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ABSTRACT

We consider perceptron-like algorithms with margin in which the standard classifica-

tion condition is modified to require a specific value of the margin in the augmented space.

The new algorithms are shown to converge in a finite number of steps and used to approx-

imately locate the optimal weight vector in the augmented space following a procedure

analogous to Bolzano’s bisection method. We demonstrate that as the data are embedded

in the augmented space at a larger distance from the origin the maximum margin in that

space approaches the maximum geometric one in the original space. Thus, our algorithmic

procedure could be regarded as an approximate maximal margin classifier. An important

property of our method is that the computational cost for its implementation scales only

linearly with the number of training patterns.
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1 Introduction

Rosenblatt’s perceptron [7] is the simplest on-line learning algorithm for binary linear

classification [4]. In its original form it does not insist on finding a non-zero margin of the

dataset from the solution hyperplane but cares only for correct classification. It is generally

believed that the larger the margin of the dataset the greater is the generalisation ability

of the learning machine. For this reason a variant of the perceptron algorithm, known as

the perceptron with margin, was introduced. This new algorithm converges to a solution

possessing a non-zero margin which, however, is an unknown fraction of the maximum

existing one. The problem of finding the optimal margin hyperplane has been successfully

addressed only with the advent of the simplest Support Vector Machine (SVM) [8,3], the

maximal margin classifier [2].

Our purpose in the present work is to address the problem of maximal margin classi-

fication using the less time consuming, compared to SVMs, perceptron-like algorithms. We

work in an augmented by one additional dimension space [4] in which we embed the data by

placing them at a distance ρ in the extra dimension and replace the classification condition

of the perceptron with a new one which insists on a specific value of the margin in this

augmented space. We show that the algorithms with the modified condition converge in a

finite number of steps and use them to approximately locate the solution with maximum

margin in the augmented space. Our search is performed employing a procedure which

resembles Bolzano’s bisection method. Finally, we derive an upper bound on the geomet-

ric margin involving the maximum margin in the augmented space and the displacement

distance ρ of the data in the additional dimension. From this upper bound follows that in

the limit ρ →∞ the maximum margin in the augmented space approaches the maximum

geometric one in the original space. Thus, our algorithmic procedure could be considered

an approximate maximal margin classifier.

In the process of proving convergence of the algorithms with the new type of condition

we found useful to introduce the notion of stepwise convergence, the property of the algo-

rithms to approach in each step the optimal solution vector. This led to a unified approach

in establishing convergence of a large class of algorithms with additive perceptron-like up-

date rules irrespectively of the type of the classification condition.

The organisation of the paper is as follows. Section 2 contains our theoretical analysis

and consists of 3 subsections. The first subsection deals with the convergence of algorithms

with standard margin condition while the second subsection is concerned with the con-

vergence of the new algorithms with fixed margin condition which fall into two categories

depending on whether the length of the weight vector is free or fixed. The last subsection
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contains our considerations which lead to an estimate of the geometric margin. In section

3 we describe the algorithmic implementation aiming at an approximate determination of

the maximum margin. Finally, section 4 contains our conclusions.

2 Theoretical analysis

In what follows we make the assumption that we are given a training sample which, if

not initially linearly separable, by an appropriate feature mapping into a space of a higher

dimension [1,2] can be classified into two categories by a linear classifier. This higher

dimensional space in which the patterns are linearly separable will be our original space.

By adding to the original space one additional dimension and placing all patterns in the

same position in that dimension we construct an embedding of our data in the so-called

augmented space.

In this paper we study algorithms that update the augmented weight vector āt by

adding a suitable positive amount in the direction of the misclassified (according to an

appropriate condition) training pattern ȳk. In the general case this amount exhibits a

dependency on the current step which could be due to the current weight vector and/or

the misclassified training pattern which is presented to the algorithm at the specific step.

As such, this amount should be considered a function of time and be denoted by ft. For

the special case of the perceptron algorithm ft = 1. Thus, the general form of the update

rule is

āt+1 = āt + ηftȳk, (2.1)

where η is the learning rate and should be considered a constant parameter of the algorithm.

