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Abstract

Herbert A.Simon’s characterisation of modularity in dynamical systemerities subsystems as

having dynamics that are approximately independent of those of sathsystems (in the short

term). This fits with the general intuition that modules mustdefnition, be approximately

independent. In the evolution of complex systems, such modularity madjeesubsystems to be

modified and adapted independently of other subsystems whereas innaodiolar system,

modifications to one part of the system may result in deteterside-effects elsewhere in the

system. But this notion of modularity and its effect on evolvabiditpot well-quantified and is

rather simplistic. In particular, modularity need not imply timaér-module dependencies are

weak or unimportant. In dynamical systems this is acknowledgedntynS suggestion that, in

the long term, the dynamical behaviours of subsystems do inteithcbne another, albeit in an

‘aggregate’ manner — but this kind of inter-module interactianrigted in models of modularity

for evolvability. In this brief discussion paper we seek toyumbtions of modularity in

dynamical systems with notions of how modularity affects evoligbillThis leads to a

gquantifiable measure of modularity and a different understanding ofgecinon evolvability.
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Evolvability and modularity in dynamical systems

Modularity is a familiar characteristic of a large clasis natural systems. It is
commonly interpreted as the condition that interactions or dependebpeie®gen
subsystems are weak or sparse relative to interactions withsystems. Although
modules in natural systems are not completely independent, of ctwnseista general
intuition that modules must be, in some sense, approximately indepégaiefitition.
But this concept of modularity is easily over-simplified. In paittc, inter-module
interactions are often assumed to be unimportant or sometimescoatittgether. Such
a simplification does not match common observations.

For example, if a cell is a meaningful module for a multiutatl organism, it may
well be the case that the cell encapsulates a complex networktrafcellular
interactions, but it is obviously not the case that the proper funagjaofi the cell is
independent of the context provided by other cells. Similarly, a geag be a
meaningful module of the genome because the detail of the nucleotide segitbnt
the gene can be abstracted into a relatively low-dimensionaf $esitures such as the
three dimensional shape of the protein that the gene codes for, dutbiiously not
the case that the functional behaviour of the gene is independent ofjeties. This
coincides with our understanding of engineered modularity also — theeeafj a
vehicle is a subsystem with significant internal complexity,tbatremaining interface
with the rest of the vehicle is still integral to its propendtioning and operation. In
short, modularity does not logically require that inter-module depereteare weak or

unimportant.



This over-simplification might arise from a tendency to coaeftuctural modularity
with the functional behaviour of a system. For example, it is afseful to describe a
complex system using a graph that represents the interactioveebecomponents, and
modularity is taken to mean that inter-module edges are spameriritra-module
edges, e.g. [9, 4]. However, this interpretation of modularity is mexestructural
description of the graph of interactions, and for complex dynamsysé¢ms a structural
description of interconnectedness is not sufficient to determine béravioural
independence of one module from another. In general, the dynamical dependen
independence of a module from another module is related to how changes in the state of
one module affect changes in the state of the other. The struoterabnnectedness of
modules tells us something about the likelihood or strength of imreedifcts
between one module and another, but it is not necessarily indicatihe eiktent of
consequent state changes over time. In principle, one module miagrggysand non-
linearly sensitive to small state changes in another moduleteldsping sparsely
connected. Other important dynamical properties such as the numtetipn, and
stability of attractors may also be affected despite spamnections. The exact
consequence of interactions between modules is dependent on the exacbhdtar
systems involved — but in general, it is not correct to assumesphately connected
dynamical systems have only small effects on one another’'s dynamicattigspe

A more general concept of modularity derives from the propertgnotpsulating
internal complexity: This encapsulation may leave a relatively-dimensional

interface with the remainder of the system, but this does not ithaly resolving



dependencies through this interface with other parts of thtensyis unimportant or
insignificant. Moreover, this conception of modularity is in factessary for making
sense ohierarchical modularity. The extent to which the grouping of dependencies can
be important is limited by the extent to which all dependenciesaasumed to be
unimportant: In the limit, if we assume that modules at one hlecaiclevel are
independent then modules at the next hierarchical level become meaningless.

