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Abstract— This paper presents a new methodology that enables
extensions of SystemC to the analogue domain and allows
modelling of mixed-signal and mixed energy-domain systems at
arbitrary levels of abstraction. The new language constructs sup-
port analogue system variables, analogue components and user
defined ordinary differential and algebraic equations. Support
for digital-analogue interfaces has been provided for smooth
integration of digital and analogue parts. Associated issues such
as dealing with extremely small and zero time-step sizes have been
addressed. A novel implementation of the lock-step mixed-signal
synchronisation method to integrate the analogue kernel with the
digital one has been proposed. Operation of the extended, mixed-
signal simulation platform, named SystemC-A, is demonstrated
using a suite of numerically difficult AMS examples including a
practical, mixed-signal example of a PLL frequency multiplier
with large-signal noise and jitter.

Index Terms— System-Level Modelling, Mixed-Signal Systems,
SystemC, Synchronisation, Lock-Step, Computer-Aided Design.

I. I NTRODUCTION

Design complexity and demanding time-to-market con-
straints have led to considerable challenges in the develop-
ment of electronic design methodologies and Computer Aided
Design (CAD) tools. The possibility to integrate a complete
complex System on a single Chip (SoC) has started a new
era [1]. SoC has created a need for powerful CAD tools
and methodologies which would be capable of integrating
information from multiple heterogenous sources (analogue
parts, processors, RAM, ROM, etc.) and have the ability to
work at high level of abstractions [2]. Advances in integrated
circuit technology have been the driving force behind the
extensive development of digital HDLs, whilst Analogue and
Mixed-Signal (AMS) high level modelling is lagging behind
and leaving the design community with immature design
methodologies [3]. This has created a gap in the design of
the two different parts which threaten the rate of production.
Despite the success of digital systems, analogue circuitry
is still needed in particular in modern ASICs (Application
Specific Integrated Circuits) designed for telecommunication,
wireless and computer network systems [3]. The design of
analogue blocks in SoC and ASIC is still done to a large
extent manually which requires time and effort together with
specific skills [4]. All of these advances and challenges have
put a pressure on CAD of AMS systems to keep up with the
success of the pure digital CAD.

The Electronic Design Automation (EDA) industry and
academia were trying extensively to meet these needs [5].
One common approach is to model and simulate digital and
analogue systems with digital HDLs and analogue design tools
respectively. Digital HDLs such as VHDL [6], Verilog [7] and

SystemVerilog [8] are used to model digital systems while
analogue design or general purpose equation solving tools such
as SPICE [9] and MATLAB [10] dominate in the modelling
of analogue systems at different abstraction levels. Another
approach is to extend classical HDLs intended originally to
model digital systems to the analogue domain such that both
parts are modelled and simulated in a single environment,
VHDL-AMS [11] and Verilog-AMS [12] being the flagship
examples. The third approach is to readapt software program-
ming languages such as JAVA [13], C/C++ [14] and UML
[15] to model analogue and digital hardware. It can be done
by adding special language constructs for hardware description
and defining hardware description semantics.

The recent trend is toward C++ based modelling [16], [17]
either through libraries or abstractions. C/C++ is alreadyused
by hardware engineers at system level to estimate system per-
formances and verify functional correctness. There are various
C/C++ based HDLs provided both by the EDA community,
e.g. SystemC [18] and SystemVerilog [8], and the academia,
e.g Handel-C [19] and SpecC [20].

SystemC [18] has enjoyed immense popularity since its
introduction in September 1999 and gained a wide acceptance
and support from the industry [21]. SystemC is a standardized
modelling language intended to enable system level design
and Intellectual Property (IP) exchange at multiple abstraction
levels for systems containing both software and hardware
components [22]. These features are required in SoC design
but are not available in any existing HDLs. The latest SystemC
version (V2.0.1) has been in use since 2003. Although it
resembles existing HDLs and adds more features for digital
modelling, it does not support AMS modelling as yet. A
study group was established in 2003 [23] following a proposal
submitted to the SystemC board of directors to form an Open
SystemC Initiative OSCI working group tasked to develop
AMS extensions to SystemC, named SystemC-AMS. This is
proving to be a difficult task as many associated research issues
still remain unresolved.

