Nevertheless, many substantial technological
demands are made by this conception of robot evo-
lution, and considerable algorithmic detail must be
added before it is implementable.

We have developed this vision into a working
implementation and have termed our methodology
Embodied Evolution(EE) [2,3]. By this we mean
that the evolutionary process itself has no central lo-
cus of control, and is distributed in a population of
robots—not merely that each robot has a physical
body. Accordingly, we define EE as evolution tak-
ing place within a population of real robots where
evaluation, selection, and reproduction are carried
out by and between the robots in a distributed, asyn-
chronous, and autonomous manner. Thus, EE follows
the principles of organization outlined by Brooks [4].
As Fig. 1 shows, we distinguish Embodied Evolution
from ER methods that use simulated trials, and also
from methods that use embodied trials (the evaluation
of candidate controllers on real robots) where either
(a) only one or a small number of real robots are used
[5–8], or (b) the evolutionary algorithm maintains and
manipulates the specifications of individual agents in
a centralized manner. We wish to create a popula-
tion of physical robots thatevolve autonomously(as
well as perform their tasks autonomously), using a
distributed evolutionary algorithm.

1.2. Motivation

The following three areas each contribute to the
motivation of our Embodied Evolution experiments.

1.2.1. An Artificial Life experiment
The vision of Embodied Evolution described above

is largely inspired by experiments in Artificial Life.
In natural evolution the adaptive mechanism is com-
pletely decentralized and distributed: evaluation is im-
plicit and reproduction is carried out autonomously by
the agents in the population. This contrasts with the
common practice of artificial evolution, where repro-
duction is performed by some centralized authority.
The Artificial Life literature provides several exam-
ples of simulated systems where agent behavior and
reproductive activity are integrated together [9–12]. In
these systems, agent behavior either impacts reproduc-
tion directly, or, in some cases, is synonymous with
reproduction. These experiments enable researchers to
explore the critical effects that result from the merging
of reproductive behavior with other behaviors.

In contrast, ER experiments that use physical robots
have not been able to integrate reproduction with other
autonomous behaviors. Although some evolutionary
robotics research has used real robots for evaluation
of individuals, the evolvingpopulation is virtual—a
set of controllers centrally stored either off-board or
on-board—and so reproduction cannot occur between
two robots. A significant motive for our EE research
is to implement, in a population of real robots, arti-
ficial evolution using the distributed and autonomous
properties of natural evolution. We wish to employ
autonomy and distributed control not only in the task
behavior of robots, but in their adaptive mechanism as
well.

1.2.2. An evolutionary robotics methodology
Mataric and Cliff [13] identify several key problems

with existing ER methods, such as simulator fidelity,
or, when using real robots, evaluation time, and hard-
ware robustness. Many efforts to deal with simulator
fidelity exist, for example, the work of Jakobi [14,15].
In contrast, our intent here is to examine ways to
use real robots that avoid incurring prohibitively long
evaluation times and problems with hardware robust-
ness. We argue below that one way to ameliorate the
concerns of time and robustness, while avoiding the
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difficulty of simulation fidelity, is to use what we
will term embodied trials in parallel(ETP)—that is,
the parallel evaluation of a large number of evolving
controllers on a large number of physical robots. Gen-
erally, the more robots available, the more evaluations
can be done in parallel, and the better the speed-
up. Additionally, such parallelization makes hardware
robustness less critical than when using a single robot,
and, of course, using real robots precludes the need
for a simulator. However, the parallelization of the
evaluation procedure converts costs in fidelity, time,
and robustness to costs in hardware duplication and
coordination. The economics involved in this balance
determines whether ETP provides a net gain. The
optimal number of robots to use in a particular case
is affected by this balance, as well as a number of
other factors, such as robot-to-robot interference (dis-
cussed below), and the normal issues of population
sizing in evolutionary algorithms, such as diversity
and convergence rates [16].

Embodied Evolution uses the ETP approach: EE
presumes a large number of robots, each simultane-
ously evaluating a controller. But, additionally, EE
employs a distributed evolutionary algorithm. Though
embodied trial in parallel are, to some extent, feasible
using a centralized evolutionary algorithm, scaling
issues regarding coordination persist in principle;
moreover, centralized ETP is not fundamentally dis-
tinct from conventional ER approaches. Specifically,
centralized ETP is merely the marriage of existing
ER work that uses a small number of real robots with
existing EA work that farms the evaluation of indi-
viduals to parallel processors. In contrast, Embodied
Evolution using parallelized embodied trials coupled
with an evolutionary algorithm that is distributed
throughout the population of robots—with no cen-
tralized component—is both inherently scalable and
methodologically novel.

1.2.3. Opportunities for interactive and collective
tasks

Our most intriguing, yet currently unexplored, mo-
tivation for EE arises from the fact that, since EE
uses a distributed EA in a population of real robots,
it may provide an effective way to investigate interac-
tive and collective tasks. Pursuit and evasion, and col-
lective foraging are but two examples of domains that
would naturally be amenable to the use of EE. Also,

EE provides interesting opportunities for experiments
that investigate the interaction of reproductive behav-
iors and task behaviors. We develop these points in
Section 4.

1.3. Paper outline

Our first motive, outlined above, is essentially an
issue of curiosity, but the latter two motives warrant
additional detail—this follows in Sections 2–4. Sec-
tion 5 summarizes the suitability and utility of the
EE approach. Section 6 describes our implementa-
tion of EE. Section 7 describes our experiments and
presents results that show the first proof-of-concept
for EE. Finally, Section 8 outlines some caveats re-
garding our approach, followed by conclusions in
Section 9.