In the evolution of complex systems, modularity is often believedntoease
evolvability — the ability of an evolutionary process to optimisedapaa system. For
example, modularity may enable subsystems to be modified and adajgpdndently
of other subsystems, whereas in a non-modular system, modificetions part of the
system may result in side-effects in other parts of theesyss dependencies among
different parts of the system are broken or become maladapted.itButespect to
evolvability, it seems difficult to retain the idea that inteselule dependencies may be
important. If they have a significant impact on fitness, then brdegendencies with
other subsystems may prevent the independent adaptation of subsystding, the
system effectively non-modular. From this point of view, it set#rasin the context of
evolvability, significant inter-module dependencies are directly ogbtsenodularity
— as though there is a direct trade-off between how important-nmadule
dependencies are and how modular the system is. For example, Ka{Bjnpaovides
a means to describe arbitrary systems of interdependent variablésthe ‘NKC
landscape’ describes a system where subsets of variables beyéntra-connections

than inter-connections. But here the addition of significant inter-matkependencies



is directly opposed to the definition of the modules themselves. In smaddiow
modularity affects evolvability, can the notion of modularity as eéheapsulation of
internal complexity be retained without introducing the assumption of partant
inter-module interactions?

To address this question we draw together notions of modularity imadvdtly with
notions of modularity in dynamical systems. Herb Simon [10] digsuss broad
ranging set of systems — from business organizations to bidlogystems — that
exhibit what he calls the property of being ‘nearly decomposable’ describes the
characteristics of nearly decomposable systems dynamitidlé/short-run behaviour
of each of the component subsystems is approximately independent sifattteun
behaviour of the other components” and “in the long run the behaviour arengf
the components depends in only an aggregate way on the behaviour ohdhe ot
components”. The second part of this description explicitly acknowdetthgepresence
of inter-module interactions, without implying that they are indigant or
unimportant, by using the idea that the details of subsystenmilymare aggregated in
some way. Simon’s book spends some considerable effort on discussng t
implications of modularity for the evolvability of systems butrttely his examples
of how modularity affects evolvability do not fit properly with thissdeption of
modularity in dynamical systems, as we will discuss.

In the remainder of this paper we first detail some of Sisiyeramples to introduce
some of the useful concepts and conceptual difficulties that thesgrdte. We then

describe a simple dynamical system that exhibits the prepei a ‘nearly



decomposable’ system. Following common intuitions, in its structurakigéen this

system has strong/numerous intra-module dependencies and relzpaebe/weak
inter-module interactions. However, we see that this systemhals significant inter-
module dependencies with respect to simple dynamical propertiesexaonple,

examining the dependence and independence of dynamic stabilitybef/stem
configurations we see that the most stable subsystem configureti strongly
dependent on the state of the remainder of the system. Nonethleéssjst still a
meaningful sense in which this property is semi-independent of thefrést system.
We provide a quantifiable measure of this fornrmotiular interdependency.

By relating fitness to a modular property of the systemh(siscsystem stability in
this example) we produce a model that illustrates how modulafithis form can
influence evolvability. We briefly discuss some prior results [11,usdg a fitness
landscape based on this construction [12]. These show that this fonodofarity has
a different impact on the evolvability of systems than the naiva bf modularity. In
particular, they show that it is difficult to resolve inter-modigpendencies in systems
with modular interdependency using linear incremental improvemengvbiutionary
mechanisms such as sexual recombination, that can exchange adapistesiss

among individuals, can evolve this sort of system easily under certain ciaroes.

Simon’s example systems

In this section we examine the concept of ‘nearly-decomposable’ systeatkiodd by

Simon and discuss some of his well-known examples in some detail. Tostande



how modularity affects evolvability, (for our purposes, how likely ittigat an
evolutionary process can make a system well-adapted), wesdabsecombinatorics of
the evolutionary search process. That is, we assess the@riraftthe configuration
space that an evolutionary search process is likely to sdraefdee finding high-fitness
configurations of the system: if this is low then the systemare evolvable than one
where this fraction is high. Simon provides some examples that slitoeiseffect of
modularity on this kind of combinatorics, and some examples that discuss modularity i
dynamical systems. However, no one example describes bothtsagueruately,
illustrating the conceptual difficulties in bringing theseasldogether. However, the
three well-known examples detailed below do provide important conceptual
components for the model that follows.

Example 1: Combination Lock. In discussing the expected time for a complex system
to evolve, Simon uses an analogy based on finding the correct comibirati a
combination lock on a security safe. Specifically, suppose a lock rdialdfeach with
100 positions — by blind trial-and-error we would expect to need orageéhalf of
100" guesses to open the safe. Simon, contrasts this with a ‘defdottk where a
click can be heard when the dial is at the correct setting.drc#isie, we would expect
to require on average about half of ¥00 guesses to open the lock, because opening
the lock is merely 10 independent repetitions of finding the caosettihg for each dial.
This example is easy to interpret as two evolutionary saenadiffering only in the
structure of the fithess contributions: In the first case tineds landscape would give

no feedback to evolutionary search until the settingafodials was correct, whereas



the defective lock would give a fitness increment for each H&ilwas correctly set.
Note that in the defective lock the solution to each module is Bnimdependent of
other modules; the correct setting for a dial, and the feedbaslkttorg it correctly, is
not in any way sensitive to the context of the other dials.