Each time the predefined condition is satisfied by a training pattern the algorithm proceeds

to the update of the weight vector. Throughout our discussion a reflection with respect to

the origin in the augmented space of the negative label patterns is understood in order to

allow for a common classification condition for both categories of patterns [4].

2.1 Algorithms with the standard margin condition

First we examine algorithms in which the misclassification condition that should be checked

takes the form

ȳk · āt ≤ b, (2.2)
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where b is a positive parameter. The condition characterising optimally correct classification

of the training patterns by a weight vector ū of unit norm in the augmented space is

ȳk · ū ≥ γd ∀k. (2.3)

The quantity γd, which we call the optimal directional margin, is defined by the relation

γd = max
ū

min
k
{ȳk · ū} . (2.4)

From its definition it becomes obvious that γd is bounded from above by r = min
k
‖ȳk‖.

The optimal directional margin determines the maximum distance from the origin in the

augmented space of the hyperplane normal to ū placing all training patterns on the positive

side. In the determination of this hyperplane only the direction of ū is exploited with no

reference to its projection onto the original space. As a consequence the above maximum

margin in the augmented space is not necessarily realised with the same weight vector that

gives rise to the optimal geometric margin in the original space.

We analyse the algorithms with the general update rule (2.1) by calculating an upper

bound on the number of updates until the solution is found. To achieve this we resort to an

extension of Novikoff’s theorem [6] for which it is required that ft be positive and bounded,

i.e.

0 < fmin ≤ ft ≤ fmax. (2.5)

Throughout we use the shorthand notation R = max
k
‖ȳk‖. From the difference of the inner

products of ū with the weight vector āt at successive time steps we have

āt+1 · ū− āt · ū = ηftȳk · ū ≥ ηfminγd. (2.6)

A repeated application of Eq. (2.6) with the assumption that āt is initially set to zero

implies that

‖āt‖ ≥ āt · ū ≥ ηfminγdt, (2.7)

which gives us a lower bound on ‖āt‖. By calculating the difference of the squared norms

of the weight vectors in consecutive steps we obtain

‖āt+1‖2 − ‖āt‖2 = η2f 2
t ‖ȳk‖2 + 2ηftȳk · āt ≤ η2f 2

maxR
2 + 2ηfmaxb. (2.8)

A repeated application of Eq. (2.8) leads to the following upper bound on ‖āt‖

‖āt‖ ≤
√

(η2f 2
maxR

2 + 2ηfmaxb)t. (2.9)

Combining Eqs. (2.7) and (2.9) we get the squeezing relationship

ηfminγdt ≤ āt · ū ≤ ‖āt‖ ≤
√

(η2f 2
maxR

2 + 2ηfmaxb)t (2.10)
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from which the following time bound for convergence is derived

t ≤ tN ≡ 2
fmax

fmin

(
1

2

fmax

fmin

R2

γ2
d

+
1

ηfmin

b

γ2
d

)
. (2.11)

A very desirable property of an algorithm is certainly convergence in each step which

we now examine. By this we mean that after each update the weight vector moves closer

to the optimal vector. From Eq. (2.7) it is obvious that for t > 0 we have

ūt · ū > 0, (2.12)

where ūt is the weight vector āt normalised to unity. Because of Eq. (2.12) the criterion for

stepwise angle convergence of ūt to the optimal ū, namely

ūt+1 · ū− ūt · ū > 0, (2.13)

can be equivalently written as

(ūt+1 · ū)2 − (ūt · ū)2 > 0. (2.14)

The above inequality motivates us to consider the following quantity

D ≡ (ūt+1 · ū)2 − (ūt · ū)2 =
1

‖āt+1‖2 ‖āt‖2

{
(āt+1 · ū)2 ‖āt‖2 − (āt · ū)2 ‖āt+1‖2}

=
1

‖āt+1‖2 ‖āt‖2

{
(āt · ū + ηftȳk · ū)2 ‖āt‖2 − (āt · ū)2(‖āt‖2 + η2f 2

t ‖ȳk‖2 + 2ηftȳk · āt)
}

= 2ηft
(āt · ū)

‖āt+1‖2

{
ȳk · ū− (ūt · ū)(ȳk · ūt)−

ηft

2(āt · ū)

(
‖ȳk‖2 (ūt · ū)2 − (ȳk · ū)2

)}
.