This paper addresses some of these issues and presents new
methodologies that enable an extension of SystemC to the
analogue domain. The extended language, named SystemC-
A contains new language constructs and associated numer-
ical implementations to allow modelling of general mixed-
signal and mixed energy-domain systems at arbitrary levelsof
abstraction. SystemC-A supports analogue system variables,
analogue components and user-defined Ordinary Differential
and Algebraic Equations (ODAEs), as well as digital-analogue
interfaces to assure smooth integration of digital and analogue
parts.
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II. RELATED WORK

Popular HDLs, such as VHDL [6] and Verilog [7] have
already been extended to provide AMS modelling [11], [12].
With regards to SystemC, a number of research publications
have presented a variety of frameworks and methodologies
related to analogue and mixed-signal applications. These
frameworks are usually developed around additional C++
classes, methods and libraries. Some of the new frameworks
provide, short of defining a fully-fledged AMS extension,
limited analogue modelling capabilities. For instance, O’Nils
et al [24] presented a methodology for quantification of noise
coupling in AMS systems. Starting from a behavioural model
of the system captured in SystemC, wrappers are added to each
block. These wrappers add an estimated power consumption
model for each block, which is triggered by events. The
simulation results compared with circuit simulations in SPICE
[9] showed that their approach is two orders of magnitude
faster than SPICE.

An AMS simulation framework is presented by Bonnerud
et al [25] for simulation of Analogue to Digital data Con-
verters (ADC). The framework contains a C++ mixed-signal
module library that includes a set of customizable primitive,
compound modules and testbenches. They have implemented
a clocking scheme for the scheduling of the AMS blocks to
avoid multiple executions of these blocks due to the SystemC
kernel. They have illustrated the usability of the framework
by applying it to two case studies of pipelined ADCs with
background calibration, achieving comparable accuracy tothat
of MATLAB [10]. Another AMS framework was presented by
Conti et al [26] suggesting a new implementation of analogue
blocks using analogue macromodels. It is a module composed
of two kinds of threads, the calculus thread and activation
threads, one for each input module. They have used two AMS
examples to validate their framework, an oscillator made up
of inverter chain and a complex mixed-signal fuzzy controller.
The results were compared to other tools such as SPICE [9]
and Spectre [27] achieving good results.

Grimm et al [28] presented a top-down modelling and
simulation methodology based on a refinement process and
implementing a library. The design methodology refines an
executable specification to concrete AMS architecture through
three levels of refinement, executable, computation accurate
model and pin accurate model. The execution of the analogue
processes is not controlled by the discrete event kernel; how-
ever the execution is controlled by a coordinator interface. For
complex analogue processes, they used an external analogue
simulator such as Saber [29] or SPICE [9]. The methodology
was evaluated by designing a PWM controller. Another design
methodology presented by Romberg and Grimm [30] based
on refinement process started with a system specification
captured by a new graphical design notations called HyCharts.
The authors claim that Hycharts, which are based on formal
semantics, precisely capture the mixed, continuous/discrete
behaviour.

Einwich et al [31] presented a framework which supports
signal processing dominated applications. The framework is
based on an analogue extension for linear ODAEs and fre-

quency domain modelling. The analogue extension includes a
library of electrical circuit components and transfer functions.
The synchronisation between the synchronous dataflow and
linear continuous time is using a fixed time step. The concept
was illustrated with the design of a telecommunication system
including digital hardware and software and an analogue filter.
Simulations were about 20 times faster than those of Saber.
A framework called AnalogSL is presented by Grimm et
al [32] for the creation of behavioural models of analogue
power drivers. AnalogSL provides classes of components
such as resistors, capacitors, coils and transistors whichcan
be instantiated to form a netlist and then simulated by an
algorithm for linear ODAE. The coupling of the analogue
behavioural model with discrete-event simulators corresponds
to the coupling of different processes in discrete simulators.

A mixed-signal SystemC design environment has recently
been proposed [33] for behavioural modelling, simulation,and
performance evaluation of microelectromechanical and mi-
croelectrofluidic SoCs. Continuous-flow systems such as mi-
crovalves, micropumps and channels are modelled by ODAEs
in SystemC. The continuous equations are solved by using
ODAEs solvers with SystemC, such as derivative and integral,
and add them into a SystemC component behaviour model.
They implemented a higher frequency clock to provide a series
of time intervals for more accurate ODAEs solutions.