As suggested above, an important consequence of assuming independent modules i
that modules of this kind cannot form meaningful hierarchy. For pbartet us take a
look at what a hierarchical lock might be. Let us suppose thateearbhical-super-
lock’ has 10 groups of 10 dials each, and in the defective version dbtkisa group
of dials makes a big click when all 10 dials it contains are set corrédtig. individual
dials are defective as before — what is the expected numbaess$es to open the lock?
We can see that it is merely half of ¥Q0%x10. Note that this is exactly the same as
would be expected for a defective ‘flat-super-lock’ being jusbck Ithat has 100
defective dials. In other words, when each dial is independent, subsequgrnhgrof
dials is redundant and does not change the combinatorics involved.eXsaimple of a
completely decomposable system, the defective lock scenariedsiate — it makes
clear the intuition about the impact of modularity on combinatoraickequite simply.
But from Simon’s descriptions, it is not at all clear how to mothfy lock analogy to
add any inter-module dependencies and make the dials ‘nearly-decomposable’.

Example 2: Watchmakers. Next we look atSimon’s famed watchmakers’ parable.
The first watchmaker assembles watches made of 1000 componentseddred
watchmaker assembles watches made of 10 modules, each of svbarhprised of 10

sub-modules, each of which is comprised of 10 components. The diffarenice



success of the two watchmakers arises in their robusimé@s®etruptions. When either
watchmaker is interrupted the current assembly or sub-assemily eirked on
disassembles. For the first watchmaker an interruption nearlgyalwccurs before
completing the watch and all the work performed on an incompletéhvisitwasted.
The second watchmaker is often able to complete a stable subasdefise an
interruption occurs (and less assembly steps are wasted pargtiter) so much of the
work is usefully retained. The advantage for the modular watemdndg procedure in
terms of the expected time to complete a working watch iy epmntified for a given
interruption probability. This, Simon claims, explains why modular dermpystems,
through their inherent stability, are more likely to be evolved than non-modular ones.
This fable describes the advantages of stable intermedmatestochastic assembly
procedure and here, unlike the lock example, there is a benefit tooaddiayers of
hierarchical modularity. However, the assembly procedure is uliffic interpret as an
evolutionary search process. In the lock example, we searchca gpaial-position
combinations, but the watchmaker fable has no explicit search spaceither
watchmaker is required to search for configurations that aelestor fit, each
watchmaker knows the correct assembly for a watch or a modieuvsearch. In the
lock example it is easy to interpret the search of dial cordigons as adaptive
evolutionary search where ‘clicks’ in the defective lock armefs rewards that inform
evolutionary search. But in the watchmakers’ fable such an intatipretis
problematic. Specifically, if we imagine that evolutionary adamtais searching a

larger space of possible watch-part assemblies and is relMaydacreased fitness for



modules that are stable, then the utility of hierarchical modyl&sitiost. That is,
additional fitness increments for assemblies of sub-modules into espdul modules
into whole watches, are redundant in the same way as additiokal atec redundant in
the hierarchical super lock — guiding evolutionary search usimgstincrements at the
lowest level only would be sufficient. In trying to make a model of how an egnhrty
process would be better able to evolve the modular watch than the noninveakcla,
it is not clear how to map ‘interruptions’ into fithess contributions sgbtem
configurations without making all but the first level of modularggundant. Despite
some effort here, it is difficult to see how to convert the benétktable intermediates
in an assembly procedure, illustrated in this parable, into anpteahhow modularity
affects the ability of evolutionary search to find fit configurations of seayst

Example 3. Heat exchange. In a third example, Simon describes modularity in
dynamical system. This is a system of heat exchange in anguildat is subdivided
into rooms and cubicles. Heat exchange between cubicles witbisnais more rapid
than heat exchange between cubicles in different rooms. Thisnsysthibits the
properties that Simon lists for nearly-decomposable syst@mshrt-run dynamics of
heat exchange in a room is approximately independent of the lebaingle dynamics
in other rooms, and the long run dynamics of heat exchangergora depends
(approximately) only on the mean temperature of cubicles in atbers. Note that the
ultimate temperature of a room depends on the temperature of othes, despite the
fact that the short term dynamics of temperature among esbigithin a room are

largely unaffected by the temperatures of cubicles in other rooms.



However, Simon does not describe how this kind of modularity affdets t
evolvability of a system. How is the modular system easiezvtdve than the non-
modular one? What is the analogue for fitness, or for evolutionarghsdaough a
configuration space? For example, it does not make sense to makelagy between
evolvability and the speed at which the system reaches equilibricaoude modularity
in the heat exchange parameters slows the approach to equilibirtbia is an analogy
for a system that might be evolved we do not know how changes inral@ie to
combinatorics that reflect evolvability.

