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Universal adaptive control of satellite formation flying

R. PONGVTHITHUM{, S. M. VERESz, S. B. GABRIELz and E. ROGERS§*

{Department of Mechanical Engineering, Chiang Mai University, Thailand
zSchool of Engineering Sciences and University of Southampton, Southampton SO17 1BJ, UK

§School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

(Received August 2004; accepted November 2004)

In this paper, a new universal adaptive control scheme for satellite formation flying is devel-

oped. The underlying idea of our design is to combine the domination design and the mono-

tone adaptive gain. This scheme is guaranteed to have the properties of position tracking and

full adaptivity against all parameters. Simulation studies are given which establish that imple-

mentation of this scheme would not require unachievable actuator signals.

1. Introduction

A new adaptive control law is developed for satellite

formation flying which has recently become an impor-
tant field of research in the space industry due to the

benefits which can arise from this mode of operation.
In particular, formation flying of several smaller satel-

lites, instead of operating a single larger one, has the
benefits of (i) a more cost effective synthetic aperture

radar (SAR) for observations, (ii) graceful degradation:

the failure of the on-board system on one satellite does
not necessarily result in failure of the whole mission,

(iii) increased flexibility since satellites can change/alter
their specific roles, and (iv) smaller overall cost because

of the reduced total mass put into orbit. SAR forms
the basis of several missions to be launched by ESA

(MicroSAR and TerraSAR programmes) and NASA
(EO-1 programme). These advantages (Sabol et al.

2001) can only become available with the development
and implementation of robust and reliable systems for

controlling the formation. The on-board controllers

should be the simplest possible and still must allow for
the broadest class of manoeuvres with the maximum

possible degree of efficiency.
The control of satellites in formation is currently the

subject of much research effort in the control systems

community at large (see, e.g. Leonard et al. 1999,

de Queiroz et al. 2000, Yeh et al. 2000), using a variety

of configurations and control algorithms. For enhanced
reliability, control topologies with decentralized capa-
bilities are preferable. One possibility here is to replicate

the same control hardware on each craft and allow the
software to determine which satellite is the leader and

which are followers. This paper addresses the generic
problem of tracking a prescribed path by a follower rela-
tive to a leader satellite, and hence can be applied in

various situations: for instance where there is a single
leader and all the rest are followers or where each
satellite follows the next in a chain.

For a cluster of satellites, the term ‘formation

keeping’ is used to describe the control mechanism
which is employed to keep them in fixed relative
positions in either the inertial or the local coordinate

system in orbit. The term ‘manoeuvre’ of one satellite
relative to the other is used to describe the change in

the relative position of two satellites in either of the
coordinate systems. Clearly, what is formation keeping
in one coordinate system could qualify for manoeuvre

in another, and formation keeping in one coordinate
system usually refers to the orbiting of a satellite
around the leader in another coordinate system. By con-

vention, the satellite that uses active control
action is termed the slave or follower satellite and the
other is termed the master or leader.

Figure 1 illustrates the coordinate systems involved

and illustrates manoeuvres of satellites from position
B, B

0

to positions A, A
0

, respectively. The origin*Corresponding author. Email: s.m.veres@ecs.soton.ac.uk
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of each coordinate system is fixed to a leader satellite

without active control, i.e. in natural orbit. Hence in for-

mation keeping the controller of the follower also has to

compensate for the disturbances acting on the leader.
Using the Hill (1878) equations, Sabol et al. (2001)

investigated four classes (in-plane, in-track, and two

circular ones) of stationary ‘natural’ formations in

which pairs of satellites could, in principle, fly without

control actuators. Simulations in Sabol et al. (2001),

however, showed significant drift would always arise

due to natural disturbances and concluded that active

control action is needed to keep the satellites in any

formation. In Veres et al. (2002) the robust constrained

control problem was solved for circular orbits and

McInnes (1993) has used artificial potential functions

to guide the craft along a path and to ensure obstacle

avoidance without parameter adaptation.
Using full non-linear dynamics instead of the Hill

