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ABSTRACT

This paper introduces the subband method of performing
adaptive identification and analytic inversion of broadband
MIMO channels. It shows that the techniques can poten-
tially lower the computational cost while improving the per-
formance for highly frequency-selective channel with a long
impulse response. It covers subband adaptive identification
and shows two methods to invert a broadband MIMO chan-
nel, the time-domain and frequency-domain methods. Fi-
nally results are shown for adaptation MSE, channel-equaliser
MSE and BER performance.

1. INTRODUCTION

Potentially great capacity increases through the use of Multiple-
Input Multiple-Output (MIMO) systems have now become
well-known. Much of the work in this area has assumed that
the sub-channels which comprise the MIMO channels have
a flat frequency transfer characteristic. Since one the poten-
tial applications of MIMO system is to increase the date rate
through the channel to amounts which were not previously
possible, it seems far for more realistic that we would use
broadband sub-channels which are frequency-selective. To
be able to realise the high capacities promised by broadband
MIMO channels, we need to develop a high performance
low-complexity technique for finding a suitable broadband
MIMO equaliser. Further if the equaliser is to be used in a
mobile environment we must assume that the channel will
temporally dynamic or fading. This further exacerbates the
problem of finding and tracking the optimum equaliser so
that satisfactory performance is maintained.

A common and simple approach is to use the adaptive
NLMS algorithm to adapt to the inverse of the broadband
MIMO channel and track it as the channel fades. The prob-
lem with this is that the convergence rate of the NLMS algo-
rithm is related to the ratio between the minimum and max-
imum of the PSD of the input signal to the algorithm [1,2].
In an adaptive inversion set-up this would be the received
signal at the output of the MIMO channel, and since even if

they were white at the transmitter they would be coloured by
the channel, and hence we would expect slow convergence.
In fact it may be so slow that for realistic channels even
after several tens or hundreds of thousands of algorithm it-
eration the adaptation mean squared error (MSE) still may
not reach an acceptably low value [3]. In addition to this
the computational cost involved in performing such a long
adaptation can quickly become unacceptably high for large
MIMO channels with long impulse responses. A further po-
tential problem is that for fading mobile channels even if the
equaliser is calculated beforehand using an analytic method,
the adaptive inversion may not be able to track the equaliser
at a fast enough rate and it may soon become useless. Using
a fast converging algorithm such as the RLS also has asso-
ciated problems as the complexity is greater than the NLMS
and hence for large broadband MIMO system the cost may
be unacceptable. Further the RLS may exhibit worse perfor-
mance than LMS-type algorithms when tracking dynamic
system [4].

A promising solution proposed in [3] was to employ
subband adaptive techniques to invert the channel. The con-
vergence rate was shown to be greater and the computa-
tional cost lower than the fullband method. Hence the sub-
band inversion may be better able to track a dynamic equaliser
at a lower cost. In order to use this method for tracking
though, we must first initialise the equaliser to the opti-
mum at a point in time. Although subband adaptive inver-
sion showed improved convergence over the fullband ap-
proach, it is still too slow to use this method to initialise the
equaliser in the first instance. Hence we must use an alterna-
tive method which is the subject of this paper. We propose
to use a subband adaptive identification of the broadband
MIMO channel, which can be performed using many fewer
iterations than the inversion, followed by a computationally
efficient analytic inversion. The whole process must also
be performed in subbands as the subband adaptive tracking
system must be initialised with the subband equaliser coef-
ficients. The system consider is shown in Figure 1.

Sec. 2 briefly introduces the technique of subband pro-
cessing, while Sec. 3 covers subband adaptive identifica-



tion and explains the potential computational cost advan-
tage. Sec. 4 develops the time-domain and frequency-domain
methods of inverting the subband representation of a MIMO
system, states the costs of the inversions and also explains
some associated problems and methods to overcome them.
Finally, in Sec. 5 simulations results are presented before
discussing conclusions in Sec. 6.