Summarising Simon’s three examples: The lock example providgsaatitative
combinatorial argument for modularity but the modules are entieggrable, and this
kind of modularity cannot be hierarchical. The watchmaker examplenleasingful
hierarchy but describes the advantage of robustness in a stoelsasticbly procedure
not an advantage of modularity in a combinatorial evolutionary seaodegs. The
heat exchange example illustrates a hierarchical dynarmsysiém with meaningful
modularity in the dynamics of the system at several sclailgst is not clear how to
map this example to an evolutionary scenario where we can exasimepact on
evolvability.

Our purpose in discussing these example systems from Simon ihislatat to
suggest that Simon is unusually misguided. On the contrary, thes@legamnovide
some very valuable concepts of modularity that we can build upon. Butathealso
indicative of a widespread difficulty in reconciling a basic itfest evolvability can be

enhanced when sub-solutions can be identified independently, with a basithade



modularity shouldnot mean that subsystems dudly independent. The combination
lock example is a good illustration of the former, and the hedtagge example is a
good illustration of the latter. But we are missing an illugsirabf both togetheilhus
we are also missing an example of modularity in a combinateesich model that is
hierarchical. The heat exchange model is hierarchically mo@ukarcan see that the
inter-room dynamics of the system operate at a differenpdesth scale but are
otherwise just like those of the inter-cubicle dynamics) butrtiddel does not provide
a combinatorial argument. The combination lock example provides a coorfahat
argument but here hierarchy is not possible (we cannot make élsemsrarchical
lock because there are no inter-dial dependencies). Although atglinste, the
watchmakers’ parable seems to provide a model of hierarchical mogulafact, as
noted, it does not describe a combinatorial search process.

So, working from the lock example, how can the correct position foralabei
identifiable so as to reduce the combinatorial search required totlopdock without
making the dialdully-independent? And, working from the heat exchange example,
how can we interpret the intra-module and inter-module dynamies &volutionary
search process? In the following example system we draw togdthedynamical
system properties that Simon describes with a combinatorieths@#erpretation of
evolvability. This utilises a hierarchically modular dynamicgtem with a mapping
from the dynamical stability of state configurations to finesontributions.

Importantly, the same hierarchical modularity that Simon provitdse heat exchange



example is thus manifest in the fitness interdependencies of nsaahdiesub-modules

in a combinatorial search problem.

Modular Interdependency

In this section we use a simple example dynamical systemifypideas of modularity
in dynamical systems with ideas of modularity in evolvabiMie show that structural
modularity in this system does not imply independence, or near indepenadd the
dynamical properties of modules. Thus there is a meaningful sengeidch a system
may be modular in some respects and yet have strong interdepeadeeimieen
modules in other respects. We define how the modularity of a sységnbe quantified
with respect to some property of interest, for example, the isyabilthe dynamical
system. If we map a modular property such as this to fittiess,we can equivalently
quantify the modularity of the system with respect to evolvabiliWe use this to

contrast and clarify some of the concepts introduced by Simon above.

An example modular dynamical system

Consider a gene regulation network as an example dynamitahsyd&/e suppose for
simplicity, that each gene may be in one of two states: “higihganing highly
expressed, or otherwise, “low”. Let the future state of each lgewetermined by some
function of the states of the genes that regulate its expredsigieneral, this describes
a ‘Random Boolean Network’ [5]). We can use a graph to represeobtimectivity of
regulation activity where nodes represent genes, and edges repregelation

interactions. Here we will assume that all genes regehatey other gene, i.e. a fully



connected interaction graph, but we will modify the strength of irtterec between
certain genes. We also assume that all nodes have a sefent@onnection so that a
node’s future state is a function of the nodes it is connected tosaodrt state at the
previous time step.

To define a modular network, we modify a (fully connected) netwock $hiat the
interactions within particular subsets of genes will be strorfggm the interactions
between genes in different subsets. To represent this wamjlysuse multiple edges
between genes (since we do not really wish to distinguish betweererous
interactions and strong interactions). Figure 1, thus shows an exaygtem that
exhibits a clear, two-module structure.

This graph describes the structural modularity of our systenthistoave must add a
description of its dynamics. For illustration we use a simplarigbstyle discrete-time
update rule. Specifically, the probability of a gene takingvargstate in the next time
step will be equal to the proportion of regulating connections froneg¢hat are

themselves in that state at the current time step. i.e. Let “high"=1 ant=0dhen,
Ka
P(A,=) =% Bi,
i=1

P(A.=0)=1-P(A,=1). Eq.1.
where A is the state of gene A at time f, is the number of edges connecting to A, B
is the state of thé"iregulating gene connected to A. This update rule is popular in
models of physical dynamical systems such as Ising modelse Blyaamics define a

system that meets Simon’s criteria for a nearly decomposgbtem. The ‘short-run’



behaviour can be understood by equating a low stability value vaith changes; and
‘the proportion of ones’ is a sufficient ‘aggregate effect’ ttedaine the inter-module
effect on stability.