2. Embodied trials in parallel: a response to
challenges in evolutionary robotics

As an alternative to the hand design of robotic con-
trollers, evolutionary robotics [5,17,18] has generated
a great deal of exuberance. While expected by many
to emerge as an important technology [19], ER is cur-
rently a new research area in which a number of po-
tentially serious problems are known to exist. Mataric
and Cliff’s [13] comprehensive summary of the chal-
lenges that face evolutionary robotics attracted consid-
erable attention in the ER community. The issues they
raise ultimately question whether ER techniques can
produce a net savings of human effort when applied
to complex robotic domains.

Our continued investment in developing ER tech-
niques, and the EE methodology in particular, is done
with the belief that problem domains of interest will
soon be, if they are not already, too difficult for the
hand design of solutions; indeed, the seminal work in
evolutionary robotics was done with this realization
in mind [18]. That evolutionary techniques have the
potential to find unexpected, yet effective solutions is
their real promise.

Nonetheless, for further progress to occur in ER,
we must at least address the issues Mataric and Cliff
discuss. Here we present these issues and argue that
one way to alleviate them is to use Embodied trails in
parallel.
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2.1. Simulation

• “The difficulty of accurately simulating physical
systems is well known in robotics.” [13, p. 76]

• “As the complexity of robotic systems grows and
the gap between the simulation and the real system
widens, the question of the value of investing in
a specialized simulation will become increasingly
important.” [13, p. 76]

The use of simulation in ER is a common and valu-
able approach. When appropriate simulators are avail-
able, they can offer fast evaluation, and they do not
suffer from the problems of power delivery and phys-
ical robustness, which are often problematic when
using real robots (as we discuss below). However,
Mataric and Cliff, in agreement with Brooks [20], raise
the concern that a lack of simulation fidelity can lead
to problems oftransference, where robotic controllers
that evolve in simulation are unable to perform ef-
fectively when transferred to real robots because they
exploit features of the simulator that are not found
in the physical world. They argue that this problem
is magnified as the system to be modeled becomes
more complex. Realistic models of physical worlds re-
quire significant engineering effort [21–23]. Even vir-
tual worlds that are not intended to faithfully model
the real world can become complex and difficult to
create [24,25].

More recently Jakobi has devised a method to
provably eliminate transference risks from the design
of a simulator, but only provided that environmental
factors sufficient for enabling correct behavior are
known a priori [14,15]. This allows the environmental
factors that are not salient to the robot’s behavior, or
that cannot be modeled accurately, to be masked with
noise, which minimizes the computational require-
ments of the simulation and prevents the evolution
of behaviors that depend upon inaccurate features of
the simulation. However, as environments continue to
become more complex (for example, if they involve a
multiplicity of robots, or robots with high-resolution
sensory apparatus such as vision), the critical environ-
mental factors will become more difficult to ascertain,
more difficult to model, and more computationally
expensive to simulate, arguably to the extent that
simulation is prohibited.

One approach to alleviate the concerns of simu-
lator fidelity is to not use a simulator—to conduct

evaluations on a real robot [6,26]. Obviously, with
respect to the properties of the robot itself, embodied
trials have perfect fidelity and the problem of trans-
ference is side-stepped completely. With respect to
the properties of the environment in which trials take
place, the use of a physical environment removes the
difficulties of accurate modeling and the computa-
tional expense of simulation. In short, “the world is its
own best model” [4]. The physical environment used
for embodied trials may be one and the same as that in
which the robots are ultimately deployed. But, if this
is not the case, then the use of embodied trials still
requires care in identifying the critical environmental
factors, such that transference from the physical test
environment to the physical deployment environment
is successful. Though this difficulty should not be un-
derestimated, the problem of modeling these factors,
once identified, is an additional burden for the simula-
tion approach. In these respects, embodied trials offer
clear advantages over the use of simulation. However,
evaluations on real robots can be time consuming.

2.2. Time

• “Evolution on physical systems takes prohibitively
long.” [13, p. 76]

• “[Consider a problem of]. . . five free parameters,
each of which is tested with four different values,
[and where]. . . each trial takes 15 s [seconds]. . .

With a population of size 100. . . the 100th gener-
ation will finish in roughly five years.” [13, p. 80]

The issue of time raised by Mataric and Cliff is in
contrast to the (supposed) speed of simulation. Though
simplifying assumptions and stochastic approxima-
tions minimize simulator complexity, they do not elim-
inate it; a sufficiently complex environment can still
cause simulation to run slower than real time. Trials
on real robots, although they may be slower than ap-
proximate models of simple domains, are never slower
than real time and they have perfect fidelity.

Nevertheless, serial evaluation of candidate robot
controllers on a single robot can take a very long time
indeed. Hardware parallelization can alleviate this
concern for both simulated and embodied approaches.
Even in Mataric and Cliff’s example scenario above,
which they characterize as “exaggerated”, a popula-
tion of 100 physical robots reduces five years to 18
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days (dividing five years by population size). How-
ever, where virtual robots perform interactive tasks
in a simulated shared environment, parallelization
is not trivial: for example, collision detection and
mutual-sightedness can easily incur high computa-
tion costs. Parallelization in physical robots, however,
accommodates shared environments and interactive
tasks naturally.

Thus, concerns over simulation fidelity and evalua-
tion time combine to direct us towards the use of em-
bodied trials in parallel. As we point out above, the
time savings gained by the ETP approach obviously
come at the cost of significant hardware duplication.
Yet, as large-scale multi-agent domains become in-
creasingly important arenas of research, large num-
bers of robots will become commonplace; ETP is a
straightforward way to exploit the ubiquity of hard-
ware as it becomes available.