2. SUBBAND TECHNIQUE

2.1. Oversampled Subband Decomposition

In essence the subband approach involves the partitioning
of the input signals into a finite number,K, of frequency
bands or subbands. This is similar to transforming the prob-
lem into the frequency domain and is performed in practice
by a class of band-pass filters, but unlike this the signals re-
main as time-domain sequences. Since the subband signals
are now bandlimited by a factorK more than the fullband
signals, we may downsample each of the signals by a fac-
torN � K. Fig. 2 shows a simple subband system, which
filters input signalu[n℄ through an analysis filter bank com-
prisingK band-pass filtersak[n℄; k = 0; 1; � � � ;K�1, dec-
imates the signals byN , upsamples byN and reconstructs
the original fullband signal by passing through synthesis fil-
terssk[n℄ and summing. Any signal processing task can be
performed on the decimated subband signals [2].

2.2. Modulated Filter Banks

The filters banks are often created using a generalised dis-
crete Fourier transform (GDFT) [5], which have the advan-
tage that all the band-pass filters can be created by modu-
lating a common prototype filter to the correct frequency.
Secondly they have the desirable property that the synthesis
filter bank is simply the parahermitian of the analysis banks
when the system is expressed using a polyphase representa-
tion [2].
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Fig. 1. System setup with adaptive MIMO system iden-
tification and analytic inversion to calculate the MIMO
equaliser.
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Fig. 2. Subband decomposition by mean of analysis and
synthesis filtering banks.
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Fig. 3. Filter bank characteristic for K = 16 and N = 14
based on a prototype filter withLp = 448 coefficients.

2.3. Complexity

AlthoughK = N would result in the greatest computa-
tional savings when performing an adaptive algorithm, spec-
tral aliasing limits the performance of any processing in the
subband domain and in practice we oversample the signals
whereby we chooseN slightly less thanK [6]. An exam-
ple of an analysis filter bank whereK = 16 andN = 14
is shown in Fig. 3, where magnitude responsesAk(ej!)�—Æ ak[n℄ of only the first 8 filters are shown. The compu-
tational cost involved in the analysis and synthesis filtering
process is [7]Cbank = (2Lp + 4K log2K + 8K)=N; (1)

per fullband sample period, whereLp is the prototype filter
length.

3. ADAPTIVE IDENTIFICATION

3.1. Multi-Channel Filtering

The first step involved in finding the optimum equaliser in
subbands is to adaptive identify aM � P MIMO chan-
nel. We use a multi-channel form of the NLMS algorithm,
whereby the adaptive filter state vectors of each channel
are stacked, which effectively transforms the problem intoa
single-channel form. TheM inputs transmitted through the
MIMO channel exciteP signals at the receivers, which can
be expressed asy[n℄ =Hx[n℄ + �[n℄; (2)



wherex[n℄ 2 CMLh containsM stacked input signal vec-
tors of equal to the channel lengthLhx[n℄ = [xT1 [n℄ xT2 [n℄ � � � xTM [n℄℄T (3)

andxm[n℄ = [xm[n℄ xm[n � 1℄ � � � xm[n � Lh +1℄℄T ; p = 1(1)M . The noise vector�[n℄ 2 C P containsP noise samples taken from a white Gaussian source�[n℄ = [�1[n℄ �2[n℄ � � � �P [n℄℄T : (4)

The received signal vector at timen, y[n℄, is length P and
defined analogously to (4). Finally, the channel is definedH = 26664 hT11 hT21 � � � hTM1hT12 hT22 � � � hTM2

...
...

. . .
...hT1P hT2P � � � hTMP 37775 (5)

wherehmp = [hmp[0℄ hmp[1℄ � � � hmp[Lh � 1℄℄T is
the channel impulse response between themth transmitter
and pth receiver. Notice that for the purpose of channel
identification we assume that the channel is static.

3.2. Optimum Subband Identification

Next we derive the subband adaptive system which will adapt
to the unknownH, using the received samplesyp[n℄; p =1(1)P as the desired signals and a known training sequence
as the input signalsxm[n℄; m = 1(1)M . Fig. 4 shows one
of P multiple-input single-output (MISO) adaptive blocks
that run in parallel and are required to identify the MIMO
channel. Each MISO system adapts in subbands to theM
sub-channels between the transmitters and a particular re-
ceiver.