linearization, adaptive control has been developed

by Wong et al. (2001). They used a nonlinear model

included full non-linear dynamics, disturbances and

leader control inputs. Including the leader, control

meant that the model represented a much wider class

of the leader’s orbit, beyond Keplerian orbits. In

Wong et al. (2001), asymptotic tracking has been

proven in the case when the masses of the follower

and leader satellites are unknown constants, and the dis-

turbances are periodic with known periods, which is a

restrictive assumption. Furthermore, the adaptive con-

troller uses five-dimensional adaptive gain and depends

on the leader position, orbit and control inputs, i.e. con-

stant communication between the leader and the fol-

lower is needed.
Based on the non-linear model in Wong et al. (2001),

the main objective in this paper is to develop an adap-

tive control scheme that further enhances the degree of

adaptivity with respect to all parameters presented

while minimizing the communication between both

satellites and design complexity. The new features are

as follows.

. The adaptive controller is independent of both satel-

lites’ parameters, the leader position, orbit and con-

trol inputs.
. All model parameters could be unknown and

time varying. Allowing the model parameter to be

time varying is important since for example, the

masses of both satellites could be changed due to

fuel consumption and the angular velocity ! and

the angular acceleration _!! could be changed due to

a non-circular orbit.
. Compared to the approaches based on Hill

equations, the satellite cluster can move on an elliptic

orbit as well as non-Keplerian orbits.
. No communication between both satellites is

needed assuming that the follower can measure rela-

tive position and velocity. Hence, decentralized

control can be implemented. This is particularly

important when deploying a large fleet of satellites.
. The leader satellite can actually alter its orbit while

the follower satellites track/maintain the formation.

This is particularly important for Earth observa-

tions.
. The dimension of our adaptive gain is one which is

the minimum.
. There is no requirement for the disturbances to be

periodic.

The generic adaptive tracking solution developed here

includes various formation flight topologies. In figure 2

the arrows indicate the tracking pairs of satellites. This

paper focuses on the development of, and performance

predictions for, a new algorithm for designing a univer-

sal adaptive formation flying controller and therefore

obstacle avoidance and observer design are not

discussed.

zl

xl
yl

Figure 1. The generic control problems of actively control-

ling a follower satellite’s position relative to the leader on a

natural orbit, in either the inertial or local coordinate systems,

depending on the purpose of the formation. Control laws for a

cluster of satellites can be derived from a solution to this gen-

eric problem.

(a) (b)

Figure 2. Tracking topologies: (a) star formation (b) chain

formation.
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2. Dynamical equations

Consider the following set of equations describing the

non-linear relative motion dynamics of two satellites
(Wong et al. 2001)

€xx� 2! _yy� _!!y�!2xþ
�x

kRþ qk3
�
ulx

ml
� Fdx ¼

ux

mf

€yyþ 2! _xxþ _!!x�!2yþ
�ðyþ rÞ

kRþ qk3
�

�r

kRk3
�
uly

ml
� Fdy ¼

uy

mf

€zzþ
�z

kRþ qk3
�
ulz

ml
� Fdz ¼

uz

mf

ð1Þ

where R ¼ ½0, r, 0�T is the position vector from the iner-
tial coordinate attached to the centre of the Earth to the

leader satellite described in the local coordinate frame

fxl, yl, zlg, q ¼ ½x, y, z�T is the position vector of the fol-
lower satellite relative to the leader satellite in the local

coordinate fxl, yl, zlg, ul ¼ ½ulx, uly, ulz�
T is the control

input of the leader satellite, u ¼ ½ux, uy, uz�
T is the control

input of the follower satellite, ! is the orbital angular

velocity of the leader satellite, � is the Earth’s gravita-
tional constant, ml and mf are the masses of the leader

satellite and the follower satellite respectively, and

FdðtÞ ¼ ½FdxðtÞ,FdyðtÞ,FdzðtÞ�
T is a bounded unknown

time-varying disturbance.
Here we consider the problem of adaptive position

tracking of the relative position of the follower satellite.