(2.15)

Here use has been made of the update rule (2.1). The demand for positivity of D satisfies

our objective for stepwise convergence. We observe that ȳk · ū appearing in Eq. (2.15)

is definitely positive due to Eq. (2.3). Unfortunately, we cannot make the same assertion

regarding the other two terms in brackets. However, as the number of steps increases (āt ·ū)

increases with time as well because of Eq. (2.7), thereby making the term quadratic in η

negligible. Moreover, a slight transformation of Eq. (2.2) to

ȳk · ūt ≤
b

‖āt‖
(2.16)

shows that the misclassification condition becomes less restrictive with time. As a result

the term (ūt · ū)(ȳk · ūt) keeps decreasing. Thus, for time t larger than a critical time tc
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positivity of D is accomplished. By placing bounds on the terms in brackets in Eq. (2.15)

and using Eqs. (2.2), (2.3) and (2.7) we obtain

ȳk · ū− (ūt · ū)(ȳk · ūt)−
ηft

2(āt · ū)

(
‖ȳk‖2 (ūt · ū)2 − (ȳk · ū)2

)
≥ γd −

b

‖āt‖
− ηfmax

2(āt · ū)

(
R2 − γ2

d

)
≥ γd −

1

2ηfminγdt

(
2b + ηfmax(R

2 − γ2
d)
)
.

(2.17)

From the above inequality and demanding positivity of D the time sufficient for stepwise

convergence to begin is

tc ≡
1

2

fmax

fmin

R2

γ2
d

(
1− γ2

d

R2

)
+

1

ηfmin

b

γ2
d

. (2.18)

Between tc and the time tN , derived from Novikoff’s demand that the algorithm converges

eventually, the following inequality holds

tN > 2
fmax

fmin

tc. (2.19)

Therefore, unless the algorithm terminates much before Novikoff’s time bound is exhausted,

it will definitely enter the phase of stepwise convergence.

It would be interesting to estimate the margin that the algorithm is able to achieve.

By substituting Novikoff’s time tN into Eq. (2.9) we obtain a time-independent upper

bound on ‖āt‖

‖āt‖ ≤
ηR2 + 2b

γd

(2.20)

which, in turn, provides a lower bound βmin on the directional margin β = b
‖āt‖ appearing

in the misclassification condition of Eq. (2.16)

βmin =
fmin

fmax

γd(
2 + ηfmax

R2

b

) . (2.21)

We see that the maximal guaranteed value of the directional margin that the algorithm is

able to achieve is 1
2

fmin

fmax
γd for vanishingly small values of the learning rate η or for b � R2

[5]. Notice that the existence of a directional margin means that there exists a geometric

margin at least as large as the directional one. This is due to the fact that the projection of

the augmented weight vector āt onto the original space has a length which cannot exceed

‖āt‖.

In our analysis so far we required that the function ft appearing in the update rule

of Eq. (2.1) be bounded as in Eq. (2.5) in order for the algorithm to converge. However,
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although a positive and bounded ft is a sufficient condition for convergence it is by no

means a necessary one. To illustrate the above statement we consider the function

ft =
bu − āt · ȳk

‖ȳk‖2 (2.22)

with bu even slightly larger than the parameter b of the misclassification condition of Eq.

(2.2). This update is a minor modification of the well-known single-sample relaxation

algorithm with margin [4] in which bu = b so that ft is allowed to vanish. We observe that

fmin =
bu − b

R2
> 0 (2.23)

leading to a lower bound on ‖āt‖ as in Eq. (2.7). In contrast, no upper bound fmax exists

since ft can increase indefinitely if āt · ȳk is negative and large. Nevertheless we can obtain

an upper bound on ‖āt‖ as we shall see shortly. To this end we calculate the difference of

the squared norms of the weight vectors in consecutive steps

‖āt+1‖2 − ‖āt‖2 = 2η(2− η)
bu − āt · ȳk

‖ȳk‖2

{
bu

2− η
− 1

2
(bu − āt · ȳk)