The outputs of the subband adaptive units within the
MISO system for receiverp are given byŷp;k[n℄ = ĥTp;k[n℄xk[n℄; k = 1(1)K; p = 1(1)P; (6)

whereĥp;k[n℄ = [ĥT1p;k[n℄ ĥT2p;k[n℄ � � � ĥTMp;k[n℄℄T
andĥmp;k[n℄ = [ĥmp;k[0; n℄ ĥmp;k[1; n℄ : : :ĥmp;k[Lh;s�1); n℄℄T is the impulse response of the adaptive
filter which models the sub-channel between themth trans-
mitter andpth receiver in thekth subband and depends on
timen due to the fact that the system is adaptive, andLh;s is
the length of the subband adaptive filter. There is some free-
dom in choosing inLh;s and the value depends on factors
such as the size ofLh relative toLp, but a value in the rangeLh;s = [Lh=N; (Lh + 2Lp)=N ℄ is usually chosen. Further
in (6) xk[n℄ = [x1;k[n℄ x2;k[n℄ � � � xM;k[n℄℄T , wherexm;k[n℄ is the subband filter state vector at timen corre-
sponding toxm;k. We may now defineK subband error
signals for thepth receiverep;k[n℄ = yp;k[n℄� ŷp;k[n℄ k = 1(1)K; p = 1(1)P:

(7)

Following the usual Weiner-Hopf type analysis [1] for each
subband we arrive at the optimum adaptive filter solutionĥp;k;opt = R�1xx;kpp;k; (8)

whereRxx;k is the auto-correlation matrix of the filter state
vector in thekth subbandxk[n℄, andpp;k is the cross-correlation
vector between the subband filter state vector and desired
signalyp;k[n℄. Hence the update step of the subband multi-
channel NLMS algorithm follows asĥp;k[n+ 1℄ = ĥp;k[n℄ + ~�xk[n℄e�p;k[n℄xHk [n℄xk[n℄ (9)

where~� is the normalised adaptation step-size coefficient.

3.3. Identification Complexity

The computational cost of the fullband NLMS algorithm isCFB = P (8MLh + 8M + 10): (10)

One of the main advantages of the subband approach is a
reduction in computational cost. Not only are the adaptive
filters generally shorter but the adaptive update can executed
at1=N th of the rate of the fullband version due to the deci-
mation. Of course the algorithm must be performedK times
in parallel, once for each subband. The cost of the subband
NLMS algorithm hence accrues toCSB = PKN (8MLh;s + 8M + 10) + M + PN Cbank

(11)

per fullband sampling period. To be able perform a di-
rect comparison between the fullband and subband cost, we
must decide on a relationship betweenLh andLh;s. An
often quoted relationship isLh;s = (Lh + Lp)=N , which
would result inCSB = PKN (8M(Lh + Lp)=N + 8M + 10)+M + PN Cbank: (12)

per fullband sampling period. However the simulations pre-
sented later use a value forLh;s closer toLh=N . The anal-
ysis filtering operation causes a fixed computational over-
head, and for smallLh � Lp we may find that the subband
adaptation is actually more costly than the fullband version.
Hence the subband method is generally more suitable for
high bandwidth channels with a long impulse response.

4. ANALYTIC INVERSION

The second part of the task is to analytically invert the subband-
identified MIMO channel. We are constraining the equaliser
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Fig. 4. A MISO subband adaptive system arranged for system identification.

to be a linear FIR system, and there are two methods we use
to invert the channel. These two methods have been demon-
strated for fullband channel inversion in [8], but we shall
briefly review them and apply the subband technique here.

4.1. Time-Domain Inversion

The time-domain inversion technique, so-called as it arranges
the time-dispersiveness of the broadband MIMO channel
a two dimensional matrix, calls for the creation of convo-
lutional matrices. Each sub-channel has its own convolu-
tional matrix and these are augmented and stacked to create
a larger “parent” MIMO convolutional matrix [8,9].

The convolutional channel matrix betweenmth trans-
mitter andpth receiver for thekth subband is given by�Hmp;k = 266664 hHmp;k � � � � � � 0 00 hHmp;k � � � .. . 00 0 . . .