2.3. Power

• “The unavoidable need to recharge robot batteries
further slows down the experimental procedure.”
[13, p. 76]

The issue of power pervades robotics. Battery power
is able to sustain a robot only for a period on the order
of hours, often no more than two or three [20]. Longer
periods of uninterrupted power can be achieved by ei-
ther tethering a robot directly to a power source [27],
or by providing battery recharge stations for the robot
to visit periodically. Nevertheless, tethers easily tan-
gle with only a few robots, and recharge stations can-
not be made transparent with respect to the robotic
task, as they force robots to interrupt their activity for
non-trivial amounts of time.

However, though the issue of power continues to
raise problems, we do not view it as a fundamental
restriction to ER. There are, at least in some cases,
technological solutions to this issue. For example, in
our experiments, we use an electrified floor to provide
power to our robots. While building our floor, we
learned of two other research groups that have built
floors of similar construction [28,29]. These parallel
achievements attest to the viability and utility of this
power supply approach. Other approaches [30], like
earlier prototypes of our own, use a floor-and-ceiling
‘bumper-car’ style setup. Together these examples

demonstrate acceptable solutions for laboratory con-
ditions. Given these technologies, we see that elec-
trical power need not be a restriction to the use of
parallelized embodied trials. However, we concede
that, except perhaps for some industrial settings, the
use of such power technologies presumably implies
that the physical environment in which trials occur is
not identical to the actual deployment environment.
While technologies such as the powered floor are im-
portant to the implementation of our experiments, we
do not consider them to be an intrinsic part of the EE
methodology.

2.4. Robustness

• “ . . . a robotic system cannot survive the necessary
continuous testing. . . ” [13, p. 76]

Robots used in research are rarely endowed with
the robustness that is engineered into industrial robots,
usually for reasons of economy of development time
or expense. As a result, research robots demand almost
constant care and attention to keep them in operational
order. The robots we built for our experiments are no
exception in this respect.

Nevertheless, the population of robots that ETP uses
is a valuable source of redundancy, which allows the
performance of the evolutionary system to degrade
gracefully with the number of robot failures. While
we concede that physical failures are inevitable for
long running times, especially when many robots are
involved in physical interaction, hardware paralleliza-
tion reduces the amount of run-time per robot by a
factor equal to the size of the robot population. Thus,
the ETP approach appears to provide a feasible way
forward for ER.

2.5. Other issues

We mention here, for completeness, that Mataric
and Cliff raise several other issues that pertain to any
method of machine learning, or even to hand-design
methods. While our EE methodology is silent on these
points, they are important to recognize. One such point
in particular concerns the creation of an effective met-
ric of agent success; all automated learning methods,
including Embodied Evolution, require feedback to
function. The question of how researchers are to con-
struct good metrics of behavior for autonomous robots,
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especially as environments become more complex and
interactive, is undeniably important and will continue
to require special attention.

3. Embodied Evolution: the transition from ETP
to scalable ETP

We have examined a number of core issues raised
by Mataric and Cliff and have argued that embodied
trials in parallel on a large number of robots may be
one approach to alleviate their concerns. If we are to
take the ETP approach seriously, however, we must
address a new concern that does not arise in the meth-
ods considered by Mataric and Cliff, namely thescal-
ability of the evolutionary algorithm. The scalability
of ETP using a centralized evolutionary algorithm is
limited, as is that of any centralized control system.
For example, centralized coordination of evaluation
and reproduction can potentially result in commu-
nication bottlenecks [28] as the number of robots
increases. Hence, we aspire to decentralization in the
adaptive mechanism in the same way that Brooks
aspires to decentralization in the control of individual
robots.

Accordingly, we arrive at the suggestion of an ER
methodology that uses a large population of robots,
performing evaluations in parallel (i.e., ETP), but that
also implements a distributed evolutionary algorithm.
This conforms to our definition of Embodied Evolu-
tion. The use of an evolutionary algorithm that has no
centralized component—that is distributed through-
out the population of robots—is inherently scalable,
in principle enabling the use of hundreds or perhaps
thousands of robots. As we state in the introduction,
we wish to create a population of physical robots that
evolve autonomously as well as perform their tasks
autonomously. In this way, we adhere to the goals of
autonomy and distributed control [4] now common in
the field of robotics, not only in the task behavior of
the robots, but in their adaptive mechanism as well.

4. Opportunities for interactive and collective
tasks

The previous two sections assert the benefits of
Embodied Evolution from the perspective of an

evolutionary robotics methodology. In this section, we
emphasize potential advantages of EE that are neither
directly motivated by the issues that Mataric and Cliff
raise, nor by the need for scalability. Specifically,
since EE requires the use of a large number of robots
in a shared task environment, it offers an appropriate
substrate for experiments in which robot interaction
is of interest (for example, pursuit and evasion tasks).
Similarly, it offers a substrate for collective problem
solving where robots must work together to solve
some task (for example, collective foraging or box
pushing).

Distributed robotics systems pose serious challen-
ges to established controller-design methods. Distri-
buted control is easy to achieve if the decomposition
of a problem is known and the problem sub-parts
are neatly separable into independent tasks; in such a
case, we may build an independent autonomous agent
for each sub-problem (using either hand design or
machine learning). The structures of most real-world
problems, however, are neither known a priori, nor
composed of neatly separable sub-parts. As a result,
much work to date in collective robotics focuses on
restricted cases, such as systems that are composed
of homogeneous and/or independent sub-systems, for
example, flocking and foraging. Typically, agents in
such experiments have used hand-built (non-learning)
controller architectures [31–34]. Work that does in-
volve learning typically occurs in simulation [35–38],
or in relatively simple physical domains/environments
[39–43].