The functional (rather than structural) modularity of a systeay be determined by
dynamical properties such as the stability and location ofcaitea The long term
(rather than immediate) effects of changes in one module tendtanges in another
module can be characterised by changes in the attractorsystean. In general, if the
attractors of a subsystem or module are unaffected by stgehin another module
then this is an important form of dynamical independence. At the oppodieme, if
we find that the attractors of a subsystem are completefigrelit this indicates an
important form of inter-module dependency.

By way of example, let us analyse our example systemexamining which
configurations of M1 are most stable, and how these configuratiores diith state
changes in M2. For these purposes it is sufficient to use aesimgrsure of stability:
specifically, let us define thgtability of a network, or subnetwork, as the probability
that no gene in the network changes state. (This definition ofistaibdsely parallels
the free-energy measure of a configuration in an Ising model.) The stability of a
network configuration is therefore the product of the stabilitydach gene in the
network. For example, in a system of two genes, A and B, whergrabability of A
remaining in the same state is S(A), and the probability oérBaming in the same
state is S(B), the stability of the AB system is simply S(A)S(B).

Clearly, since there are inter-module edges, the stability giten configuration is



sensitive to the state of genes in the other module, and the cotfigwhich is most
stable may also differ. Let us write the states of the 4 genagr system as A, B, C,
and D; and we will write the stability of a subset of variakdéesx, given the state of a
subset of variableg, as S, y): e.g. the stability of a configuration of M1, given the
state of M2, is written as S(AB,CD). Given the intra-module sginies in our
example system, the effect of 01 and 10 are the same, so wesbilynhbinations of
00, 01, and 11 for each module. Table 1 shows the stability of these catidigsirfor
our example system, using Eq.1.

We immediately notice that the configuration of M1 that is nsteble is strongly
sensitive to the configuration of states in M2. Specifically, the most stablgweation
of M1 when CD=00 is AB=00, and the most stable configuration ofatién CD=11
is AB=11. The systems’ symmetries provide corresponding stabilitiégZor

This example system is therefore sufficient to illustthee following: Although we
have a system that is clearly modular in one respect,dathas strong inter-module
dependencies in another respect: Specifically,dirigturally modular in the sense that
it has stronger (more numerous) intra-module dependencies thanmodate
dependencies, but it has strdngctional inter-module dependencies in the sense that a
simple dynamical property — the most stable configuration fooodute — is strongly
dependent on the state of other modules.

From this example, one might conclude that (despite the apparewctustl
modularity) this system is in fact not modular in respect tgtbperty of ‘most stable

configuration’. However, note that although the configuration of a motateig most



stable is strongly dependent on the state of the other modulejstimeneetheless some
degree ofindependence in this property also. Specifically, we notice that although the
most stable configuration of states may be either 00 or 1hlvesys one of these two
possibilities, and never 01 or 10, regardless of the state of the ailalenThis means
that there is something we know about the property of interest, tst stable
configuration, that isndependent of inter-module interactions.

From these observations we arrive at a means to quantify theemance of a
module, given a property of interest. Specifically, given soropgity that identifies
particular configurations, like the configuration that is most etaleé can assess what
we know about the identity of such states that is independent otatee o other
modules/ the rest of the system. In this example, there ar@dsaible configurations
for a moduleC=4. Accordingly, a meaningful definition of non-decomposability given
some property that identifies particular configurations of thstesy, is that without
knowing the state of the rest of the system we know nothing about whibkse four
possible configurations satisfy this property. For example, supposefoth@very
configuration of M1, there is some configuration of M2 (or the iade of the
system) that would make that configuration of M1 the most stabilehis were the
case, then without knowing the state of M2 we know nothing about which configuration
of M1 satisfies the property of interest and we might reatsigrassert that the system
is non-modular with respect to this property. In our example syitisns not the case.
In fact, there are only two configurations of each module that coaildhéximally

stable. Specifically, regardless of the sate of M2, the couwfigums of M1 that may



satisfy this property will be either 00 or 11. We will referthe maximum number of
configurations that satisfy the property of interest (taken dwerset of all possible
contexts) a£’. As stated, iIC’=C we will call this a non-decomposable system. But in
our example, the number of different configurations of M1 which aremadly stable
for some configuration of M2 i€ '=2.