.. .
...0 0 � � � hHmp;k � � � 377775 : (13)

We may construct a parent convolutional matrixH over all

m andp for subbandk, yielding�Hk = 26664 �H11;k �H21;k � � � �HM1;k�H12;k �H22;k � � � �HM2;k
...

...
. . .

...H1P;k H2P;k � � � HMP;k 37775 ; (14)

where �Hk is of dimensionsPLg;s �M(Lh;s + Lg;s � 1)
andLg;s is the subband MISO equaliser length for each sub-
channel. From this we may develop an expression for the
optimum solution for theM � P equaliser filters for thekth
subband gm;k = ( �Hk �HHk + �2��2x I)y �Hkdm; (15)

wheredm is a channel selection and delay vector andf�gy
refers to the pseudo-inverse [10] which is required for valid
cases whereM > P but �Hk �HHk may be rank-deficient.
This calculation must be performed for allm = 1(1)M andk = 1(1)K to create aK MIMO equalisers, one for each
subband. These can then be placed between analysis and
synthesis filter banks to create the full equaliser system.

The computational complexity of the subband time-domain
method isO(L3g). Since the subband filters are potentially
up toN times shorter than the fullband equalisers it is ev-
ident that the cost of inverting a single subband isO(N3)
lower, but this must be performedK times, hence the com-
putational saving afforded by the subband technique isO(N3=K).



Although this method will result in an optimum subband so-
lution the cost of the inversions, even though much less than
the fullband method, can still grow rapidly with increasingLg;s to unacceptable levels. Since we are dealing with high
bandwidth channels this is likely to be a problem.

4.2. Frequency-Domain Inversion

A solution to the problem of the computational cost grow-
ing rapidly for the time-domain inversion is to use lower
complexity method, and frequency-domain inversion is a
good candidate to this end. We may transform the impulse
response of each of sub-channel for each subband into its
bandlimited spectral representation using a lengthLg;s FFT,
and hence formulate the problem in the frequency-domain.
For each subband we now haveLg;s scalar valuedM � P
matrices, one for each frequency-bin of the FFT, which can
easily be inverted using a standard matrix inversion algo-
rithm. Hence the zero-forcing inverse for each frequency
bin in each subband is given by the pseudo-inverse of that
channel, i.e.Gk[f ℄ = e�j2�d(HHk [f ℄Hk[h℄)�1HHk [f ℄: (16)

Unfortunately the matter is complicated by a phenomenon
that affects frequency-domain multiplications known as cir-
cular convolution, or the wrap-around effect [11]. In essence
a convolution in the frequency-domain differs from the true
linear convolution when performed in time-domain at either
end of the resultant signal or system, and the shorter the FFT
the worse the problem becomes. A solution is to use a regu-
larisation factor in the inversion, giving a new definition for
the inverse [12]Gk[f ℄ = e�j2�d(HHk [f ℄Hk[h℄ + �I)�1HHk [f ℄ (17)

where� is the regularisation factor. The method of regular-
isation is a powerful technique for finding the solutions of
ill-posed problems. Also it can be shown that if� = �2�=�2x,
i.e. the noise-to-signal ratio (NSR) then at low SNR values
the system MSE performance approaches that of the opti-
mum time-domain method [13]. At some critical SNR, the
MSE performance will start to degrade as the NSR falls be-
low a value that results in the best performance possible us-
ing the subband frequency-domain method in a noiseless
environment. At this critical SNR we would gain a bet-
ter performance result by switching to a fixed regularisation
factor.

One pertinent difference between the subband and full-
band frequency-domain inversion is due to the relative lengths
of the equaliser. Since the subband adaptive filters are gen-
erally shorter than the channel impulse response length, we
may often also use shorter subband equaliser filters than
would have been necessary for the fullband system. Un-
fortunately a shorter equaliser will worsen the wrap-around
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Fig. 5. CIR sampled at 100 MHz (top) and magnitude re-
sponse (bottom) of a sample channel generated by the SV
model.

effect and may degrade the performance of the subband sys-
tem more than we would have otherwise expected. By how
much the performance is worsened will be shown in the sim-
ulations.