}
(2.24)

and we notice that the r.h.s. of the above equation has a maximum with respect to the

quantity (bu − āt · ȳk) for

(bu − āt · ȳk)opt =
bu

2− η
, (2.25)

provided 0 < η < 2. Substituting this value in Eq. (2.24) we obtain

‖āt+1‖2 − ‖āt‖2 ≤ η

(2− η)

b2
u

r2
(2.26)

where r = min
k
‖ȳk‖. Then, a repeated application of the above inequality leads to the

upper bound

‖āt‖2 ≤ η

(2− η)

b2
u

r2
t. (2.27)

Combining Eqs. (2.7) and (2.27) we get the squeezing relationship

ηfminγdt ≤ āt · ū ≤ ‖āt‖ ≤
bu

r

√
η

2− η
t (2.28)

from which the following time bound for convergence is derived

t ≤ 1

η(2− η)

(
R2

bu − b

)2
b2
u

r2γd
2
. (2.29)
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2.2 Algorithms with fixed directional margin condition

Next we examine algorithms where the misclassification condition assumes the form

ȳk · ūt ≤ β, (2.30)

where β is a positive parameter. Notice that the above condition amounts to requiring a

minimum directional margin which is not lowered with the number of steps. Therefore,

successful termination of the algorithm leads to a solution with a guaranteed geometric

margin at least as large as the directional margin β found. This is an important difference

from the misclassification condition of Eq. (2.2) which, as Eq. (2.16) illustrates, cannot

by itself guarantee a minimum directional margin and consequently a geometric one. The

condition for optimally correct classification remains the same as in the previous case

ȳk · ū ≥ γd > β (2.31)

while the demand for a positive and bounded ft according to Eq. (2.5) still holds. As an

example of such a bounded function, in addition to the commonly used ft = 1, we mention

the function

ft = 1− β
ūt · ȳk

‖ȳk‖2 . (2.32)

We consider two cases depending on whether the length of the weight vector is free or fixed.

2.2.1 Algorithms with free-length weight vector

In the usual case that the weight vector is free to grow indefinitely a repeated application of

Eq. (2.6) with the assumption of initialisation of āt from zero leads again to Eq. (2.7). As

a concequence Eq. (2.12) is once more recovered. Therefore, positivity of D is equivalent

to stepwise convergence. Placing a lower bound on the term of D which is linear in η we

obtain

ȳk · ū− (ūt · ū)(ȳk · ūt) ≥ γd − β, (2.33)

which is definitely positive on account of Eq. (2.31). Furthermore, because of Eq. (2.7) the

terms quadratic in η which are not necessarily positive become less important with time

leading to positivity of D for t larger than a critical time tc. Using Eqs. (2.7), (2.30) and

(2.31) we can place a constant lower bound on the quantity in D appearing in brackets, i.e.

ȳk · ū− (ūt · ū)(ȳk · ūt)−
ηft

2(āt · ū)

(
‖ȳk‖2 (ūt · ū)2 − (ȳk · ū)2

)
≥ γd−β− 1

2

fmax

fmin

1

γdt
(R2−γ2

d).

(2.34)
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From the above inequality and the requirement that D be positive the estimated time

sufficient for the onset of stepwise convergence is

tc ≡
1

2

fmax

fmin

R2

γ2
d

(
1− γ2

d

R2

)
(
1− β

γd

) . (2.35)

It is worth noticing that the critical time tc turns out to be independent of the learning

rate η.

Now that we have guaranteed the convergence of the algorithm as a consequence of

the stronger statement of stepwise convergence we proceed to a derivation of a time bound.

Our procedure will be to provide an upper bound on ‖āt‖ which together with the lower

one of Eq. (2.7) are finally combined in a Novikoff-like squeezing relationship. For the

derivation of an upper bound we first use Eq. (2.1) to obtain

‖āt+1‖2 = ‖āt‖2 + 2ηftȳk · āt + η2f 2
t ‖ȳk‖2 = ‖āt‖2

(
1 +

2ηft

‖āt‖
ȳk · ūt +

η2f 2
t

‖āt‖2‖ȳk‖2

)
. (2.36)

Taking the square root and using the inequality
√

1 + x ≤ 1 + x
2

we have

‖āt+1‖ ≤ ‖āt‖
(

1 +
ηft

‖āt‖
ȳk · ūt +

1

2

η2ft
2

‖āt‖2 ‖ȳk‖2

)
. (2.37)