The difficulty of accomplishing highly coordinated
multi-robot behavior in complex interactive domains
provides an additional area of motivation for the de-
velopment of EE. To date, evolutionary robotics has
not addressed collective tasks in real robots because
of the many technical and engineering challenges in-
volved, such as the need for continuous power and the
difficulty of coordinating multiple robots. As robot
populations become larger and deployed in more
complex environments these challenges become more
acute.

Although the experiments we describe below do
not involve an interactive task, nor collective behav-
iors, we suggest that EE may provide an appropri-
ate substrate for future work in these areas. As an
intrinsically population-based method where robots
adapt in the task environment, EE appears potentially
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well-suited for the study of emergent group behav-
ior and mechanisms that adaptively discover problem
decomposition. This research direction returns to a
theme from our ALife-inspired motivations, specifi-
cally, the integration of reproductive and task-oriented
behaviors. Behaviors that modify reproduction can
be used as a tool to enable speciation and heteroge-
neous teams/collective behaviors. This can be enabled
by placing reproductive behaviors explicitly under the
adaptive control of the robots, allowing certain envi-
ronmental cues to trigger reproductive events. Alter-
natively, segregated reproduction may occur via some
subtle interaction with task behaviors. This is not as
esoteric as it may seem. The reproductive events in our
implementation of EE (which we shall detail shortly),
are subject to the co-locations of the robots, and thus
an experimental setup not much more complicated
than ours may enable reproductive ‘preference’ to be
implemented simply by a behavioral disposition to
move to one area of the task environment more often
than another area.

Although much can be learned about these topics
from studies that use simulation, the caveats regard-
ing simulation fidelity, originally raised with respect to
the task domain, apply to the ‘reproductive domain’,
as well. For task behaviors, subtleties afforded by the
physical substrate may be precluded by the use of a
simplified or approximate simulation. Similarly, there
exists the potential for subtle forms of sexual segrega-
tion to emerge in a physical substrate that may be pre-
cluded by simulation. Further, if the robots’ choices
for mating are expressed and determined by their be-
haviors, then a centralized reproductive algorithm that
determines which robots reproduce with which other
robots is excluded: reproductive and task-oriented be-
haviors are no longer categorically distinct, and a cen-
tralized EA would require an interpretive process to
disentangle reproductive from non-reproductive be-
haviors, or else be reduced to a proxy for the robot’s
reproductive choices.

5. Suitability of Embodied Evolution

This section summarizes the strengths and suitabil-
ity of Embodied Evolution according to the issues we
have described above. We suggest that EE is suitable
in any of the following circumstances. Taken together,

the points below provide a strong motivation for a dis-
tributed, embodied approach:

• Where a simulator for the task domain is impossible,
unavailable, or insufficiently accurate.

The use of embodied trials, as in EE, allows the
world to act as “its own best model” and avoids the
need for a simulator.

• Where a centralized, globally coordinated adaptive
algorithm is not implementable or is unavailable, or
where coordination of parallelized embodied trials
is difficult.

The distributed architecture of EE’s evolutionary
algorithm is intrinsically scalable with respect to the
number of robots.

In addition, the EE approach offers possibilities for
future work in the following circumstances, the last
two of which are applications we have not previously
discussed.

• Where we are interested in evolving interactive or
collective behaviors.

The shared task environment utilized in EE pro-
vides a natural substrate for interactive and col-
lective tasks. EE may be especially suitable where
the interactions involve subtle complexities that are
difficult to simulate.

• Where we are interested in the interaction between
task behaviors and reproductive behaviors.

Studies in Artificial Life that involve the interac-
tion of task and reproductive behaviors, for example
through implicit fitness metrics, may be imple-
mented using the EE approach. Again, EE may be
especially suitable where the interactions involve
subtle complexities that are difficult to simulate.

• Where the agents must learn ‘in the field’.
One can easily imagine applications where learn-

ing must occur after the agents have been deployed
in the actual task domain, for example, if the agents
are to operate in a remote region (e.g. Mars or per-
haps a Micro Electro-Mechanical System (MEMS)
substrate). In such a case, a centralized coordi-
nator of agent learning would be both difficult to
design and perhaps precarious to use, as it would
give the learning system a single point of failure.
The distributed nature of EE provides a method
for adaptation in the field that is robust in these
respects.
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• Where agents have been evolved in simulation and
must now adjust their control programs to cross
the ‘reality gap’.

Embodied Evolution can be applied as the final
stage of a hybrid ER process, as described in [44].
Agents are first evolved in simulation, then down-
loaded into a population of physical robots where
EE is used to fine-tune their control programs in
the real world.

6. Implementing Embodied Evolution

This section describes the general components
that implement Embodied Evolution. Section 7
gives implementation details that are specific to our
experimental task.

6.1. A distributed evolutionary algorithm

The principal components of any evolutionary algo-
rithm areevaluation, selection, andreproduction, and
all of these are carried out autonomously by and be-
tween the robots in a distributed fashion according to
our definition of Embodied Evolution.

Because the process of evaluation is carried out
autonomously by each robot, some metric must be
programmed into the robots with which they can mea-
sure their performance. This can be quite implicit, for
example, where failing to maintain adequate power
results in ‘death’ [27]. Or, it can be explicitly hard-
coded, for example, where fitness is a function of
objects collected and time. Whatever metric is used,
performance against it must be monitored by the
robot itself, as no external observer exists to measure
a robot’s ability explicitly [26].

Reproduction in EE must also be both distributed
and asynchronous. Assuming that we cannot really
create new robots spontaneously, the offspring must
be implemented using (other) robots of the same
population. And, if we do not have structurally re-
configurable bodies, reproduction must simply mean
the exchange of control program code.