Most of these frameworks are application specific exten-
sions [24], [25], [31], [28], [33], or abstraction level specific
ones [24], [25], [26], [32]. What is still missing in the
published research, is a general approach to AMS extensions
in SystemC able to handle a wide class of non-linear dynamic
systems.

III. E XTENSION OUTLINE

The general AMS extension proposed here is superset of
SystemC. The extension covers a wide area of analogue and
mixed-signal modelling as indicated on the comparative map
shown in Fig. 1.
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Fig. 1. The proposed SystemC-A on the map together with the current
languages at different abstraction levels.

Support for various abstraction levels: In addition to
modelling at various abstraction levels provided by the Sys-
temC digital platform, the proposed extension provides extra
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abstraction levels which are specific to analogue systems.
Although our main focus is on the system level to tackle
complexity, the extension is able of modelling at lower levels,
specifically the netlist level and analogue behavioural level.

New syntax elements and classes extending SystemC
to the analogue domain:Modelling of an analogue system
requires a set of ordinary differential and algebraic equations
(ODAEs). ODAEs should be easy to define, automatically
built and updated, and then numerically solved. New language
constructs are implemented for this purpose, such as systems
variables, analogue components and user defined equations.
Digital-analogue interfaces are defined for easy and smooth
integration of the analogue and digital parts. Associated issues
such as dealing with small time step sizes are addressed.

An implementation of continuous-time analysis for sys-
tem level modelling: Necessary continuous-time analyses
suitable for mixed-signal system level modelling are imple-
mented and a flexible manner, which allows the user to define
complex types of time-domain simulations such as large signal
noise analysis. Noise analysis in a mixed-signal context is
difficult to implement with traditional circuit simulatorsas it
must be evaluated in the presence of large signal behaviour
[34].

An analogue kernel implementation: An efficient ana-
logue kernel is developed and integrated to synchronise with
the existing SystemC digital kernel. The algorithms used in
the development of the analogue kernel are highly tuned and
optimized using a suite of numerically difficult analogue and
mixed-signal examples. Examples range from small sets of
ODAEs such as a Lorenz chaos model to non-trivial mixed-
signal systems such as a switched-mode power supply and a
phase-locked loop.

IV. AMS EXTENSION ELEMENTS

The AMS syntax has been designed to facilitate modelling
assuming minimal programming knowledge of a SystemC-A
user. A number of modelling styles are possible, for example
a SPICE-like net-list or VHDL-AMS-like simultaneous equa-
tions with a hierarchy of interconnected blocks as in any HDL.
The SystemC-A nonlinear analogue system is modelled by a
set of nonlinear ODAEs as shown in Eqn (1).

f(v(t), v̇(t), t) = 0 t ≥ 0, v(0) = v0 (1)

where f : RN × RN × R1 → RN is a vector function,
v(t) ∈ RN is a vector of unknowns,̇v(t) is a vector of the
unknown derivatives with respect to time,N is the number of
unknowns andt is time.

A. Analogue system variables

In the set of ODAEs Eqn (1), the analogue system variables
v(t) are the unknowns. The C++ concept of inheritance is used
to define various types of analogue system variables, such as
nodes, currents and free variables. In the proposed extension,
they represent a hierarchy of system variables, all derivedfrom
an abstract base class. Currently only three types of variables
derived from the base class have been defined, and this proved

enough to model the application examples presented later. The
hierarchy can be extended further to accommodate other types
of applications.

B. Analogue components

Analogue circuit components provide equations to describe
analogue behaviour. Similarly to the system variable hierarchy,
components are derived from an abstract base class which con-
tains a virtualbuild method invoked by the analogue kernel. A
sample component hierarchy is illustrated in Fig. 2. It includes
examples of SPICE-like circuit elements such as resistor,
capacitor, inductor, diode and various types of autonomous
sources. Arbitrary differential and algebraic equations can be
included as user-defined components.

Abstract base class
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sc_a_voltage_


source

User defined

component
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source_ramp
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source_sin
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VCO


Fig. 2. Analogue components inheritance hierarchy.

