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ABSTRACT they were white at the transmitter they would be coloured by

: . .__the channel, and hence we would expect slow convergence.
This paper introduces the subband method of performing, ¢,y it may be so slow that for realistic channels even

adaptive identification and analytic inversi_on of broadban after several tens or hundreds of thousands of algorithm it-
MIMO channels. It shows that the techniques can poten- g aiiqn the adaptation mean squared error (MSE) still may
tlaIIyIowerthe_computatlonal cost whlle |mprovmg.the Per ot reach an acceptably low value [3]. In addition to this
formance for highly frequency-selective channel with aglon the computational cost involved in performing such a long

impulse response. It covers subband adaptive identifitatio adaptation can quickly become unacceptably high for large
and shows two methods to Inverta broadba_nd MIMO chan_- MIMO channels with long impulse responses. A further po-
nel, the time-domain and frequency-domain methods. Fi- o ia| problem is that for fading mobile channels evenéf th
nally results are shown for adaptation MSE, channel-egeili equaliser is calculated beforehand using an analytic ndetho
MSE and BER performance. the adaptive inversion may not be able to track the equaliser
at a fast enough rate and it may soon become useless. Using
1. INTRODUCTION a fast converging algorithm such as the RLS also has asso-
ciated problems as the complexity is greater than the NLMS
Potentially great capacity increases through the use ofipded  @nd hence for large broadband MIMO system the cost may
Input Multiple-Output (MIMO) systems have now become be unacceptable. Further the RLS may exhibit worse perfor-
well-known. Much of the work in this area has assumed that mance than LMS-type algorithms when tracking dynamic
the sub-channels which comprise the MIMO channels havesystem [4].
a flat frequency transfer characteristic. Since one thepote A promising solution proposed in [3] was to employ
tial applications of MIMO system is to increase the date rate subband adaptive techniques to invert the channel. The con-
through the channel to amounts which were not previously vergence rate was shown to be greater and the computa-
possible, it seems far for more realistic that we would use tional cost lower than the fullband method. Hence the sub-
broadband sub-channels which are frequency-selective. Tdand inversion may be better able to track a dynamic equalise
be able to realise the high capacities promised by broadbandit a lower cost. In order to use this method for tracking
MIMO channels, we need to develop a high performance though, we must first initialise the equaliser to the opti-
low-complexity technique for finding a suitable broadband mum at a point in time. Although subband adaptive inver-
MIMO equaliser. Further if the equaliser is to be used in a sion showed improved convergence over the fullband ap-
mobile environment we must assume that the channel will proach, it is still too slow to use this method to initialibet
temporally dynamic or fading. This further exacerbates the equaliser in the firstinstance. Hence we must use an alterna-
problem of finding and tracking the optimum equaliser so tive method which is the subject of this paper. We propose
that satisfactory performance is maintained. to use a subband adaptive identification of the broadband
A common and simple approach is to use the adaptiveMIMO channel, which can be performed using many fewer
NLMS algorithm to adapt to the inverse of the broadband iterations than the inversion, followed by a computatignal
MIMO channel and track it as the channel fades. The prob-efficient analytic inversion. The whole process must also
lem with this is that the convergence rate of the NLMS algo- be performed in subbands as the subband adaptive tracking
rithm is related to the ratio between the minimum and max- system must be initialised with the subband equaliser coef-
imum of the PSD of the input signal to the algorithm [1,2]. ficients. The system consider is shown in Figure 1.
In an adaptive inversion set-up this would be the received  Sec. 2 briefly introduces the technique of subband pro-
signal at the output of the MIMO channel, and since even if cessing, while Sec. 3 covers subband adaptive identifica-



tage. Sec. 4 develops the time-domain and frequency-domain

methods of inverting the subband representation of a MIMO U[r] W®H<: )| s, u[n
system, states the costs of the inversions and also explain (D—-
some associated problems and methods to overcome them. . :

Finally, in Sec. 5 simulations results are presented before ®H®

discussing conclusions in Sec. 6.
analysis filter bank  synthesis filter bank

tion and explains the potential computational cost advan- W@

2. SUBBAND TECHNIQUE _ " .
Fig. 2. Subband decomposition by mean of analysis and

2.1. Oversampled Subband Decomposition synthesis filtering banks.

In essence the subband approach involves the partitioning
of the input signals into a finite numbek;, of frequency
bands or subbands. This is similar to transforming the prob-
lem into the frequency domain and is performed in practice
by a class of band-pass filters, but unlike this the signals re
main as time-domain sequences. Since the subband signals R S A R . s ibEY
are now bandlimited by a factdt’ more than the fullband ~ normalized frequency wirt
signals, we may downsample each of the signals by a fac-