In general, selection in an evolutionary algorithm
may be realized by having more-fit individuals supply
genes (i.e., be parents) or by having less-fit individuals
lose genes (i.e., be replaced by the offspring) or by a
combination of both. Harvey’s Microbial GA [45] uses

this observation to simplify the steady-state genetic al-
gorithm; rather than pick two (above-average fitness)
parents and produce an offspring from the combina-
tion of their genes to replace a (below-average) third,
the Microbial GA selects two individuals at random
and overwrites some of the genes of the less-fit (of
the two) with those from the more-fit. In effect, the
less-fit of the two becomes the offspring. To achieve
decentralized and asynchronous reproduction in EE,
we have developed a probabilistic version of the
Microbial GA.

6.2. Probabilistic Gene Transfer Algorithm

The Probabilistic Gene Transfer Algorithm (PGTA)
is our probabilistic version of the Microbial GA. This
algorithm requires minimal inter-agent communica-
tion, and eliminates the need to coordinate the com-
munication of each reproduction event.

In the PGTA, reproduction is concurrent with task
behavior—there is no ‘reproduction mode’ as such.
Each robot maintains a virtual ‘energy level’, which
reflects the robot’s performance or fitness at the
task,1 and each robot probabilistically broadcasts
genetic information on its local-range communication
channel at a rate proportional to this energy level.
Each broadcast contains a mutated version of one
randomly selected gene from the robot’s genome
(i.e., one parameter from the robot’s control specifi-
cation). If another robot receives the broadcast, that
robot may allow the received gene value to overwrite
its own corresponding gene. The receiving robot will
accept the broadcast gene with a probability inversely
related to its own energy level. Robots with higher
energy thus attempt to reproduce, and resist the re-
productive attempts of others, more frequently than
do robots with lower energy. Nevertheless, because
sending and receiving is probabilistic, and genes are
picked at random, the PGTA does not guarantee that
a fitter robot will transfer all its genes to a less-fit
robot. On average robots are left with a mixture of
genes in proportion to their relative energy levels.
This implements a fitness-proportionate recombina-
tive evolutionary algorithm.

1 To be clear, this energy level is not related to the electrical
power level in the robot.
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Using the PGTA, each gene transfer event requires
only one-way communication—there is no need for
robots to coordinate reproductive acts, for a robot to
know the fitness or identity of another robot, or even
to know that any robot received its broadcast. Thus,
the PGTA naturally allows the complete decentraliza-
tion of selection and reproduction. Though the PGTA
provides an interesting mechanism for EAs in gen-
eral, its robustness to genetic information ‘dropped’
in communication makes the PGTA particularly ad-
vantageous for implementation in a population of real
robots. In a later section, we describe how the mainte-
nance of energy levels for the PGTA is integrated into
our experimental task.

6.3. A population of robots

Embodied Evolution requires a larger number of
robots than that used in any evolutionary robotics
work to date. The short-term proof-of-concept exper-
iments (described in the next section) require only
minimal capabilities of each robot. Similarly, the
long-term objectives of EE emphasize the interaction
of robots rather than the sophistication of individual
robots. Accordingly, we have built a population of
simple robots of our own design that are quite mini-
mal in their individual capacity yet have the necessary
capabilities for EE. Our robots employ the Cricket
micro-controller board, supplied by the MIT Media
Laboratory [46], which uses a PIC micro-controller.

Fig. 2. (Left) The robot design used in our initial EE experiments. (A) Infrared transmit/receive. The directional infrared diodes are
directed vertically downwards and use reflectance off the floor to achieve local omnidirectional communication. (B) PIC micro-controller.
(C) LegoTM motor. (D) Body from plastic food container. (E) Rechargeable cell. (F) Recharge circuit. (Right) Robot underside showing
the two light sensors, and four contact points that collect power from the floor.

Shown in Fig. 2, each robot measures 12 cm in diam-
eter, has two light sensor inputs, two motor outputs,
as well as local-range omnidirectional infrared (IR)
communication. The IR range is such that a robot may
communicate with any other robot when the periph-
eries of their bodies are less than about 4 cm apart.

6.4. Continuous power technology

We have developed and refined a powered-floor
technology that transparently provides continuous,
untethered power to our robots, without the use of
recharging stations. Our powered-floor is surfaced
with strips of stainless steel tape, which are alternately
connected to the positive and negative poles of a DC
power source. Each robot has four contact points on
the underside of its body, with which it draws power
from the floor. The geometry of the contacts, shown
in Fig. 3, guarantees that at least one point can make
contact with each pole of the DC power supply, re-
gardless of the rotation or translation of the robot on
the floor (some examples are given in the figure). The
strip a contact touches may be either polarity, accord-
ing to the position of the robot on the floor, and so
the power is rectified before being delivered to the
robot’s controller and motors. It transpires that this
method of power delivery was described by Claude
Shannon in an internal memo during his tenure at the
AT&T Bell Laboratories in 1950 [47, p. 678]. We add
a rechargeable cell to cover intermittency in contact.
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Fig. 3. Shannon’s design for power delivery [47]. The floor is constructed of conductive strips (separated by a thin insulator) that are
alternately connected to the positive and negative poles of a DC power supply. Power is picked up from the floor by four contacts arranged
in an equilateral triangle with one in the center. This geometry guarantees contact with both poles of the power supply regardless of its
rotation and translation on the floor. Since an individual contact point may be on either pole of the supply, power drawn through the
contacts is rectified.