A typical component class instantiation contains a pair of
node pointers and a value. For example, a capacitor can be
instantiated as follows:

sc_a_capacitor *c1= new sc_a_capacitor("c1", nodeA, nodeB, C);

where c1 is the component’s instance name, nodeA and
nodeB, are names of analogue system variable objects of type
nodeand represent the two terminals to which the capacitor
is connected, and C is the capacitance. The component base
class constructor attaches each newly created instance to a
global linked-list of system components to form a connected
circuit. The list is used at the matrix build time. All the
components are scanned to invoke their build functions. A
netlist of an analogue circuit can be constructed by declaring
system variables of typenode and analogue components as
shown in the following code of the loop filter in a phase-
locked loop. Fig. 3 shows its corresponding schematic.

n2 = new sc_a_node("n2");
n0 = new sc_a_node("0");
n1 = new sc_a_node("n1");
sc_a_currentS *I1 = new sc_a_currentS("I1", n1,n0,&Iin);
sc_a_capacitor *c1 = new sc_a_capacitor("c1",n1,n2,3e-9);
sc_a_resistor *r1 = new sc_a_resistor("r1",n2,n0,1e3);
sc_a_capacitor *c2 = new sc_a_capacitor("c2",n2,n0,4e-9);

C. Virtual build method

The build method, which specifies the analogue behaviour
of a component, is a virtual method with a default body
in the abstract component base class. Its code defines one
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Fig. 3. The corresponding schematic of circuit description.

or more ODAEs. For example, Fig. 4 shows the capacitor
representation as a SystemC-A component. The Figure shows
the capacitor’s differential equation, its representation after
discretisation (S and Xn are discretisation operators), its
Jacobian stamp and part of the corresponding build method in
C++. The resulting Jacobian stamp conforms to the Modified
Nodal Analysis formulation MNA. Calls to BuildRhs, build
the differential equations for the capacitor (the right hand
side RHS). Calls to BuildM, which build the corresponding
Jacobian entries are optional. If these calls are not provided,
the solver will build the Jacobian using a secant approach
with finite difference approximation of the Jacobian entries.
The entire equation set is formulated automatically at each
Newton-Raphson iteration by scanning the components and
invoking their build methods.

void capacitor::build(void){
...
S=Sn();
CVdotn=C*S*(Xdot(a)-Xdot(b));

    BuildM(a,a,S*C);
    BuildM(a,b,-S*C);
    BuildM(b,a,-S*C);
    BuildM(b,b,S*C);

    BuildRhs(a,-CVdotn);
    BuildRhs(b,CVdotn);
}
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Fig. 4. Capacitor equation and build function.

V. D IGITAL -ANALOGUE INTERACTIONS

Connectivity between analogue and digital models requires
special consideration since analogue and digital parts operate
in two disparate mathematical domains. SystemC-A allows
insertion of special interface objects directly between digital

signals and analogue system variables. These interface models
have no corresponding physical parts. This interfacing solution
is similar to that adopted in Verilog-AMS.

interfaceDA is a SystemC-A module which contains an
input port of typebool and an output port of typedouble. A
digital signal coming from the digital module is transformed
into a smoothed analogue signal and directed towards the
analogue module through the output port. The interface applies
a smoothing function to prevent numerical difficulties in
the analogue simulation due to abrupt transitions resulting
from events on a digital node. The smoothing is done by
Backward Euler integration with a very small time constant.
This method is also capable of handling in a reliable manner
the analogue solution in the presence of extremely small step
sizes, including zero step sizes that occur in delta cycles.

interfaceADis a SystemC-A module which takes analogue
signal of typedouble and produce a digitalbool signal. The
criteria to generate a digital event are simple: if the specified
analogue threshold E is exceeded, an event driving the output
signal with thetrue value is generated. An event driving the
output signalfalse is produced when the analogue input falls
below the threshold. The digital part will react to this event
if a concurrent statement reads this signal or if the sensitivity
list of a process contains this signal.

VI. A NALOGUE KERNEL

The analogue kernel consists of layers of several algorithms.
Its main function is to build and solve the set of non-linear
dynamic equations associated with the analogue part of the
model. The flow chart in Fig. 5 shows the modelling and
simulation flow details, illustrating how a general AMS system
is solved by SystemC-A.