In general, we will say that whe' < C the system islecomposable. But note that
there is a special case of decomposability wh€re=1 which means that the
configuration of interest is always the same regardlesseo$tate of the remainder of
the system. In this case, the module is fully independent in therpyopf interest, a
case which we calieparable. In the general case where a system is decomposable but
not separable, i.e. 1€’ <C, as in our example, we say the system exhibddul ar
interdependency [11].

Note that in the combination lock example, described by Simon aBéw4, i.e. the
correct setting for a dial is separable from the settingt@radials. For illustration, we
can describe a small modification to the lock example that intredsiteng inter-
module dependencies. Suppose that there meten<100, positions of each dial that
produced a click, and one of these was the correct position for openilagkhé this
case, we must search combinations ofrthigal positions of each dial to open the lock
but the total number of combinations is reduced from'®@mn'°. Thus C =n may be
much smaller than 100 but greater than 1 (as used in Simon’s desgriptso the

modified system would exhibit modular interdependency. This examptays how



modularity may, in principle, reduce the combinatorial searchuined) without
assuming that modules are independent.

The understanding of modularity given above clearly allows meaningful
decomposability whenC’<C, and yet still allows the possibility of important
interactions between modules wh€n>1. Our example system shows that structural
modularity defined by the strength or number of interactions geendency graph
may indicate useful modularity without implying that modules are cqmately
independent or that inter-module interactions are weak or unimportahis kxample,

a simple dynamical property, which configuration is most stablstrongly dependent
on the state of other modules in the system. By defining a concepbdilarity that
accommodates strong and significant inter-module dependencies wallbatla more
general notion of modularity, and also permit the construction of biecautly modular
systems where modules are important at all levels. In conwhsihn modules are
separable, additional hierarchical levels are redundant. This appgoaciifies the
modularity of a dynamical system, like those described by Simwstisn of ‘nearly

decomposable systems’, with respect to a given property of interest.

Evolvability of systems with modular interdependency

Thus we see that in principle, it is possible for a systene tmadular in a quantifiable
sense and yet have strong inter-module dependencies. In this seetidiscwss the
impact of strong inter-module dependencies on the evolvability of corspstems. In

order to facilitate this we must describe some mapping frotesste the system to



fitnesses. If these fithesses exhibit modular interdependencyhilsansill mean that the
evolution of subsystems will be partially but not fully independent ledérosubsystems.
For example, we may suppose that an evolutionary process is adaptiognplex
system that is modular in the manner of our example dynasyst#m, and the fithess
of a state configuration is proportional to the dynamical stapitityrobustness to
perturbation, of that configuration. Such a mapping provides an appromratection
between notions of modularity in dynamical systems and notiomaoadlularity for
evolvability. That is, we can analyse how this kind of modularitgcisf the likelihood
of an evolutionary search process discovering high-fitness configurations géthm s
As we mentioned earlier, it is a familiar idea that gyatem can be decomposed into
modules that are basically independent then an evolutionary picaresgptimise such
a system easily. This intuition aligns directly with the og@sg that Simon provides in
the combination lock example. However, it is also ‘common wisdom’ wWiagn
module interdependencies are strong, having a significant impaditnr@ss and
requiring large changes in sub-system configurations to resaolter-module
dependencies, the system is not in fact decomposable and therefex®lnable. Our
example system shows that this view is perhaps too simplistaube there may still
be meaningful modularity in a system even though inter-module dependaneies
important. The question addressed in this section is what impact modula
interdependency, i.e. 1€°<C, has on evolvability. In particular, can an evolutionary
process exploit this kind of decomposable but not separable syst&revaivability

only enhanced when subsystems are separable?



For these studies we utilised a system with modular intendepey based on our
example system described above. To describe a fitness fungtidnitiag modular
interdependency we may, for example, simply equate fithebsthatstability of a state
configuration. With C” >1, additional hierarchical levels of decomposition are
significant, and here we use a system with several hierarténveds as defined below.
This function, known as ‘Hierarchical Equality’ is a generalsabf ‘Hierarchical-if-
and-only-if’ [13]. To maintain alignment with previous work, the fitness function below
sums the size of all modules that have internally equal sfedtfger than taking a
product of module stabilities), but the functions’ modularity is stratljuthe same as
that described in our example modular system above. Specifitdlhs the same local
optima, and the configuration that is most stable for a module inattieresystem is
the configuration that is most fit in this function. g(s,s\) gives the fitness of a
system with states,s..,s\.