tor N < K. F|g 2 shows a Simp|e subband system, which Flg 3. Filter bank characteristic for K = 16 and N = 14
filters input signak[n] through an analysis filter bank com- based on a prototype filter with, = 448 coefficients.
prising K band-passfiltergi[n], k = 0,1,--- , K — 1, dec-
imates the signals bV, upsamples byW and reconstructs
the original fullband signal by passing through synthekis fi
terss;[n] and summing. Any signal processing task can be Although K = N would result in the greatest computa-
performed on the decimated subband signals [2]. tional savings when performing an adaptive algorithm, spec
tral aliasing limits the performance of any processing & th
subband domain and in practice we oversample the signals
whereby we choos# slightly less thank” [6]. An exam-

The filters banks are often created using a generalised disple of an analysis filter bank whed€ = 16 and N = 14
crete Fourier transform (GDFT) [5], which have the advan- is shown in Fig. 3, where magnitude responsigge’*)

tage that all the band-pass filters can be created by modu-e—o a[n] of only the first 8 filters are shown. The compu-
lating a common prototype filter to the correct frequency. tational cost involved in the analysis and synthesis fitigri
Secondly they have the desirable property that the syrgthesi pProcess is [7]

filter bank is simply the parahermitian of the analysis banks

2.3. Complexity

2.2. Modulated Filter Banks

. . nk = (2L 4K log, K K)/N, 1
when the system is expressed using a polyphase representa- Coanke = (2Lp + ogy K +8K)/N, (1)
tion [2]. per fullband sample period, whefsg, is the prototype filter
length.
wvo  ——N vmo 3. ADAPTIVE IDENTIFICATION
channel _l/ equaliser :>
3.1. Multi-Channel Filterin
=~ ZS ?
adaptive analyic The first step involved in finding the optimum equaliser in
W inversion subbands is to adaptive identify @ x P MIMO chan-
nel. We use a multi-channel form of the NLMS algorithm,

i TT whereby the adaptive filter state vectors of each channel

are stacked, which effectively transforms the problem &to
single-channel form. Th&/ inputs transmitted through the

) ) ) ) MIMO channel exciteP signals at the receivers, which can
Fig. 1. System setup with adaptive MIMO system iden- pq expressed as

tification and analytic inversion to calculate the MIMO
equaliser. y[n] = Hx[n] + v[n], (2)

copy coefficients




wherex[n] € CML» containsM stacked input signal vec-  Following the usual Weiner-Hopf type analysis [1] for each

tors of equal to the channel lengih, subband we arrive at the optimum adaptive filter solution
xn] =[x ] xIn] - xLWIT @) T ®)
andx,,[n] = [zm[n] xmn -1 -+ zpn — Ly +

whereR,, ;. is the auto-correlation matrix of the filter state
vector in thek*" subbandk; [n], andp, i is the cross-correlation
vector between the subband filter state vector and desired
vin] =[nn] wn] - vpn]’. 4) signaly,, x[n]. Hence the update step of the subband multi-
channel NLMS algorithm follows as

1], p = 1(1)M. The noise vector[n] € CF contains
P noise samples taken from a white Gaussian source

The received signal vector at time y[n], is length P and

defined analogously to (4). Finally, the channel is defined _xx[n]er [n]

by, [n +1] = by [n] + i )
hi; hy - hj, g ! x;! [n]xg[n]
h?Q hg; T h%/jg . . . . -
H= _ _ _ (5) wherejfi is the normalised adaptation step-size coefficient.
hip hip -+ hip 3.3. ldentification Complexity
wherehy, = [hmpl0]  hmp[l] -+ hmp[Le —1]]7iS  The computational cost of the fullband NLMS algorithm is
the channel impulse response betweenthié transmitter
and p'” receiver. Notice that for the purpose of channel Cyp = P(8M Ly, + 8M + 10). (20)

identification we assume that the channel is static. ) .
One of the main advantages of the subband approach is a

reduction in computational cost. Not only are the adaptive
filters generally shorter but the adaptive update can erdcut
Next we derive the subband adaptive system which will adapat 1/N*" of the rate of the fulloand version due to the deci-
to the unknowrH, using the received samplgsn], p = mation. Of course the algorithm must be performi&times
1(1) P as the desired signals and a known training sequencen parallel, once for each subband. The cost of the subband
as the input signals,,,[n], m = 1(1)M. Fig. 4 shows one  NLMS algorithm hence accrues to

of P multiple-input single-output (MISO) adaptive blocks

3.2. Optimum Subband Identification

that run in parallel and are required to identify the MIMO Csp = %(8MLh,s +8M +10) + M+ Pcbank

channel. Each MISO system adapts in subbands tdthe N (11)

sub-channels between the transmitters and a particular re-

celver. per fullband sampling period. To be able perform a di-
The outputs of the subband adaptive units within the rect comparison between the fullband and subband cost, we