7. Experiments and results

7.1. A phototaxis task

Our Embodied Evolution experiments employ eight
of our robots. The behavior of a robot is controlled
by a simple artificial neural-network architecture, the
weights of which are evolved to perform phototaxis
similar to that described by Braitenberg [48]. The task
environment consists of a 130 cm×200 cm pen with a
lamp located in the middle, visible from all positions
on the floor plane, as seen in Fig. 4. The robot task is
to reach the light from any starting point in the pen. An

Fig. 4. The robot pen for the phototaxis experiments. Eight robots,
the power floor, and the light in the center are shown. The unique
ID of a robot is collected when it reaches the light (via infrared
receivers on the overhead beam above the lamp). This data is
time-stamped and stored for monitoring experiment progress.

IR beacon mounted above the light emits a signal that
can be detected by a robot when it reaches the light
source. This beacon signal triggers a built-in reset be-
havior that moves the robot to a random position and
orientation along the periphery of the pen, from where
the robot recommences its light-seeking behavior. If a
robot’s sensor values do not change for some period
of time, it is assumed that the robot is stuck against a
wall (or another robot) and the robot invokes a second
built-in behavior designed to free the robot by rotating
it a random amount. Both of these built-in behaviors
operate independently of the evolving neural-network
controller. Because the pen contains a multitude of
robots, thede factoenvironment also includes some
amount of robot-to-robot interference [49]; therefore,
the task implicitly requires that each robot also suc-
cessfully overcome this interference.

7.2. Control architecture

Our initial experiments use a simple artificial
neural-network control architecture to serve as the
evolving substrate, depicted in Fig. 5. The weights of
the network are evolved. The network consists of two
output nodes, one for each of the two motors, one
binary-valued input node, which indicates which of the
robot’s two light sensors is receiving more light, and
one bias node. Being a fully connected feed-forward
architecture, there are four weights. Each weight has
an integer value in the range [−8, 7]. The values
sent to the output nodes (controlling motor speed and
direction) are the weighted sum of the input nodes;
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Fig. 5. Control architecture for phototaxis experiment. The one-bit input is 1 if left sensor is brighter than right sensor, 0 otherwise; the
bias node has constant activation of 1.

no sigmoid function is used. This network is simple
enough to be computable by the PIC micro-controller
in real time, yet provides a non-trivial search space
size of 164 network weight configurations.

As no individual learning takes place in our ex-
periments, robots only get new weight values from
other robots during reproduction, which is performed
via local broadcasts (omnidirectional signals that can
be received by any robot within a short range) on
the robots’ IR communications channel. This limited
communication range (just over one body-width in
radius) combined with the freely mixed population of
our shared environment essentially implements ran-
dom selection of mates, as appropriate for the PGTA.

7.3. Maintaining reproductive energy levels

Energy levels regulate reproduction events and
should reflect the robots’ performance at the task.
The virtual energy level maintained by a robot is up-
dated as follows: whenever a robot reaches the light,
its energy is increased by a fixed amount, up to a
maximal energy value; whenever a robot transmits a
gene for reproduction (regardless of whether another
robot receives the transmission or accepts the gene),
its energy is decreased by a small fixed amount,
down to a minimal energy value. Since the robot’s
rate of sending genes is proportional to its energy
level and decrements occur with each send, the rate
of broadcasting decays exponentially over the time
from its most recent visit to the light. The energy
level thus approximates a leaky integral of the robot’s
performance at its task (i.e., the frequency with which

it reaches the light). Fig. 6 provides an overview of
how the reproductive energy levels are maintained in
our experiments and how the PGTA is integrated with
the robots’ other behaviors.

Note that the energy level maintained by a robot
is an odd representation of its performance compared
to the usual meaning of ‘fitness’. In our implemen-
tation, the energy level is not reset in a robot when
it receives a new gene during a reproductive event—
and so, the energy level is related to the performance
of the various controllers that have been resident on
that robot. In contrast, one would normally expect the
fitness of previously resident controllers not to affect
the current fitness of a robot. However, assuming that
the offspring is similar to the parent, our method of
using inherited energy potentially shortens the evalu-
ation process that must occur before the fitness mea-
surement of a new controller is reliable.

7.4. Results

Fig. 7 shows the frequency with which the light
is successfully reached by the robot population over
time in each of three experiments. The main experi-
ment evolves the neural-network weights to perform
the light-seeking task. The initial condition for the
networks is that all weights have a value of zero
(this configuration produces no output to the motors
and provides a neutral starting point). Accordingly,
to avoid an initial spatial configuration where robots
are reproductively isolated, they are placed in a tight
cluster at one end of the pen. The other two experi-
ments are controls where the robots do not evolve. The
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Fig. 6. Pseudo-code of control program that implements the
Probabilistic Gene Transfer Algorithm (PGTA). This code is
run on every robot. No methods for synchronizing or coordi-
nating the robots, nor any centralized elements, are used in
the PGTA. The functions and variables in the general form of
the PGTA are defined as follows. The predicatesexcited?
andreceptive? are probabilistic functions ofenergy. send
takes a gene value and broadcasts it on local infrared (wrapped
with gene locus).received? becomestrue when a gene is
received on infrared, andfalse once the gene value is read.
indexof and valueof return the locus and value of the re-
ceived gene, respectively.limit bounds the energy value between
min energy andmax energy. random returns an integer in
the range of its argument.do task specific behavior in-
cludes monitoring performance at the task and setting the val-
ues of reward and penalty. In the specific implementation
of the PGTA for our phototaxis experiments,min energy is
10; max energy is 255. excited? returns true if energy
> random(max energy), false otherwise; receptive re-
turns true if energy < random(max energy), false oth-
erwise. Each gene,genes[1,4], is a weight value for
the network. initialize genes sets all genes to 0.
mutation returns one of{0, 1, −1} with uniform probability.
do task specific behavior includes reading sensor val-
ues, updating network outputs, setting motor speeds/directions ac-
cordingly, monitoring sensor readings to perform a random turn
if the robot appears to be stuck, and monitoring for arrival at the
beacon.reward is set to 127, if the robot detects the beacon, 0
otherwise, andpenalty is set to 1 whenever the robot broadcasts
a gene, 0 otherwise.