1 JAf N =1

_ K
9(S1s-Sn) = 9 S-S ) + Y. 9(S') otherwise
i=1 Eq.2.

where Sis the 1" variable of the configuration,' & the 1" disjoint sub-partition of the
variables, e.g. for equal sized sub-modulebz,(sﬁk(i.l),...,ski), f is the fithess
contribution function, defined below. N2kvhere H1Z" is the number of hierarchical

levels in the system or subsystem, and k is the number of sub-modules per module.
f(ps,...p)=1 if (Dij: pi=p;), and 0 otherwise, wherélf0,1}.

This function can be used to describe modular systems with any naiikab-



modules per module, and any alphabet of symbols rather than binaryveétowds
sufficient to use two equal-sized sub-modules per module and bindeg. skor
illustration, Table 2 lists all 4-bit strings with their fithesses.

Examination of these fitness values shows that 0011 and 1100 areojicah
separated from both 1111 and 0000, (which are the global optima), by Hamming
distance 2. Thus for the left subset of genes, the most fit coatiguris either 00 or
11, but which of these maximises fitness is dependent on the sttite ofher two
variables - i.e. 1< C<C. As this system is scaled-up through successive hierarchical
levels to 8 variables, and 16 variables, etc., the number of local optimeases and
the distance of each local optimum to the closest point of highes$ also scales-up.
However, as with our example system, the most fit configuratiaways one of a
small number of possibilities (G2), but which of these is most fit is dependent on the
configuration of the rest of the system. These properties, asebehean that the
system is decomposable but the modules are not separable. Thisampdian be
guantified using exactly the same analysis used for the exashypkmical system
above but by using the property of interest ‘which configurationast fit’ rather than
‘which configuration is most stable’. Note that this analysis appto any fitness
function and does not specifically require that there be a dirggpimg to the stability
of a corresponding dynamical system. That is, if the configuraif a module that is
most fit is dependent on context to some extent (i.e1Lbut not entirely (C<C) then
the system exhibits modular interdependency with respect to fitness.

In the following sections, we first discuss the evolvabilityspstems with modular



interdependency under normal gradualist mechanisms of evolutiat: i, adaptive
mechanisms that accumulate random changes in genetic imdtkea we discuss the
evolvability of systems with modular interdependency under mechanigen call
‘compositional’: That is, adaptive mechanisms that involve the exchange of preeadapt
sets or subsets of genetic material between differeng@sefd 1]. We will find that the

evolvability of systems under these different classes of mechanismseisliffigitent.

Evolvability under normal gradual evolution

We can get some understanding of the evolvability of this kind aésybly examining
a particular cross-section through the fitness landscape showgureR. This curve
runs through points from one global optimum to the other making singlerpaiation
changes; see [11]. The separation of peaks on this curve accumilelts the
Hamming distance from a point of this fitness to the nearest point of highesfithes
This curve shows that the landscape is highly rugged and has nwahyojgima
creating broad fitness saddles. It also includes ‘irreducibly aaxhpldaptations that
cannot be reached by a succession of gradually changing protmsyitd. All these
characteristics are usually associated with evolutionary wdlifficand accordingly, it
should not be surprising that simple optimisation processes are uoaliel high-
fitness points in this landscape. In fact, all mutation-based metbadsot be
guaranteed to succeed in time less than exponential in N (the nuwhlzenes)
regardless of the mutation rate used. So a mutation hill-climimergvalutionary

algorithm using only mutation, and simulated annealing all fail dsolve the



interdependencies between modules. In short, accretive variation nszchathat
cannot manipulate modules as wholes cannot resolve the interdepesdestareen
modules to escape from sub-optimal configurations of the system. Aatiewaly
process using sexual recombination and fithess proportionate selsaisn unable to
resolve inter-module dependencies because the population quickly convenges a
the best configuration found thus far and this prevents useful variation from crossover.
In general, the time to resolve inter-module dependencies is ex@bme the size of
the system, N, for gradual mechanisms [11]. This seems to catf@roommonplace
intuition that if modules have strong interdependencies then theytasyolvable and
may as well be understood as being non-decomposable. However, in trsected

we argue otherwise.

Evolvability under compositional evolution

In recent work [11], we introduced the term ‘compositional evolutiondéscribe
evolutionary processes using mechanisms that combine togetrensyst subsystems
of genetic material that have been semi-independently preeadapt parallel in

different lineages. Examples in nature include:

* Normal mechanisms of sexual recombination (under particular conditbns
population diversity and genetic linkage);

* Mechanisms of interspecific genetic integration such as horizgeta¢ transfer
[2], or ‘symbiotic encapsulation’ including endosymbiosis [@hd other

mechanisms that encapsulate a group of simple entities into a goempiy at a



higher level of organisation, as exhibited in several of the ntegmsitions in
evolution [7, 8].