The component constructors in the user code will run first,
initialising all the variables. Then, the simulation is started by
executing the SystemC command (scstart()) to formalise and
solve the defined model. The Newton-Raphson NR nonlinear
solver is first initialised (iterationz = 0) and then in every
NR iteration, the component list is scanned to invoke the
build functions which add the contribution of each component
to the system matrix (J) and right-hand side vector (RHS).
At each NR iteration the linear solver (based on the LU
factorisation method) is called. Once the system equationsare
solved for incremental solution∆x, the solutionx is updated
(x = x + ∆x) and tested for convergence. If the convergence
criteria are not satisfied, the NR continues iterating. When
convergence is reached, the analogue solver exits the NR
algorithm and the kernel proceeds with the digital processes
if required. Then, the next time point is calculated using the
current Local Truncation Error (LTE) estimate. The solver then
schedules an event at the next time point.

VII. T IME SYNCHRONISATION BETWEEN ANALOGUE AND

DIGITAL SOLVERS

One of the most important problems in mixed-signal simula-
tion is the time synchronisation between the event-driven dig-
ital simulation and the numerical integration in the analogue
solver. Synchronisation is a key issue affecting the simulation
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Fig. 5. Modelling and simulation flow chart of the SystemC-A solver.

speed and accuracy [35]. The idea of synchronisation is
to modify the time stepping engine such that it fits into
the event-driven paradigm [36]. The synchronisation is then
accomplished by the event-driven simulator, which processes
the events in the chronological order of their time stamps.

The major function of a mixed-signal simulator is syn-
chronizing the two distinct algorithms so information can be
exchanged without incurring errors or undue overhead. There
are two fundamental approaches to time synchronisation at
the analogue and digital interfaces, pessimistic and optimistic
[35], [36], [37]. In the pessimistic approach, the simulators
progress with the same time step. This approach ensures that
there is no need for backtracking and no results are thrown
away. One well-known example is the lock-step method. The
optimistic approach allows each simulator to progress in time
until it runs out of internal events. If an event from another
simulator is generated before the end of this optimistic time

interval, all results generated after that event are discarded.
This means that simulators must be able to backtrack. Exam-
ples are Backplane [38], Ping-pong [35] and Calaveras [39].
The approach adopted here is the lock-step method.

The analogue simulator calculates the step sizes and the
digital simulator uses these values. The analogue kernel ad-
vances until the current simulation time and, before sus-
pending, schedules an event at the time equal to the current
simulation time plus the next selected step size. This has been
implemented by inserting a call in the SystemC kernel to the
analogue kernel before the evaluation phase of the digital
simulation cycle. This approach ensures that the SystemC
kernel will make a step in time no larger than the analogue
solver’s step size. Since the analogue solver is controlledby
the SystemC kernel, no synchronisation deadlock may happen.

Lock-step has been used by many commercial mixed-
signal simulators, such as Lsim Power Analyst from Mentor
Graphics and Pspice from Microsim Corporation. The lock-
step pessimistic approach has been used in preference to the
optimistic one because the prospect of wasting vast amounts
of CPU time by the optimistic approach was considered too
costly [35]. Also, the adopted method eliminates the need
for backtracking and no results are thrown away. There were
claims that the lock-step method produces ridiculously long
runtimes [40]. However, this is true when the method is used
to synchronise analogue and digital simulator from two or
more different environments, because of the communication
overhead. When two solvers are synchronised within the same
environment, the lock-step approach is not expected to produce
significant overheads.

VIII. C ASE STUDIES

This section presents three case studies, ranging from simple
to complex, to verify functionality of the SystemC-A mixed-
signal simulator. The Lorenz chaos is a system of simple
ODAEs that demonstrate the modelling capabilities of the
simulator at behavioural level. The Switched-Mode Power
Supply (SMPS) and 2GHz Phase-Locked Loop(PLL) based
frequency multiplier are non-trivial mixed-signal systems. Sys-
tems of this kind usually put standard SPICE-like simulators
into difficulties because of the disparate time scales of their
transients. In the case of the SMPS, the analogue transient
in the output circuit is four to five orders of magnitude
slower than that of the fast switching waveform in the digital
controller. A typical simulation in a system of this kind might
require few millions time points. Excessive CPU times often
occur when the entire system is modelled on the circuit level.
The capacity of SystemC-A to enable AMS modelling at
behavioural level can vastly reduce simulation times when
concepts need to be verified quickly and detailed circuit level
modelling is not required.