first control experiment fixes the robots’ weights to
random values to provide an indication of the expected
performance of random behaviors. In the second con-
trol experiment, we intend to provide an upper bound
by hand-designing the neural-network weights for our
light-seeking task. The optimal solution for the task
depends on the particulars of our robotic hardware
and task environment, and is therefore difficult to
determine precisely. But, we presume a hand-designed
behavior built upon the principles of Braitenberg’s

basic phototropic behavior [48] to be a plausible can-
didate. In this behavior, the robot’s trajectory follows
one of two curves, to the left or to the right, accord-
ing to the input from the sensors (see Fig. 8, left).
The exact network weights we used were the best we
found from hand tuning.

As Fig. 7 shows, the two control experiments de-
limit a broad range of possible performance levels and
provide useful references against which to judge the
success of the trials where evolution takes place. We
see that Embodied Evolution allows the population of
robots to achieve performance favorably comparable
to that of our hand-designed solution—the Wilcoxon
rank-sum test2 indicates that EE outperforms the
designed solution with probabilityp = 0.935. These
results provide the first evidence that a fully decen-
tralized, asynchronous evolutionary algorithm can
operate effectively in a population of physical robots
and provide high-quality control programs.

There are several additional points of interest in
this result. First, though the robots learn to approach
the light in a multi-robot environment, they are able
to perform effectively in isolation, as well (not shown
here). Second, despite its minimal structure, the
artificial neural-network control architecture used in
the robots allows a surprising variety of phototropic
behaviors. Evolved behaviors include a ‘looping’ tra-
jectory (see Fig. 8), where the robot continually turns
in one direction, but changes the radius of the curve
according to sensor input. Another evolved behavior
performs a ‘back-stitch’ maneuver, where the robot
reverses on a small arc to correct its heading. On some
occasions, we have even seen the robots approach the
light entirely in reverse.

In many of the runs reported here, the robots
converge on the looping solution. There are many
possible reasons why the looping solution may be
favored. For example, the looping behavior may com-
pose a larger proportion of the search space than
other behaviors. Related to this is the possibility that
the looping behavior is more robust to variation than
other behaviors. Not least of all, we would expect
looping to be favored by selection, since it appears to
have a higher performance.

2 The Wilcoxon test is preferred over the Student’st-test in this
case because the variances of the designed and evolved runs are
very different from each other.
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Fig. 7. Performance over time. Upon detecting the beacon’s signal, a robot sends a reply signal to the beacon. These replies are then
delivered to a desktop computer where they are time-stamped. Three solid curves show the performance of the robot population using
hand-designed (non-evolved), evolved, and random (non-evolved) networks. The data from the hand-designed and evolved experiments are
averaged over six runs, while the data from the random-solution experiment are averaged over two runs. Each run lasts 140 minutes and
uses eight robots. The vertical axis represents the average rate (in hits per minute) at which the population of robots reaches the light.
A time window of 20 minutes is used to compute the instantaneous hit rate for each data point on the graph (hence the first data points
appear at time= 20 minutes). Vertical bars on the evolved run, shown every 10 minutes, and the dotted lines on the control experiments,
show ± one standard deviation. Though the evolved solutions begin with network weights of zero, we see that the robots achieve an
average performance of four hits per minute within the first twenty minutes of the experiment and eventually exceed the hand-designed
hit rate (the Wilcoxon rank-sum test givesp = 0.935).

Fig. 8. Trajectories of light-seeking solutions.
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That looping should outperform our hand-built
swagger behavior may seem counter-intuitive, since
the hand-built behavior gives a more direct path to the
light. However, we must remember that the velocities
on these trajectories may be different. Indeed, we had
some difficulty tuning the swagger behavior because
the light sensors are not sampled with high frequency;
if the robot moves too fast, then it often travels too
far before detecting that its orientation to the light has
changed, and occasionally the robot misses the light
completely. Consequently, the fastest motor speed
at which we could obtain an effective swagger was
less than the top speed of the motors. The looping
behavior, however, has been observed to use faster
motor speeds. Therefore, the looping behavior is hy-
pothesized to provide more robust correction of robot
heading, given a low-frequency sampling of the light
sensors. Other reasons why looping may out-perform
the hand-built swagger may be that the looping be-
havior overcomes the physical interference caused by
the walls of the pen, or the other robots in the pen,
more efficiently. Another hypothesis is that looping is
more robust to the inevitable hardware variances that
exist between the robots. Or, perhaps, we will find the
cause is more mundane, and dependent on our choice
of algorithm parameters. These issues of light sensor
sampling frequency and its interaction with motor
speed, physical interference between robots, and the
hardware variances between robots are exactly the
sorts of reasons that make simulation and hand-design
difficult. Regardless of the actual reasons for the im-
proved performance, the point to be made is that Em-
bodied Evolution was able to find effective solutions.

8. Caveats

In spite of our enthusiasm for the Embodied Evolu-
tion approach, we must recognize that it is still a devel-
oping methodology, and although EE offers solutions
for some issues, it also introduces new difficulties.

• An environment that contains a multitude of robots
also includes some amount of robot-to-robot inter-
ference [49]; e.g., our phototaxis environment im-
plicitly requires that each robot also successfully
overcome such interference. Hence, we suggest that
EE is more suitable where interaction is native to
the task domain.