We now observe that the difference of ‖āt‖ at successive time instants satisfies the inequality

‖āt+1‖ − ‖āt‖ ≤ ηfmaxβ +
η

2

f 2
max

fmin

R2

γd

1

t
. (2.38)

Here we have made use of the lower bound on ‖āt‖ given by Eq. (2.7) and of the misclas-

sification condition of Eq. (2.30). A repeated application of the above inequality t − N

times gives

‖āt‖ − ‖āN‖ ≤ ηfmaxβ(t−N) +
η

2

f 2
max

fmin

R2

γd

(
1

N
+

1

N + 1
+ . . . +

1

t− 1

)
. (2.39)

Since we initialise the weight vector from zero ‖āN‖, which is entirely generated by the first

N updates, satisfies the obvious bound

‖āN‖ ≤ ηfmaxRN. (2.40)

Replacing ‖āN‖ by this upper bound into Eq. (2.39) and employing the inequality

n2∑
k=n1

1

k
≤
∫ n2

n1

dt

t
+

1

n1

= ln
n2

n1

+
1

n1

, (2.41)
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justified by the fact that 1
t

decreases monotonically, we obtain the following upper bound

on ‖āt‖

‖āt‖ ≤ ηfmax

{
RN + β(t−N) +

1

2

fmax

fmin

R2

γd

(
ln

t− 1

N
+

1

N

)}
. (2.42)

Squeezing ‖āt‖ between its lower bound of Eq. (2.7) and its upper bound of Eq. (2.42) we

obtain a relation which constrains the growth of the number t of the steps of the algorithm{
N

fmin

fmax

γd

R

(
1− fmin

fmax

γd

R

)
+

1

2N
+ ln

√
t− 1

N

}−1

(t−N) ≤
(

fmax

fmin

R

γd

)2
1(

1− fmax

fmin

β
γd

) .

(2.43)

Taking N = 1 and noticing that

fmin

fmax

γd

R

(
1− fmin

fmax

γd

R

)
≤ 1

4
, (2.44)

since the function x(1 − x) has a maximum value of 1
4
, we obtain the looser but simpler-

looking bound
t− 1

3 + ln (t− 1)2 ≤
1

4

(
fmax

fmin

R

γd

)2
1(

1− fmax

fmin

β
γd

) . (2.45)

Minimising the upper bound of Eq. (2.42) with respect to N we obtain the optimal value

Nopt =

[
1

2

fmax

fmin

R

γd

1(
1− β

R

)]+ 1, (2.46)

where [x] denotes the integer part of x. For the near-optimal choice N = Nopt−1, assuming

Nopt > 1, and noticing that

(Nopt − 1)
fmin

fmax

γd

R

(
1− fmin

fmax

γd

R

)
≤ 1

2
(2.47)

we obtain the bound

t−Nopt + 1

1 + 1
Nopt−1

+ ln
(

t−1
Nopt−1

) ≤ 1

2

(
fmax

fmin

R

γd

)2
1(

1− fmax

fmin

β
γd

) . (2.48)

We would like to point out that unless fminγd − fmaxβ is positive the inequalities (2.43),

(2.45) and (2.48) do not lead to upper bounds on t. However, this failure of obtaining an

upper bound on the number of steps does not reflect lack of convergence which has already

been proved independently. Actually, convergence occurs in a finite number of steps given

that ‖āt‖ increases at most linearly with time. Of course, for the perceptron-like algorithm

of this type where ft = 1 we have an upper bound in all cases which interestingly enough
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has a dependence on the difference between the optimal directional margin γd and the

input directional margin β that the algorithm is seeking. The same difference appears in

the expression for the critical time tc of Eq. (2.35). Another extremely interesting property

of all algorithms of the class we are discussing is the independence of the time bound on

the learning rate η a property shared by the perceptron algorithm with zero margin. This

independence from the learning rate has already been apparent from Eq. (2.35) giving the

time for the onset of stepwise convergence.

2.2.2 Algorithms with fixed-length weight vector

Finally we examine a class of algorithms in which a condition identical to that of Eq. (2.30)

is checked in order to decide whether a training pattern is characterised as misclassified.