A. Lorenz Chaos

The Lorenz chaos [41] system is most commonly expressed
as three coupled non-linear ODAEs shown in Eqs. (2), (3) and
(4)).
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ẋ = σ(y − x) (2)

ẏ = x(ρ − z) − y (3)

ż = xy − βz (4)

The SystemC-A model of the Lorenz chaos equations
contains three free analog system variablesx, y and z with
the following initial values:x(0) = 0, y(0) = 5, z(0) = 25.
The build method which provides code for the equations and
the corresponding Jacobian entries is shown in the code below.
Fig. 6 shows the familiar Lorenzxz butterfly trajectory.

void LorenzChaos::build(void){
sigma = 10.0, rho = 28.0, beta = 8.0/3.0;
S = Sn();
Xn = X(x), Yn = X(y), Zn = X(z);
Xdotn = Xdot(x), Ydotn = Xdot(y), Zdotn = Xdot(z);

// callbacks to build Jacobian
BuildM(x,x,S + sigma);
BuildM(x,y, -sigma);
BuildM(x,z,0);
// callback to build equation
BuildRhs(x,-Xdotn + sigma*Yn - sigma*Xn );

BuildM(y,x,-rho + Zn);
BuildM(y,y,S+1);
BuildM(y,z,Xn);
BuildRhs(y,-Ydotn + rho*Xn - Yn - Xn*Zn );

BuildM(z,x,-Yn);
BuildM(z,y,-Xn);
BuildM(z,z,S + beta);
BuildRhs(z,-Zdotn + Xn*Yn - beta*Zn);

}
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Fig. 6. Lorenz chaosxz butterfly trajectory.

B. Switched-Mode Power Supply

This example is a boost (step-up) [42] 3.3V regulator
operating from a 1.5V source (Fig. 7). The analogue part of the
model is an idealized boost SMPS with four basic components,
namely a power semiconductor switch, a diode, an inductor,
and a capacitor. The digital part is a pulse width modulator
(PWM) controller. This SMPS uses a high frequency switch
with varying duty cycle to maintain the output voltage.

The analogue part of the system was modelled at circuit
level using analogue components from the simple analogue
components library developed for SystemC-A as explained
in Section IV-B, whereas the digital PWM is modelled as
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Fig. 7. Boost 1.5V/3.3V switched mode power supply with digital control.

a standard SCMODULE at behavioural level. Simulations
were carried on a Windows 2000 computer an AMD Athlon
1400 MHz processor and 512 MB RAM. The system was
simulated for 0.2 seconds, when it reaches the steady state.
Sample results at the steady state is shown in Fig. 8. The
waveforms represent correspondingly the output ripple, error
signal, inductor current, fast switching ofVcontrol and voltage
at the transistor drain. Simulation statistics are shown inTable
I.
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Fig. 8. SMPS simulation results for a 200ms time window in steadystate
of the boost SMPS working in continuous mode.

C. Phase-Locked Loop

Fig. 9 shows a block diagram of a digital PLL [43], [44] in a
frequency synthesizer configuration. It consists of a reference
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TABLE I

SMPSSIMULATION STATISTICS

Simulation time 200m Sec
Number of steps 2 Millions

CPU time 232.1 Sec

source, a phase/frequency detector, a charge pump, a loop
filter, a voltage controlled oscillator (VCO), and a digital
divider.
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Fig. 9. 2GHz Phase Locked Loop with noise and jitter.

1) Noise Module:PLL noise behaviour is difficult to pre-
dict with traditional circuit simulators because of the repetitive
large-signal switching events, which are an essential partof the
PLL operation, hence noise performance must be evaluated
in the time-domain [34]. Most classical simulators, SPICE
being the best example, are not capable to simulate noise
in PLLs as they can normally calculate small-signal noise
around a quiescent operating point. Currently, the best suited
simulator for PLL noise analysis is SpectreRF [34], which
is capable of predicting the noise behaviour about a periodic
operating point. In SystemC-A suitable large-signal noise
modules can be constructed with no difficulty. For our PLL
example a standard function was developed to generate a
periodic process for a Gaussian white noise using the Box-
Muller method to turn two uniformly distributed random
sequences into two unity amplitude normal random X and
Y (mean = 0 and variance = 1) sequences which can be
scaled to the required levels.