The main motivating factor for the use of the frequency-
domain inversion method is that is requires less computa-
tional power than the time-domain method. It can be shown
that the FFTs are the computationally dominant part of the
inversion process and hence the complexity isO(Lg;s log2 Lg;s).
Evidently the savings offered by the subband approach are
now much smaller than for the time-domain inversion method.
In fact, we shall see in the simulations that it is possible that
for short equalisers whereLg � Lp the savings may not
outweigh the analysis and synthesis filtering cost overhead.

5. SIMULATION RESULTS

5.1. MIMO Channel Model and Simulation Parameters

We use the Saleh-Valenzuela statistical indoor model to gen-
erate realistic channel impulse responses (CIRs) [14]. The
SV model produces a clusters of rays according to an ex-
ponential distribution. Following the suggestions in [14],
we have simulated two sets of CIRs at sampling rates of
100MHz and 1GHz with a mean cluster arrival time1=� =300 ns, a mean ray arrival time1=� = 5 ns, a cluster power
decay time constant� = 60 ns and the ray power decay
time constant
 = 20 ns [14]. The magnitude response of a
typical SV channel, band-limited and sampled at 100 MHz,
is shown in Fig. 5. We generate four of these channels inde-
pendently to create a2�2 broadband MIMO channel. Sim-
ulations are then run on an ensemble of such2 � 2 MIMO
channel realisations.
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For the analytic inversions, we have selected a delayd = Lg;s=2 to address the non-minimum phase charac-
teristic of the channel. For the NLMS adaptations we use~� = 0:18. For the fullband processing and the 100 MHz-
sampled SV channel we useLh = 30 andLg;f = 280,
whereLg;f is the fullband equaliser length, and for the 1
GHz-sampled SV channel we useLh = 300 andLg;f =980. For the equivalent subband system we useK = 16,N = 14 based on a prototype filter withLp = 448 taps
resulting in the characteristic given in Fig. 3 and have setLh;s = 12 > Lh;f=N andLg;s = 29 > Lg;f=N for the
100 MHz-sampled SV channel, andLh;s = 44 > Lh;f=N
andLg;s = 70 = Lg;f=N for the 1 GHz-sampled SV chan-
nel.

5.2. Adaptive Identification

The fullband and subband adaptive identification MSE be-
haviour for a2� 2 100 MHz and 1 GHz-sampled channels
is shown in Figure 6. As expected the fullband techniques
show the quickest convergence becauseLg;s > Lh;s=N and
also as the input signals are white the subband method will
not demonstrate an convergence improvement.

The real power of the subband system in this case arises
from the reduction in computational cost. Table 1 shows the
cost per fullband sampling period in multiply-accumulate
computations (MACs) of the subband and fullband adaptive
identification of the 100 MHz and 1 GHz-sampled2�2 SV
channels. We see the for the 100 MHz-sampled channel the
subband adaptation requires about 84% of the computations
needed for the fullband technique. For the 1 GHz-sampled
channel, this becomes 21%. Hence we see that the relative
savings offered by the subband method increase as the chan-
nel impulse response, and hence equaliser length increases.

This is a fair comparison assuming that the adaptations

adaptation, channel cost (MACs)
subband, 100 MHz SV 846
fullband, 100 MHz SV 1,012

subband, 1 GHz 2,034
fullband, 1 GHz SV 9,652

Table 1. Computational cost (MACs) per fullband sampling
period of fullband and subband adaptive identification for
the 100 MHz and 1 GHz-sampled2� 2 MIMO channels.

inversion, channel cost (MACs)
TD Sub, 100 MHz SV 3:9� 105
FD Sub, 100 MHz SV 2:25� 103

TD Full, 100 MHz 2:2� 107
FD Full, 100 MHz SV 2:28� 103

TD Sub, 1 GHz SV 5:49� 106
FD Sub, 1 GHz SV 6:86� 103
TD Full, 1 GHz SV 9:41� 108
FD Full, 1 GHz SV 9:74� 103

Table 2. Evaluation of the computational cost of various
combinations of time-domain (TD) and frequency-domain
(FD), and subband and fullband inversion, for the 100 MHz
and 1 GHz-sampled SV channel.

are a continuous process, but as we simply need to reach
a specified MSE and the fullband method converges much
quicker, we find that the total operation count may in fact be
greater for the subband technique. For example, for the 100
MHz channel, -20 dB MSE is reached in 14% of the time it
takes the fullband method, and hence the overall computa-
tion count for the fullband is 16.8% of that for the subband.
For the 1 GHz-sampled channel though this ratio becomes
about 245%, meaning that for this long channel the subband
adaptation has lower cost in all respects.