The main difference with respect to the previous case is that the augmented weight vector

has constant length throughout the algorithm. This is achieved by a renormalisation of the

length of the newly produced weight vector to the value β defined in Eq. (2.30) each time

the update of Eq. (2.1) takes place, i.e.

āt+1 = β
āt+1

‖āt+1‖
= βūt+1. (2.49)

Like in the previous algorithms we demand that ūt · ū > 0 for all t. This condition is

ensured by an appropriate choice of the initial condition. Notice that in this particular

class of algorithms āt cannot be initialised from zero since use of the unit vector ūt is made

in each update. We propose that the initial unit vector ū0 be chosen in the direction of one

of the ȳk’s. In this case, due to the form of the update rule and the positivity of ft, it is

obvious that the vector āt is a linear combination with positive coefficients of the training

patterns. Therefore, since according to Eq. (2.31) ȳk satisfies ȳk · ū > 0 the same is true for

āt and consequently for ūt. Positivity of ūt · ū allows us to use positivity of D defined by

Eq. (2.15) as a criterion for stepwise convergence. Taking a closer look at D reveals that

according to Eq. (2.33) the term linear in η remains positive throughout the algorithm.

For the term quadratic in η which has no definite sign we conclude that an appropriate

choice of η can render it smaller than the term linear in η, thereby leading to stepwise

convergence from the first step of the algorithm. More specifically, by placing lower bounds

on the quantity appearing in brackets in Eq. (2.15) using Eqs. (2.30), (2.31) and (2.49) we

have

ȳk ·ū−(ūt ·ū)(ȳk ·ūt)−
ηft

2 ‖āt‖

(
‖ȳk‖2 (ūt · ū)− (ȳk · ū)2

ūt · ū

)
≥ γd−β− ηfmax

2β
(R2−γ2

d). (2.50)
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Positivity of D is achieved for values of η smaller than the critical value ηc

ηc ≡
2

fmax

(γd − β)β

(R2 − γ2
d)

. (2.51)

After having shown that the algorithm converges step by step our next move will be

to place an upper bound on the number of the updates. We proceed by placing a lower

bound on 1
‖āt+1‖ employing Eq. (2.37) and the inequality (1 + x)−1 ≥ 1− x

1

‖āt+1‖
≥ 1

‖āt‖

(
1− ηft

‖āt‖
ȳk · ūt −

1

2

η2ft
2

‖āt‖2 ‖ȳk‖2

)
. (2.52)

Using the above inequality and the update rule we have

ūt+1 · ū =
āt · ū + ηftȳk · ū

‖āt+1‖
≥ (ūt · ū +

ηft

‖āt‖
ȳk · ū)

(
1− ηft

‖āt‖
ȳk · ūt −

1

2

η2ft
2

‖āt‖2 ‖ȳk‖2

)
= ūt · ū

+
ηft

‖āt‖

{
ȳk · ū− (ūt · ū)(ȳk · ūt)−

1

2

ηft

‖āt‖
(
‖ȳk‖2 ūt · ū + 2(ȳk · ū)(ȳk · ūt)

)
− 1

2

η2ft
2

‖āt‖2 ‖ȳk‖2 ȳk · ū
}

.

(2.53)

We now observe that the difference ūt+1 · ū− ūt · ū can be bounded from below by a constant

ūt+1 · ū− ūt · ū ≥
ηfmin

β

{
(γd − β)− ηfmax

2β
R2

(
1 +

2β

R

)
− η2f 2

max

2β2
R3

}
. (2.54)

Here we made use of Eqs. (2.30), (2.31) and of the fact that ‖āt‖ = β. A repeated

application of Eq. (2.54) with a rearrangement of the terms on its r.h.s. in powers of(
ηfmaxR

β

)
gives

ūt · ū− ū0 · ū ≥
fmin

fmax

{
γd − β

R

(
ηfmaxR

β

)
− 1

2

(
1 +

2β

R

)(
ηfmaxR

β

)2

− 1

2

(
ηfmaxR

β

)3
}

t.