In this example two methods of modelling noise are im-
plemented. The first method allows adding noise sources at
any components and therefore provides a more accurate noise
behaviour. Two different VCO models, presented in more
detail in the following subsections, have been developed for
both noise methods. In the first method the noise is injected
by the controlled current source of the charge pump, although
every PLL component is a potential noise source. The charge
pump signal can be expressed as:

Inoisy(t) = Ipump(t) + Inoise(t) (5)

Consequently, the phase of the VCO is subject to noise
(referred to as the phase noise) which will manifest itself as
jitter in the output waveform:

Phasenoisy = Phase(θ + Jitter(θ)) (6)

In the second noise method, a noise source is added to
perturb the VCO pulse directly. This perturbation represents
the total effect of any noise source in the PLL. In this method
[45] the total effect of noise is modelled in the VCO by
scaling and adding the generated noise module output to the
VCO phase where it is turned into jitter. The second method,
although cruder than the first one, has the advantage of shorter
CPU times since the system will be simulated with larger step
sizes to cover variations in the VCO pulses every 0.5 ns.

2) VCO 1: Here the VCO frequency is the rate of change
of the phase,

θ̇(t) =
dθ

dt
= f(v) = fc + df ∗ Vfilter

Where Vfilter is the output voltage of the loop filter,fc

is the center frequency of the VCO, anddf = fmax−fc

Vmax

is
the VCO gain. The first VCO model is an analogue module
in which the frequency is numerically integrated to compute
the output phase which is used to generate the desired output
signal. Output transitions are generated when the phase passes
the value of 0.5 (the phase unit corresponds to a proportion
of the duty cycle) in either direction. As SystemC-A allows
different types of analogue descriptions to work together,the
VCO was modelled here at behavioural level as an equation
class rather than a netlist at circuit level. The VCO class is
derived from the base component class and it contains its own
methods to add the VCO contribution to the system Jacobian.
Partial code of the VCO class is shown below.

vco::vco(char nameC[5],SystemVariable *node_a, sc_signal<bool>
*Vout): component(nameC,node_a, 0, value){

Vco=Vout;
theta = new sc_a_free_variable("theta");

}

void vco::build(void){
...

phase = X(theta);
phase = fmod(phase,1.0);
Pnoise = SampleNoise();
PhaseNoisy = phase + Pnoise;
if (PhaseNoisy > 0.5)

Vco->write(true);
if (PhaseNoisy < 0.5)

Vco->write(false);

fmin = 0.5e9, fmax = 5e9, Vmax = 3.3, df, fc = 2e9;
df= (fmax-fc) / Vmax;
S=Sn();
Qdotn = Xdot(theta);
freq = fc + df * (a->readn());

if (freq < fmin || freq> fmax){
if (freq < fmin )

freq = fmin;
else

freq = fmax;

BuildM(theta,theta,S);
BuildM(theta,a,0);
BuildRhs(theta,-Qdotn + fc + (a->readn()) * df);

}
else{

BuildM(theta,theta,S);
BuildM(theta,a,-df);
BuildRhs(theta,-Qdotn + fc + (a->readn()) * df);

}
}
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3) VCO 2: In the second noise method the VCO is a
SystemC digital module, rather than an analogue component
with a phase integrator, as shown in the following code:

void VCO2::Vf(){
Tnow = sc_time_stamp().to_seconds();
if (Tnow >= Tnext*0.99999){

fmin=0.5e9, fmax=5e9, Vmax=3.3, df, fc=2e9;
df= (fmax-fc) / Vmax;
freq = fc + df * (Vfilter.read());
if (freq < fmin )

freq = fmin;
else

freq = fmax;

period=1/freq;
amp=25e-12;
jitter = SampleNoise()*amp;
Tafter = (period*0.5);
Tnext=Tnow+Tafter+jitter;
Vosc.write(!Vosc.read());

}
VCOphase.notify(Tnext-Tnow,SC_SEC);
Vout.write(Vosc.read());

}

4) Simulation: With the first noise model, the system was
simulated using extremely small analogue steps, much smaller
that those calculated by the LTE control strategy. This was
required to reflect accurately the effects of noise and jitter.
The second noise method uses a simpler VCO model which
does not require small step sizes as explained above.