MISO system for receivey are given by must decide on a relationship betweBp and L, ,. An

Jpiln] =BT Inlxp[n], k=1(1)K, p=1(1)p, (6)  Often quoted relationship i, = (L + L,)/N, which
; D would result in

whereh,[n] = [, ,[n] BE,,n] - BT, 0" PK

andbhy,p x[n] = [hmpk[0,n]  hmpill,n] ... Osp = 7 (8M(Ln + Lp)/N +8M +10)
ﬁmp,k[Lh,s—l), n]] is the impulse response of the adaptive M4+ P

filter which models the sub-channel betweeniifé trans- N Chank- (12)

mitter andpt® receiver in thek'” subband and depends on _ _ _ _
timen due to the fact that the system is adaptive, &pd is per fullband sampling period. However the simulations pre-
' sented later use a value féy, ; closer toL,/N. The anal-

the length of the subband adaptive filter. There is some free->= "= ' 4 ) :
dom in choosing inLy ; and the value depends on factors ysis filtering operation causes a fixed computational over-

such as the size df,, relative toL,, but a value in the range head, and for small;, < I, we may find that the subband
Li.s = [Ln/N, (Ly, + 2L,)/N] is usually chosen. Further adaptation is actually more cqstly than the fullband_ve'rsm

in (6)xk[n] = [x1.k[n] xaxln] - xar.1[n]]T, where H.ence the §ubband methold 5 gene_rally more suitable for
Xm [n] iS the subband filter state vector at timecorre- high bandwidth channels with a long impulse response.
sponding toz,, . We may now defind{ subband error

signals for the!” receiver 4. ANALYTIC INVERSION

epk[n) = yp.rln] = gprln] k=11K, p=1(1)P. The second part of the task is to analytically invert the sunlab
(7) identified MIMO channel. We are constraining the equaliser
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Fig. 4. A MISO subband adaptive system arranged for system ideatiiin.

to be a linear FIR system, and there are two methods we usen andp for subbandk, yielding
to invert the channel. These two methods have been demon-

strated for fullband channel inversion in [8], but we shall g“k g?l’k ng’k
briefly review them and apply the subband technique here. H), = 1_“ 2_2”“ M2,k (14)
Hipry Hopr -+ Huypp
. . . whereHy, is of dimensionsPL, s x M (L5 + Ly s — 1)
4.1. Time-Domain Inversion andL, , is the subband MISO equaliser length for each sub-

channel. From this we may develop an expression for the
The time-domain inversion technique, so-called as it ayean  optimum solution for thel/ - P equaliser filters for thé®"
the time-dispersiveness of the broadband MIMO channelsubband

a two dimensional matrix, calls for the creation of convo- _ o2 .

lutional matrices. Each sub-channel has its own convolu- Bm.k = (HkaH + U_;I)TdeW (15)
tional matrix and these are augmented and stacked to create !

a larger “parent” MIMO convolutional matrix [8, 9]. whered,,, is a channel selection and delay vector gnd

refers to the pseudo-inverse [10] which is required fordali
cases wheré/ > P but H,H}" may be rank-deficient.

This calculation must be performed for all= 1(1) M and

k = 1(1)K to create ak MIMO equalisers, one for each

The convolutional channel matrix betweeri” trans-
mitter andp*” receiver for thek*” subband is given by

nHw . 0 0 subband. These can then be placed between analysis and
' - ] synthesis filter banks to create the full equaliser system.
Hopx = 0 hyooe o E 0 . (13) The computational complexity of the subband time-domain
’ 0 0 : method isO(L?). Since the subband filters are potentially
0 0 o hgp L up to N times shorter than the fullband equalisers it is ev-

ident that the cost of inverting a single subbandigV?)
lower, but this must be performdd times, hence the com-
We may construct a parent convolutional malxover all putational saving afforded by the subband techniqd¥¥?° / K).