(2.55)

By setting the final condition ūt · ū = 1 implying convergence and taking into account that

ū0 · ū > 0 we obtain the time bound

t <
fmax

fmin

{
γd − β

R

(
ηfmaxR

β

)
− 1

2

(
1 +

2β

R

)(
ηfmaxR

β

)2

− 1

2

(
ηfmaxR

β

)3
}−1

. (2.56)

The above time bound can be optimised with respect to the parameter η. The resulting

optimal value of η is approximately given by

ηopt =
1

fmax

(γd − β)β

R2

(
1 +

2β

R

)−1

. (2.57)
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Substituting the optimal value of η into Eq. (2.56) we obtain the optimised time bound

t < 2
fmax

fmin

R2

(γd − β)2

(
1 +

2β

R

)(
1− γd − β

R

(
1 +

2β

R

)−2
)−1

. (2.58)

From the above expression we observe that our time bound is analogous to the one of the

perceptron without margin with the main differences being a factor of 2 and the replacement

of γ2
d by (γd − β)2.

2.3 Estimating the optimal geometric margin

In this subsection we attempt to place an upper bound on the optimal geometric margin

of a training set in terms of the optimal directional margin in an augmented space which

is the original one supplemented with an additional dimension. All the patterns are placed

in the position ρ0 = ρ > 0 in that additional dimension and then a reflection with respect

to the origin is performed. As a result of such a reflection the patterns that fall into the

first category (positive projection on the weight vector) have the coordinate ρ0 = ρ in the

additional dimension with the others (negative projection on the weight vector) having the

coordinate ρ0 = −ρ.

If we denote by ā = [w̄ w0] a weight vector in the augmented space that classifies the

patterns correctly then the geometric margin γ(ā) of the set can be calculated from

γ(ā) = min
k
{ā · ȳk} ‖w̄‖−1 = min

k

{
[w̄ w0][x̄k ρ0]

T
}
‖w̄‖−1 = min

k
{w̄ · x̄k + w0ρ0} ‖w̄‖−1 ,

(2.59)

where w̄ and x̄k are the components in the original space of ā and ȳk, respectively and |w0|
‖w̄‖ρ

is the distance from the origin of the hyperplane normal to w̄. Since the maximum value

that this distance can take is Rx = max
k
‖x̄k‖ we obtain

|w0|
‖w̄‖

≤ Rx

ρ
. (2.60)

The directional margin γd(ā) that corresponds to γ(ā) can be evaluated using the relation-

ship

γd(ā) =
‖w̄‖
‖ā‖

γ(ā) (2.61)

from which

γd(ā) ≤ γ(ā) (2.62)

13



follows since ‖w̄‖ ≤ ‖ā‖. Taking the norm of ā we obtain

‖ā‖ =

√
‖w̄‖2 + w2

0 ≤ ‖w̄‖

√
1 +

R2
x

ρ2
= ‖w̄‖ R

ρ
. (2.63)

Here use has been made of Eq. (2.60) and of the fact that

R2 = ρ2 + R2
x. (2.64)

Substituting Eq. (2.63) in Eq. (2.61) we get

γ(ā) ≤ R

ρ
γd(ā). (2.65)

In the case that the weight vector ā is the optimal one āopt maximising the geometric margin

we have

γ ≡ γ(āopt) ≤
R

ρ
γd(āopt). (2.66)

Taking into account that γd = max
ā

γd(ā) ≥ γd(āopt) and γ = max
ā

γ(ā) ≥ max
ā

γd(ā) = γd

the above inequality leads to

1 ≤ γ

γd

≤ R

ρ
. (2.67)

For ρ = 1 Eq. (2.67) gives γ ≤ Rγd. By placing the patterns at a distance Rx in the

additional dimension we achieve an optimal geometric margin of at most
√

2γd [3]. In the

limit ρ → ∞ Eq. (2.64) implies that R
ρ
→ 1. Then from Eq. (2.67) follows that in this

limit the optimal directional margin γd tends to the optimal geometric one γ

lim
ρ→∞

γd = γ. (2.68)

The above analysis leads to the important conclusion that an algorithm seeking the

optimal directional margin is equivalent to an algorithm that looks for the optimal geometric

margin if the training patterns are translated infinitely far from the origin in the augmented

space. This, of course, is achieved at an infinite computational cost since R, which appears

in the time bounds, tends to infinity.