Specifically, we concentrate on the following control
problem:

Problem of adaptive practical position tracking: Given
a constant ">0 and a bounded reference signal

qrðtÞ ¼ ½xrðtÞ, yrðtÞ, zrðtÞ�
T
2 C1 whose derivative is also

bounded, find, if possible a Crðr � 0Þ adaptive controller
of the form

_KK ¼ �ðq, qrðtÞÞ, K 2 R

u ¼ �ðq,K , qrðtÞÞ, u 2 R
3

ð2Þ

such that

(a) the states of the closed-loop system (1) and (2) are
well-defined on ½0, þ1Þ and bounded;

(b) there is a finite time T" > 0 such that the closed-loop
system (1) and (2) trajectories satisfy

kqðtÞ � qrðtÞk < ", 8t � T" > 0: ð3Þ

Throughout this paper we make the following

assumptions.

Assumption 1: There exists an unknown constant
M1 � 0 such that

kqrðtÞk þ k _qqrðtÞk � M1, 8t � 0: ð4Þ

Assumption 2: There exists an unknown constant
M2 � 0 such that

j!ðtÞj þ j _!!ðtÞj þ kulðtÞk þ kFdðtÞk � M2, 8t � 0: ð5Þ

Assumption 3: There exists an unknown constant
m > 0 such that

0 < jmf ðtÞj þ jmlðtÞj � m, 8t � 0: ð6Þ

Note: In systems theoretic terms, it is also possible to
treat � as an unknown quantity.

It is worth mentioning that we only assume
the boundedness property in Assumptions 2 and 3.
We do not assume continuity. Hence, all of the
parameters and functions discussed in Assumptions 2
and 3 could be discontinuous. This allows us to deal
with a large class of parameters and functions and
results in a more robust adaptive control law compared
to Wong et al. (2001).

3. Main result

Theorem 1: Under Assumptions 1 and 3, the problem
of adaptive practical position tracking of (1) is solved by
the adaptive controller

ux

uy

uz

2
66664

3
77775¼

� �ee1þð1þKÞe1½ � 1þKþK �ee22þ e22þ e21
� ��

þK3 �ee21þ1
� �

þKe21
�

0
@

1
A

� �ee2þð1þKÞe2½ � 1þKþK �ee21þ e21þ e22
� ��

þK3 �ee22þ1
� �

þKe22
�

0
@

1
A

� �ee3þð1þKÞe3½ � 1þKþK3 �ee23þ1
� �

þKe23
� �

2
6666666666664

3
7777777777775

ð7Þ

where e ¼ q� qr, �ee ¼ _qq, the monotone non-decreasing
function, KðtÞ � 1, is governed by

_KK ¼

sat� kq� qrk �
"

2

� �
, kq� qrk �

"

2

0, kq� qrk <
"

2

8><
>:

with Kð0Þ ¼ 1, 8� > 0 ð8Þ

and the saturation function sat�ðsÞ 2 R is defined by
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sat�ðsÞ ¼
s, jsj � �

sgnðsÞ�, jsj > �
8s 2 R:

(
ð9Þ

Proof: The proof is based on a modified version of the

result in Lin and Pongvuthithum (2003) which combines
the domination design and a monotone adaptive gain.

In contrast to the result in Lin and Pongvuthithum
(2003), which only deals with a high-order non-linear

SISO system, here we show that this result can be
extended to deal with the multi-input multi-output