Although this method will result in an optimum subband so- 04
lution the cost of the inversions, even though much less than
the fullband method, can still grow rapidly with increasing
L, s to unacceptable levels. Since we are dealing with high
bandwidth channels this is likely to be a problem.
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4.2. Frequency-Domain Inversion

A solution to the problem of the computational cost grow- 10
ing rapidly for the time-domain inversion is to use lower
complexity method, and frequency-domain inversion is a
good candidate to this end. We may transform the impulse £”
response of each of sub-channel for each subband into its’
bandlimited spectral representation using a lerdgth FFT,

and hence formulate the problem in the frequency-domain. ™% 1 2 =
For each subband we now halig ; scalar valued/ x P
matrices, one for each frequency-bin of the FFT, which can
easily be inverted using a standard matrix inversion algo-
rithm. Hence the zero-forcing inverse for each frequency
bin in each subband is given by the pseudo-inverse of tha
channel, i.e.

)| 1 [dB]
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Fig. 5. CIR sampled at 100 MHz (top) and magnitude re-
sponse (bottom) of a sample channel generated by the SV
{model.

 iomderH 1erH effect and may degrade the performance of the subband sys-
Gilf] = 7T (H [fIH[A) T H[f]. - (16) tem more than we would have otherwise expected. By how

Unfortunately the matter is complicated by a phenomenoH““(_:h the performance is worsened will be shown in the sim-
that affects frequency-domain multiplications known as ci  ulations. o
cular convolution, or the wrap-around effect [11]. In es=en The main motivating factor for the use of the frequency-
a convolution in the frequency-domain differs from the true domain inversion method is that is requires less computa-
linear convolution when performed in time-domain at either tional power than the time-domain method. It can be shown
end of the resultant signal or system, and the shorter the FFTihat the FFTs are the computationally dominant part of the
the worse the problem becomes. A solution is to use a reguiNVersion process and hence the complexit9{d, s log, Ly,s)-

larisation factor in the inversion, giving a new definitiar f ~ EVidently the savings offered by the subband approach are
the inverse [12] now much smaller than for the time-domain inversion method.

In fact, we shall see in the simulations that it is possibéd th
Gilf] = e 2™\ [fJHL[R]) + 1) 'HE[f] (17)  for short equalisers where, < L, the savings may not
outweigh the analysis and synthesis filtering cost overhead
whereg is the regularisation factor. The method of regular-

isation is a powerful technique for finding the solutions of
ill-posed problems. Also it can be shown thagif= 02 /02,
i.e. the noise-to-signal ratio (NSR) then at low SNR values_ 5.1. MIMO Channel Model and Simulation Parameters
the system MSE performance approaches that of the opti-
mum time-domain method [13]. At some critical SNR, the We use the Saleh-Valenzuela statistical indoor model te gen
MSE performance will start to degrade as the NSR falls be- erate realistic channel impulse responses (CIRs) [14]. The
low a value that results in the best performance possible us-SV model produces a clusters of rays according to an ex-
ing the subband frequency-domain method in a noiselessponential distribution. Following the suggestions in [14]
environment. At this critical SNR we would gain a bet- we have simulated two sets of CIRs at sampling rates of
ter performance result by switching to a fixed regularisatio 100MHz and 1GHz with a mean cluster arrival tihg\ =
factor. 300 ns, a mean ray arrival time/ A = 5 ns, a cluster power
One pertinent difference between the subband and full-decay time constarit = 60 ns and the ray power decay
band frequency-domaininversionis due to the relativetlesig time constanty = 20 ns [14]. The magnitude response of a
of the equaliser. Since the subband adaptive filters are gentypical SV channel, band-limited and sampled at 100 MHz,
erally shorter than the channel impulse response length, wds shown in Fig. 5. We generate four of these channels inde-
may often also use shorter subband equaliser filters tharpendently to createZx 2 broadband MIMO channel. Sim-
would have been necessary for the fullband system. Un-ulations are then run on an ensemble of stich2 MIMO
fortunately a shorter equaliser will worsen the wrap-atbun channel realisations.

5. SIMULATION RESULTS



° “o fullband adaptation, 100 MHz S| adaptation, channel | cost (MACs)
—< fullband adaptation, 1 GHz SV Subband' 100 MHz SV 846
) ~+ subband adaptation, 100 MHz $!
s’ ~~_ subband adaptation, 1 Gz Sv fullband, 100 MHz SV| 1,012
fm_m | subband, 1 GHz 2,034
= fullband, 1 GHz SV 9,652
Re]
T -20 e
1‘% S Table 1. Computational cost (MACSs) per fullband sampling
© 300 T R N S period of fullband and subband adaptive identification for
g | Y\xx T the 100 MHz and 1 GHz-sampl&@dx 2 MIMO channels.
%—407 ‘\ 5 .
® Kx inversion, channel | cost (MACs)
% os ‘ s 2 25 3 a5 4 TD Sub, 100 MHz SV| 3.9 x 10°
fullband sampling periods, n x10* ED SUb, 100 MHz SV| 2.25 x 103
_ S _ TD Full, 100 MHz 2.2 x 107
Fig. 6. MIMO channel identification adaptation MSE for FD Full, 100 MHZ SV| 2.28 x 10°
fullband and subband adaptations with 100 MHz and 1 TD Sub, 1 GHZ SV | 5.49 x 10°
GHZ-Sampled SV channel. FD Sub, 1 GHz SV 6.86 x 10°
TD Full, 1 GHz SV 9.41 x 108
For the analytic inversions, we have selected a delay FD Full, 1GHz SV | 9.74 x 10°