3 Algorithmic implementation

In this section we present two algorithms seeking the optimal directional margin which,

however, due to the analysis of subsection 2.3 could be used to approximately obtain

the optimal geometric margin. The data used by both algorithms are mapped into an
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augmented space where the length of the translation |ρ| in the additional dimension is

treated as a free parameter controlling the balance between the geometric margin to be

achieved and the computational cost.

The first implementation makes repeated use of the free-length weight vector algo-

rithm of subsection 2.2.1 with any positive and bounded function ft in its update rule. The

choice of this specific algorithm is justified by the fact that it is independent of the learning

rate η which otherwise would have to be appropriately tuned. In each round of its repeated

application the algorithm looks for a fixed unrelaxed directional margin β according to the

condition ūt · ȳk > β. Each round lasts until the condition is satisfied by all the training

patterns or until an upper bound on the number of checks over the training set is reached.

The range of values that β can take and therefore the interval that the algorithm should

search extends from 0 to r = min
k
‖ȳk‖. The search can be performed efficiently by using a

procedure similar to the Bolzano-bisection method. Initially ā0 is set to zero and a margin

β = r
2

is asked for with a step parameter being set to r
2
. If the algorithm comes up with

a solution vector ā satisfying the imposed margin constraint without exhausting the upper

number of checks the round is considered successful. The weight vector ā is stored as the

best solution found so far and is exploited as the initial value ā0 of the next trial. This way

the procedure of finding a better solution in a subsequent round is speeded up substantially

since such an ā lies probably closer to a weight vector which gives rise to a larger margin

than the weight vector ā0 = 0 and thus constitutes a better guess as an initial condition. At

the end of each trial the step is divided by 2. In the case that a trial ends successfully the

target value of the margin β in the next round is calculated by adding to the previous one

the present step otherwise β is reduced by the same amount. Therefore, on the condition

that the upper number of checks is set to a sufficiently large value, the procedure guaran-

tees that the deviation of the margin β from the maximum one is reduced by a factor of

2 in each round. The algorithm is terminated when the step reaches a certain predefined

desirable level, thereby determining dynamically the number of rounds.

The second implementation tries to take advantage to some extent of the time spent

in unsuccessful trials.To accomplish this the upper bound on the number of checks of the

condition in each round is divided between a module with the condition mentioned above

and one which uses the relaxed condition āt·ȳk > b. If the number of checks dedicated to the

first module is exhausted without the condition being satisfied by all the patterns then the

algorithm proceeds to the second module. There, in the place of b we use β ‖āf‖ where āf is

the āt when leaving the first module. If the second module terminates without exhausting

the specified number of checks the directional margin is computed as β ‖āf‖ / ‖ās‖, where

ās is the weight vector when leaving the second module. The round is considered successful
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only if a solution is found during the execution of the first module. At the end of each

trial the margin found is compared to the best one until that point and the largest of the

two is kept together with the solution weight vector found which is exploited as an initial

condition of the next round. The change of β in each round is performed here the same

way as in the first implementation. The only difference is that if β as calculated from the

bisection procedure is less than the best margin stored (obviously as a result of a successful

second module of some previous unsuccessful trial) then this value of β is already achieved

as a margin by the training patterns and therefore the algorithm proceeds without checking

the misclassification condition considering the present step as successful.

Before concluding this section we would like to emphasise that, although the time

required by our algorithmic procedure to find a near-optimum margin is not necessarily

smaller than the time required by other methods if the training sets are relatively small,

our method is certainly faster for large data sets. This is due to the fact that our algorithm,

which does not use dual variables, has a running time which scales linearly with the number

of training points.

4 Conclusions

In summary, we examined the convergence of perceptron-like algorithms with margin and

developed a criterion for the stronger requirement of stepwise convergence which allowed us

to adopt a unified approach in the theoretical analysis. We also proposed a new class of such

algorithms in which the standard classification condition is replaced by a more stringent

one which insits on a fixed value of the directional margin and proved that they converge in

a finite number of steps. An algorithmic implementation reminiscent of Bolzano’s bisection

method made possible a fast search through the whole interval of allowed values for the

optimal directional margin. We subsequently showed that as the distance in which the

data are placed in the additional dimension of the augmented space increases the optimal

directional margin approaches the optimal geometric one. This observation transforms our

algorithmic procedure into a fast and simple approximate maximal margin classifier.
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