The classinterfaceAD developed as part of SystemC-A,
could have been used in this example to convert signals be-
tween the analogue and digital worlds. Instead, an alternative
approach based on direct connection between the modules was
used. Here the two modules share the same digital signal
or analogue node and conversion between the analogue and
digital worlds is done implicitly within the modules. Interfaces
between modules can be implemented in many different ways,
for example directly through signal ports or analogue system
variable ports, which is recommended especially at system
level, or by nodes at analogue circuit level. In this examplethe
connection between the LPF and VCO1 illustrates an analogue
interface using node terminals.

The system response during the first eight micro seconds of
the simulation, slow transients of the low pass filter voltage
for both noise methods and histograms illustrating the VCO
jitter are shown in Figures 10, 11 and 12 correspondingly. The
histograms present the VCO jitter percentage occurrence for
5ps buckets and were calculated from the simulation results
when the loop was in lock for both noise methods. Both sets
of results illustrate similar behaviour.

5) Comparison with VHDL-AMS using both PLL mod-
els: Although a comparison of analogue simulators is not
necessarily a fair process because simulators vary in their
algorithms, methods, accuracy criteria and many details are
kept hidden, we have used the PLL models to compare the
speed of SystemC-A with that of the SystemVision VHDL-
AMS simulator from Mentor Graphics [46]. Simulations were
carried out on a Windows 2000 computer with an AMD
Athlon 1400 MHz processor and 512 MB RAM. A fixed
time step was used in both simulators to suppress effects of
the analogue time stepping factor. In the first noise method,
where the 200µsec time interval was analyzed with the time
step of 10ps, SystemC-A took 16 minutes and 55 seconds
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Fig. 10. 2GHz PLL frequency synthesizer simulation results.
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while SystemVision took 1 hour and 4 minutes on the same
machine. This represents a factor of almost three times in
favor of SystemC-A. Table II shows relevant statistics. For
the simulation with the second noise method, the system was
simulated again for an interval of 200µsec and analyzed with
time step of 0.2ns. Simulations took only 67 and 138 seconds
in SystemC-A and SystemVision correspondingly.

TABLE II

PLL SIMULATION FIGURES

Noise Method (1) Noise Method (2)
Number of steps 20 Millions 10 Millions

Time step 10ps 0.2ns
(SystemC-A) CPU time 16m 55s 1m 7s

(SystemVision) CPU time 1h 4m 14s 2m 18s
Simulation time 200µs 200µs

IX. CONCLUSION

AMS extensions to SystemC, and a new superset of the
language named SystemC-A, have been proposed. A future
adoption of SystemC-A may provide significant advantages



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXX. 9

[ps]

-25 -20 -15 -10 -5 0
5

10 15 20 25
noise

method 2

noise

method 1

0

10

20

30

40

50

60

70

[%]

Fig. 12. VCO jitter histogram for the two noise methods.

in the modelling of modern heterogenous SoC. SystemC-A
is an environment to model and simulate systems consisting
of hardware/software, as well as digital and analogue parts
at a variety of abstraction levels (from circuit to concept
level). The proposed SystemC-A constructs can be extended
easily to model many aspects of mixed energy-domain systems
which may include electrical and non-electrical parts. Other
advantages are the following. (1) High abstraction: SystemC-A
provides the required high level of design abstraction required
for the multi-million transistor era. In addition it also supports
low abstraction levels required when modelling critical parts
of any system. (2) Speed: SystemC-A can simulate complex
systems at much higher simulation speeds than those offered
by existing HDLs. (3) Extra modelling features: SystemC-A
is based on the C/C++ language which is familiar to most
hardware/software designers. Also it has all the properties
of general programming languages. This gives a freedom in
modelling and allows for description of very complex AMS
systems in a user friendly manner. In many respects, SystemC-
A resembles the semantics of standard HDLs. However, it
has features which do not have their counterparts in existing
HDLs, for example transient noise analysis. (4) Model reuse:
In SystemC-A, a model can inherit properties of another, base
model which gives an efficient way of model code reuse and
helps significantly in the modelling process. Finally, it can be
concluded from the examples that SystemC-A is a powerful
and an easy-to-learn alternative to existing HDLs.
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