system (1).
First, we define a change of coordinates by

e ¼ ½e1, e2, e3�
T
¼ q� qr, �ee ¼ ½ �ee1, �ee2, �ee3�

T
¼ _qq: ð10Þ

Then using equation (10), the system (1) can be written
as

_ee ¼ �ee� _qqr

_�ee�ee ¼ f ðe, �eeÞ þ gðq, rÞ þDðtÞ þ
1

mf
u ð11Þ

where

f ¼

f1

f2

f3

2
664

3
775¼

2! �ee2 þ _!!e2 þ !2e1

�2! �ee1 � _!!e1 þ !2e2

0

2
664

3
775,

g ¼

g1

g2

g3

2
664

3
775¼

��x=kRþ qk3

�ð�ðyþ rÞ=kRþ qk3 þ �r=kRk3Þ

�ð�z=kRþ qk3Þ

2
664

3
775 ð12Þ

D ¼

D1

D2

D3

2
664

3
775¼

_!!yr þ !2xr þ ðulx=mlÞ þ Fdx

� _!!xr þ !2yr þ ðuly=mlÞ þ Fdy

ðulz=mlÞ þ Fdz

2
664

3
775: ð13Þ

Consider a Lyapunov function

Vðe, �Þ ¼
1

2
eTeþ

m

2

X3
i¼1

�2i , �i ¼ �eei þ ð1þ KÞei: ð14Þ

Then the derivative of equation (14) along equation
(11) satisfies

_VV ¼
X3
i¼1

ei _eei þm�i fiðe, �eeÞ þ giðq, rÞ þDiðtÞð½ Þ

þð1þKÞ _eei þ _KKei
��
þ

m

mf
ð�1ux þ �2uy þ �3uzÞ: ð15Þ

Using Assumption 1 and the completion of the
squares technique, it is easy to show that

e1 _ee1 ¼ e1 �ee1 � e1 _xxr � e1 �ee1 þ je1jM1

� e1 �ee1 þ Ke21 þ
M2

1

4K

¼ �e21 þ e1�1 þ
M2

1

4K

�
�e21 þ �21

2
þ
M2

1

4K
:

Applying the same process to the terms i¼ 2, 3, we have

X3
i¼1

ei _eei �
1

2

X3
i¼1

�e2i þ �2i
� �

þ
3M2

1

4K
ð16Þ

and again using the completion of the squares
technique, it follows that

mj�1f1ð�Þj � mj�1j 2j!jj �ee2j þ _!!j jje2j þ !2je1j
� �

� mj�1j 2M2j �ee2j þM2je2j þM2
2 je1j

� �
� K�21 �ee22 þ e22 þ e21

� �
þ
m2 4M2

2 þM2
2 þM4

2

� �
4K

¼: �21�̂�1ðe, �ee,KÞ þ
�̂�1
K

mj�2f2ð�Þj � mj�2j 2j!jj �ee1j þ _!!j jje1j þ !2je2j
� �

� mj�2j 2M2j �ee1j þM2je1j þM2
2 je2j

� �
� K�22 �ee21 þ e21 þ e22

� �
þ
m2 4M2

2 þM2
2 þM4

2

� �
4K

¼: �22�̂�2ðe, �ee,KÞ þ
�̂�2
K
: ð17Þ

Next, we derive an upper bound on the terms
involving K in equation (15), where using the fact that
KðtÞ � 1, we obtain

m�i ð1þ KÞ _eei þ _KKei
� �
� mj�ij ð1þ KÞðj �eeij þM1Þ þ �jeijð Þ

� mj�ij 2Kðj �eeij þM1Þ þ �jeijð Þ

� �2i K3 �ee2i þ 1
� �

þ Ke2i
� �

þ
m2 4þ 4M2

1 þ �2
� �

4K

¼: �2i ���iðe, �ee,KÞ þ
���i
K
, i ¼ 1, 2, 3: ð18Þ
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To obtain an upper bound on the remaining terms in
equation (15), we assume that for i ¼ 1, 2, 3, there
exists an unknown constant c such that

jgiðq, rÞj � c ð19Þ

jDiðtÞj � c: ð20Þ

Then from Assumptions 1–3, equation (20) follows
immediately. In general, equation (10) is not true, but
in this particular application area it always holds since
the radius of the leader satellite, R, is very large and,
in particular, several orders larger than the relative
position of the follower satellite, q. To give a rough
idea, if the leader satellite is in the orbit at the attitude
of 600 km, it is easy to show that jgij � 2, 8kqk �

600 km: With such a large margin of q and relatively
small bound, q(t) can be easily guaranteed to stay
within 600 km under a typical setup where qr(t) and
q(0) are only several kilometers. For a more concrete
proof, Remark 2 provides a way to estimate the compact
and invariant set containing qðtÞ, t � 0: Thus, equation
(19) can be verified.
Using equations (19) and (20), we now have that

mj�ijjgiðq, rÞ þDiðtÞj � K�2i þ
~��i
K
, ~��i ¼ m2c2 ð21Þ

and combining equations (16), (17), (18), (21) and
equation (15), yields

_VV ¼
X3
i¼1

�
1

2
e2i þ �2i

1

2
þ K þ �iðe, �ee,KÞ

� �	 


þ
�

K
þ

m

mf
ð�1ux þ �2uy þ �3uzÞ

where �ið�Þ ¼ �̂�ið�Þ þ ���ið�Þ � 0 with �̂�3ð�Þ ¼ 0 and
� ¼ ð3M2

1=4Þ þ �̂�1 þ �̂�2 þ
P3

i¼1ð
���i þ ~��iÞ is an unknown

constant independent of K.
Clearly the following choice of controllers

ux

uy

uz

2
64

3
75 ¼

��1 1þ K þ �1ð�Þð Þ

��2 1þ K þ �2ð�Þð Þ

��3 1þ K þ �3ð�Þð Þ

2
64

3
75 ð22Þ

together with the fact that �1ux, �2uy and �3uz � 0, yield

_VV ¼ �
1

2

X3
i¼1

e2i þ �2i
� �

þ
�

K

� �bV þ
�

K
ð23Þ

where b ¼ minf1, 1=mg > 0.

In the remaining part of the proof, we show that
all states of the closed-loop system (1)–(22)–(8) are
bounded and well-defined on ½0, þ1Þ. Moreover,
given any ">0, there exists a finite time T" such that
the position tracking error kek ¼ kq� qrðtÞk � ",
8t � T".

Using equation (23), we obtain

_VV � �bV þ � ð24Þ

which implies that ðe, �,KÞ are well-defined on ½0, þ1Þ

and ðe, �Þ is bounded. The compact set O ¼ fe, �j
Vðe, �Þ � a, 8a � �=bg is invariant, since V is positive
definite and proper and _VV � 0, 8e, � 2 O: To show that
K(t) is bounded, we use a contradiction argument.
In particular, suppose that the monotone non-
decreasing function K(t) is unbounded. Then there
must exist a finite time T* such that

KðtÞ �
�

"�
, "� ¼

b"2

16
, 8t � T�

and equation (23) becomes

_VV � �bV þ "�, 8t � T�:

Consequently,

VðtÞ � e�bðt�T�Þ VðT�Þ �
"�

b

� �
þ
"�

b
, 8t � T�: ð25Þ

This implies that there exists another finite time T1

such that

kq� qrðtÞk
2

2
¼

e21 þ e22 þ e23
2

� VðtÞ <
2"�

b
¼

"2

8
, 8t � T1

which contradicts the assumption that K(t) is
unbounded since

_KKðtÞ ¼ 0, 8t � T1:

Since K(t) is bounded, we can conclude that all of the
states ðe, �ee,KÞ of equations (11)–(22)–(8) are also
bounded and well-defined. Hence, from Assumption 1,
the closed-loop system trajectories generated by equa-
tions (1)–(22)–(8) are well-defined and bounded on
½0, þ1Þ.

To complete the proof, we show that the position
tracking error kek ¼ kq� qrðtÞk is eventually within
the prescribed error " after a finite time. In particular,
from equation (8), _KKðtÞ is uniformly continuous w.r.t.
e and by boundedness of the closed-loop states, e is uni-
formly continuous w.r.t. time t. Hence, _KKðtÞ is uniformly
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continuous w.r.t. t. In addition, the integral of _KKðtÞ
evaluated from zero to infinity exists and is finite, i.e.

lim
t!1

Z t

0

_KKð�Þ d� ¼ Kð1Þ � Kð0Þ < þ1:

Then, it follows from Barbalat’s lemma that

lim
t!1

_KKðtÞ ¼ 0:

This, together with equation (8), implies the existence of
a finite time T" satisfying

kq� qrðtÞk � " t � T" > 0:

œ

Remark 1: If we assume that the follower satellite can
measure its relative position q and velocity _qq and the
reference signal vector qr is given, the follower satellite
is completely autonomous. No communication between
the leader and the follower satellites is needed and
the follower satellite can achieve relative position
tracking regardless of the leader satellite’s manoeuvres
or orbits.