5.3. Analytic Inversion

The system MSE after using the various analytic inversion
methods discussed in this paper is shown in Figure 7. The
system MSE refers to the error between the input to the
MIMO channel and the channel-equaliser response to this
input. The method labelled “Full” corresponds to fullband
inversion of a known channel and the time-domain inver-
sion (TD Full) represents the optimum performance possi-
ble from any of the systems. The curves labelled “SuS”
refers to subband identification followed by subband inver-
sion, where as “SuF” represent subband identification af-
ter which the equivalent fullband system is found by pass-
ing a impulse through the analysis filter bank, the subband
filters and the synthesis filter bank, and finally this is in-
verted in the fullband. Also shown are curves for frequency-



domain inversion regularised by the NSR (FDN) and also
by a heuristically optimised fixed value which results in
the best possible performance in a noiseless environment
(FDO). We have no result for the fullband inversion of the
known channel for the 1 GHz-sampled SV channel as the
channel is of such length that it would be computationally
unfeasible, however we have included SuF results for this
channel for interest. We see that generally at lower SNR
value the FDN curves approach the optimum performance
of the TD curves, and that as the SNR rises the FDN curves
begin to worsen due to circular convolution but the FDO
curves continue to improve until the best achievable MSE is
reached.

The cost of performing these inversions is shown in Ta-
ble 2, where the complexity orders are evaluated. For the
time-domain inversion significant savings are offered by the
subband method as expected. However for the frequency-
domain inversion the savings are much lower and evidently
for these simulations only just compensate for the analysis
filtering overhead (the synthesis filter bank is not required
for the purposes of identifying the channel).

Comparing the computational costs of the inversion pro-
cess which is performed only once with the cost of the sub-
band identifications in Table 1 which must be performed for
many thousands of iterations it is evident that the identifica-
tion will dominate the overall computational cost.

5.4. BER Performance

Figure 8 show the BPSK BER performance for the various
systems developed in this paper. The systems are the same
as those in Figure 7, but the simulations are now performed
only over a “realistic” SNR range of 0 dB to 30 dB. We see
that for the 100 MHz-sampled SV channel the performances
are all quite similar. Only the FDO curves are worse as
the point where a fixed regularisation factor outperforms the
noise power value occurs at about 30 dB. The performance
of the 1 GHz-sampled SV channel is the best due to the
much longer equaliser filters.

6. DISCUSSION

In this paper we have introduced a method of adaptively
identifying a broadband MIMO channel and analytically in-
verting to create an MIMO equaliser in subbands. The per-
formance results and computational costs indicate that for
channels with a short impulse response, or for channels that
are not particularly frequency-selective the subband approach
is of limited use. However, for much longer channels, such
as the 300 coefficient 1 GHz-sampled SV channel, the ad-
vantages offered by technique are much more impressive.
Not only does subband processing lower the computational
cost involved in identifying and inverting the channel, but

also the BER performance is quite satisfactory. Finally,
this method of finding a subband equaliser for broadband
MIMO channels is useful for initialising an adaptive equaliser
for dynamically fading channels where we would use subband-
adaptive inversion to track the equaliser. Subband-adaptive
inversion has shown the ability to converge faster from coloured
input signals and hence may be able to facilitate superior
tracking performance than the equivalent fullband system [3].
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Fig. 7. System MSE versus SNR behaviour for subband and fullband analytic inversion for a 100 MHz and 1 GHz-sampled
SV channel.
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Fig. 8. BER versus SNR performance for subband and fullband equalisers for a 100 MHz and 1 GHz-sampled SV channel.