Compositional evolution stands in contrast to the normal graduaistefvork of
evolutionary processes involving the linear accumulation of random ivasat i.e.
where the new genetic material introduced by variations has ot jpe-adapted
elsewhere as a set. Assuming that large random variatiohassarékely to be fitness
positive than small random variations, this ‘accretive’ view adl@ion supports the
familiar assumption of gradual evolutionary change, i.e. ‘suceesslight
modifications’ [1].

From an adaptationist perspective, the important characteastmompositional
mechanisms is that they allow the potential for complex entdiége assembled from a
number of simpler entities evolved in parallel. For example, thaneilgs of the
eukaryote cell (and accordingly all plants and animals) originfitam the union of
more than one prokaryote cell [6]. Variation acting in the spap®sdible assemblies
of extant entities is clearly a different variation spacnfrandom modifications in
genetic material whether small or large. This composition@tan can provide better
evolvability than linear accumulation of random variation when pretadagenetic
material ‘relocated’ from one lineage to another, has aibettance of producing a
fitness positive change than does random genetic material. Sewtoas influence the
likelihood of this: not least, the availability of a variation mewukm that manipulates
appropriate (non-arbitrary) subsets of genetic material — farasegcombination this

places requirements on the ordering of genes on the chromosome [11].



Another requirement, of interest to us here, is the contextudefiehdence of the
fitness benefit of a set or subset of genetic material — im atbegls, the modularity of
the genetic interactions. This latter condition is met bstesys that are strongly
decomposable even if they are not separable, and accordingly, teecerdlitions
under which compositional mechanisms can resolve the interdependengvegrbe
modules [11]. In compositional processes, different lineages carntamautfferent
high-fitness configurations to a module, and then by exchangibgets of genetic
material between lineages, search combinations of different modofegurations to
resolve interdependencies between them. This process is ableploit ehe
combinatorics that are described for the modified defective lockmple, and
accordingly the expected time for sexual recombination, or anaabstymbiogenesis
model, to resolve module interdependencies is, under certain assumpbignsmial
in the size of the system [11]. This kind of combinatorial advantageidad by

assembling modules over successive hierarchical levels is devaogddrmalised in

[2].

Conclusions

In this paper we discussed different types of modularity and eliffeexamples of
modular systems. We showed that structural modularity does nessseiy imply
independence or near independence of subsystems in respect of symguheicdl
properties of the system. This allows important functional depereferioi exist

between modules as per our observations of common modular systems.etVe us



Simon’s examples to show that it is easy to assume modutansysave no important
dependencies between modules, but we are also able to show thaethisohée the
case. We also argued that modular systems without signifinadule interactions
result in degenerate forms of hierarchies where successieks leymodularity have
little or no effect. However, modular systems that are decompolsablet separable,
which we call systems with modular interdependency, can fornarblgcal systems
where all levels of organisation are significant. Our exansgktem relates clearly the
concept of hierarchical modularity in dynamical systems (et described by Simon)
to quantifiable measures of decomposability in corresponding combalatori
optimisation problems — a relationship that is absent in Simon’s hierarchicaplesa

In the later sections of this paper we discussed the evolvabfligystems with
significant inter-module dependencies. As might be expected, $istbns can be
problematic for evolution. However, these systems are evolvable wetédin
evolutionary scenarios which we call compositional evolution. These obises/and
results cause us to think differently about the adaptive potentiabmpositional
evolutionary mechanisms — especially if biological systems@m@rchically modular
[9]. More generally, these observations assist us in clarifgorgepts of modularity
and accompanying assumptions, especially with respect to hiearaynamical

systems and their evolvability.
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Figure captions

Figure 1: An example system of 4 genes, A, B, C, and D, arranged in two moiflileand
M2, where intra-module (and self-recurrent) interactions argrefigth 4, and inter-module

interactions are of strength 1.

Figure 2: A cross-section through the fithess landscape (defined by Eqréesponding to

the stability function or energy surface of the modular dynamical sy§tigni.).






Fitness

Figure 2




ABCD | S(ABCD) S(BACD) | S(AB,CD)=S(ABCD)S(B,ACD)

0000 10/10 10/10 1

0100 6/10 4/10 0.24
1100 8/10 8/10 0.64
0001 9/10 9/10 0.81
0101 5/10 5/10 0.25
1101 9/10 9/10 0.81
0011 8/10 8/10 0.64
0111 4/10 6/10 0.24
1111 10/10 10/10 1

Table 1



g(0000) =12 | g(1000) = 6
g(0001) = 6 9(1001) = 4
9(0010) = 6 9(1010) =4
g(0011) = 8 9(1011) = 6
9(0100) = 6 g(1100) = 8
0(0101) = 4 9(1101) = 6
0(0110) = 4 9(1110)= 6
g(0111) = 6 g(1111) =12

Table 2