Remark 2: With the help of equation (24), the bound
of q(t) can be calculated since e(t) only evolves in the
compact set fðe, �Þ:Vðe, �Þ � maxfVðeð0Þ, �ð0ÞÞ, �=bgg:
By the definition of e(t) and Assumption 1, we have
kqðtÞk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maxfVðeð0Þ, �ð0ÞÞ, �=bg

p
þM1, 8t � 0: The

bound of q(t) can be used to verify (19) and guarantee
that the closed-loop system (1)–(22)–(8) is well-posed,
i.e. R 6¼ �q: It can be seen that in the satellite applica-
tion, equation (19) is automatically satisfied and
RðtÞ � qðtÞ since R(t) is several orders larger than the
bounding constants, M1, M2 and m, and the initial con-
ditions, q(0) and _qqð0Þ:

Note that the characteristics and performance of the
adaptive controller (22) highly depend on the choice
of the reference trajectory qr: Choosing a wrong qr can
cause unachievable control inputs or poor performance.
However, path planning is not a trivial task and is
beyond the scope of this paper. Instead, we show in
the next section that for a simple manoeuvre, it is possi-
ble to choose simple trajectories to keep the size of con-
trol inputs within a range of small electric propulsion
devices such as ion thruster, etc.

4. Simulations

In this section, we present a numerical simulation
of a manoeuvre which requires moving the follower

satellite from one relative position to another. We
assume that the follower satellite can measure its relative
position and velocity. The reference signal qr is described
by

qrðtÞ ¼ a

Z t

0

e�aðt��ÞQrð�Þd� ð26Þ

where

QrðtÞ ¼

X1

2
þ
X1

2
sin �

t

Ts
�
1

2

� �� �
, 0 � t � Ts

X1, t � Ts:

8><
>: ð27Þ

Equation (26) can be viewed as a lowpass-filtered
version of (27) which is a C1 approximation of a
square function. The purpose of equation (26) is to gen-
erate a signal to move the follower satellite from the
origin to X1 position and stay there afterwards while
keeping the control input small and relatively smooth.
The settling time Ts determines how fast the follower
satellite moves to the designated positions X1:

The simulations was performed with the following
parameters, ml ¼ mf ¼ 4 kg, a¼ 0.01, Ts ¼ 3600 s,
Fd ¼ ½1:9106, � 1:906, � 1:517� sinð2�!tÞ � 10�5m=s2,
X1 ¼ ½�100, 100, 100�T, qð0Þ ¼ _qqð0Þ ¼ ½0, 0, 0�T, " ¼ 0.01
and � ¼ 10: Initially, the leader satellite was an
elliptic orbit with a perigee altitude of 600 km and an
eccentricity of 0.2. Then at t ¼ 4800 s, the leader satellite
made a manoeuvre in the y-direction with the control
input profiles shown in figure 5.

The simulation results in figures 3–6 show that
position tracking was achieved and the follower’s
control inputs were kept relatively small within the
range of small electric thrusters during the whole
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Figure 3. Relative position of the follower satellite.
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period. In addition, the relative error e were maintained

whilst the leader was making the manoeuvre without

any predetermined information and communication.

5. Conclusions

Position tracking and full adaptivity against all

parameters have been proven for the universal adaptive

control scheme presented in this paper. Also the realistic

small size of control thrust required is illustrated in
the simulations. This new scheme is important for for-

mation flying on elliptic orbits and also in cases where

mass variations of the satellites can be anticipated.

Future work will examine the extension of this type

of adaptive scheme to include attitude dynamics.

Other on-going work is examining path planning for

fuel economy.
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