• Our experiments to date have concerned only sim-
ple tasks for which many other learning approaches
have also been effective. Though we suggest EE is
suited to multi-agent systems, we are only just now
designing experiments that involve explicitly inter-
active tasks.

• Our powered floor is constrained to research or in-
dustrial environments; other applications will re-
quire different power technologies.

• Because we eschew centralization, the jobs of moni-
toring our experiments and collecting data are made
more awkward. With our current robotic hardware
we are unable to monitor reproductive activity, for
example.

• Because reproduction is based upon the principle
of locality in our particular experimental setup, our
implementation of EE is susceptible to failure if the
agents become physically, and therefore reproduc-
tively, isolated. Moreover, the need to prevent repro-
ductive isolation produces a selective pressure that
may interfere with the objective of the task. And if,
as we suggest, the reproductive mechanism is mod-
ified to allow speciation, we can imagine that re-
productive behaviors could become quite elaborate,
worsening this interference.

• Though the shared adaptive environment used in
EE has interesting possibilities for team tasks, the
precise manner in which EE should be applied
to team evolution is unclear. Any requirement
of locality (for reproduction) seems to suggest
that an awkward overlapping of multiple teams
is needed for reproduction to take place, and the
mechanism for organizing games between teams is
problematic.

Thus, we see that a great deal of research effort is
still required to meet the long-term goals of EE, and
although EE provides advantages in some domains it
is not suitable for all applications.

9. Future work and conclusions

9.1. Future work

There exist a number of control experiments that
will help us map the parameter space of the PGTA. We
expect these controls to refine the PGTA, and provide
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better understanding of the algorithm’s dynamics and
the settings that provide the most robust operation. For
example, a simulation built by Schneider-Fontán [50]
suggests that good solutions are not stable in the pop-
ulation if we remove the robots’ ability to resist the re-
productive attempts of others. The resistance model we
use, while effective, is not known to be optimal. Other
parameters to investigate include the rates at which a
robot’s energy is increased and decreased as it reaches
the light and attempts reproduction, respectively. More
complex control architectures for our experiments may
include a recurrent version of the neural network that
will operate on raw sensor inputs. To more fully ex-
plore the merit of the EE approach, we will need to
apply it to more complex domains that provide richer
sensory data, and tasks that require multiple behaviors
(such as navigation with obstacle avoidance).

Though the phototaxis task described in this re-
port is simple and does not involve explicit robot
interaction, the transparency of this domain allows
us to investigate the strongimplicit interactive forces
that exist within the EE approach. For example, the
reproductive process and physical robot-to-robot in-
terference are two types of interaction that would be
interesting to investigate before moving on to a more
complex task. The hypotheses (discussed in Section
7.4) that concern why the looping behavior is selected
by evolution also deserve investigation.

As we state above, a long-term goal of distributed
robotics is a method for the automatic discovery of
problem decomposition and the balancing of local
autonomy with group coordination. By employing a
large number of robots together in the task environ-
ment and allowing them to evolve collective behav-
iors, we avoid introducing preconceptions about how
a problem should be decomposed, how many robots
should be assigned to each task/sub-task, or how
many groups/sub-groups will be needed. Potentially,
we allow the robots to discover appropriate working
groups and interactive behaviors that reflect the nature
and structure of the task at hand. Achieving this will
require many critical issues to be addressed: credit
assignment, the balance of cooperation and compe-
tition, homogeneity and heterogeneity, encapsulation
and modularity.

Finally, future work may address advanced robotic
platforms, including evolvable hardware [51] and
evolvable morphology [52,53].

9.2. Conclusions

Embodied Evolution uses a population of physical
robots that evolve together while situated in the task
environment. The adaptive mechanism is distributed in
the population using robot-to-robot reproduction that
is carried out autonomously by the robots. Evolution-
ary adaptation is seamlessly integrated with the robot’s
task behavior.

In good part, our motivation for the development of
EE was simply to see if the artificial evolution of a
population of robots could be implemented in a dis-
tributed and autonomous manner. But, EE is also a
new evolutionary robotics methodology that addresses
several significant issues identified by ER researchers
as problematic.

We must be careful to separate technological is-
sues from fundamental ones when considering the
long-term prospects for evolutionary robotics. Our
implementation of Embodied Evolution reveals some
concerns, such as power, to be more technical in
nature. Other issues, such as combinatorics and the
limits of simulation, are more fundamental and can-
not be solved technologically. Nevertheless, some of
these fundamental issues are ameliorated by the em-
bodied parallelism that EE employs. Specifically, the
use of embodied trails in parallel eliminates problems
of simulation transference, alleviates the slow running
time of numerous serial embodied trials, and provides
hardware robustness. But, the more important contri-
butions of the Embodied Evolution approach as an ER
methodology are two-fold. First, it provides inherent
scalability by decentralizing evaluation and repro-
duction. Second, it provides a substrate to explore
the evolution of interactive and collective behaviors,
which are particularly difficult to simulate.

Our experiments in EE have employed a population
of eight robots that are supplied continuous power by
an electrified floor. We have developed an evolution-
ary algorithm that operates through the probabilistic
transfer of genetic information between robots via
local-range communication. This Probabilistic Gene
Transfer Algorithm is entirely distributed and is robust
in ways that make it effective for implementation in
a population of robots. We have successfully applied
EE to a simple phototaxis task. The neural-network
control architecture, though minimal, has a non-trivial
search space and provides surprisingly novel solutions
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for phototaxis. Results show solutions evolved with
EE to perform better than our best hand-designed
solutions. In summary, we have provided the first
proof-of-concept for Embodied Evolution—the first
example of an evolutionary algorithm distributed in a
population of physical robots.
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