d = L, /2 to address the non-minimum phase charac- ) ) ]
teristic of the channel. For the NLMS adaptations we use Table 2. Evaluation of the computational cost of various
ji = 0.18. For the fullband processing and the 100 MHz- combinations of time-domain (TD) an(_JI frequency-domain
sampled SV channel we ude, = 30 and L, ; = 280, (FD), and subband and fullband inversion, for the 100 MHz
whereL, ; is the fullband equaliser length, and for the 1 and 1 GHz-sampled SV channel.

GHz-sampled SV channel we usg = 300 andL, ; =
980. For the equivalent subband system we hSe= 16,

N = 14 based on a prototype filter with,, = 448 taps
resulting in the characteristic given in Fig. 3 and have set
Lh7s =12 > Lh7f/N andLM =29 > Lg7f/N for the
100 MHz-sampled SV channel, aig, ; = 44 > Ly s/N
andL, ; =70 =L, ¢/N forthe 1 GHz-sampled SV chan-
nel.

are a continuous process, but as we simply need to reach
a specified MSE and the fullband method converges much
quicker, we find that the total operation count may in fact be
greater for the subband technique. For example, for the 100
MHz channel, -20 dB MSE is reached in 14% of the time it
takes the fullband method, and hence the overall computa-
tion count for the fullband is 16.8% of that for the subband.
For the 1 GHz-sampled channel though this ratio becomes
about 245%, meaning that for this long channel the subband

The fullband and subband adaptive identification MSE be- @daptation has lower cost in all respects.

haviour for a2 x 2 100 MHz and 1 GHz-sampled channels

is shown in Figure 6. As expected the fullband techniquesg 5 Analytic Inversion

show the quickest convergence becaligg > L /N and

also as the input signals are white the subband method willThe system MSE after using the various analytic inversion

not demonstrate an convergence improvement. methods discussed in this paper is shown in Figure 7. The
The real power of the subband system in this case arisesystem MSE refers to the error between the input to the

from the reduction in computational cost. Table 1 shows the MIMO channel and the channel-equaliser response to this

cost per fullband sampling period in multiply-accumulate input. The method labelled “Full” corresponds to fullband

computations (MACs) of the subband and fullband adaptive inversion of a known channel and the time-domain inver-

identification of the 100 MHz and 1 GHz-sampled 2 SV sion (TD Full) represents the optimum performance possi-

channels. We see the for the 100 MHz-sampled channel theble from any of the systems. The curves labelled “SuS”

subband adaptation requires about 84% of the computationsefers to subband identification followed by subband inver-

needed for the fullband technique. For the 1 GHz-sampledsion, where as “SuF” represent subband identification af-

channel, this becomes 21%. Hence we see that the relativéer which the equivalent fullband system is found by pass-

savings offered by the subband method increase as the charing a impulse through the analysis filter bank, the subband

nel impulse response, and hence equaliser length increasedilters and the synthesis filter bank, and finally this is in-
This is a fair comparison assuming that the adaptationsverted in the fullband. Also shown are curves for frequency-

5.2. Adaptive Identification



domain inversion regularised by the NSR (FDN) and also also the BER performance is quite satisfactory. Finally,
by a heuristically optimised fixed value which results in this method of finding a subband equaliser for broadband
the best possible performance in a noiseless environmenMIMO channels is useful for initialising an adaptive eqsat
(FDO). We have no result for the fullband inversion of the for dynamically fading channels where we would use subband-
known channel for the 1 GHz-sampled SV channel as theadaptive inversion to track the equaliser. Subband-adapti
channel is of such length that it would be computationally inversion has shown the ability to converge faster fromea#d
unfeasible, however we have included SuF results for thisinput signals and hence may be able to facilitate superior
channel for interest. We see that generally at lower SNR tracking performance than the equivalent fullband sys@&m [
value the FDN curves approach the optimum performance
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Fig. 7. System MSE versus SNR behaviour for subband and fullbaalytminversion for a 100 MHz and 1 GHz-sampled

SV channel.
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