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ABSTRACT

This paper describes a novel probabilistic frameworlbfometric identification and data fusion. Based on intrch a
inter-class variation extracted from training data, grost probabilities describing the similarity betwetaro feature
vectors may be directly calculated from the data usinddtjstic function and Bayes rule. Using a large publicly
available database we show the two imbalanced gait itiedahay be fused using this framework. All fusion methods
tested provide an improvement over the best modality tlie weighted sum rule giving the best performancegénen
showing that highly imbalanced classifiers may be fuses probabilistic setting; improving not only the penfiance,
but also generalized application capability.
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1. INTRODUCTION

Gait recognition is defined as the identification of aspe through the pattern produced by walking. This field has
produced significant interest over recent years, and throigvthk it has been shown that a subject’s gait pattern
sufficiently unique for identification. Gait has particubsivantages over other biometrics: it can be used atande,
uses no addition skills on the part of the subject, and lmeagerformed without the subject’s awareness or active
participation. All of these advantages make it particuhzlyable in surveillance or security systems.

Recognition methods can be broadly divided into two groggbpuette-based techniques and model-based
techniques. Silhouette-based techniques [1] tend to offedsped simplicity, but are only indirectly linked to gaita
are difficult to normalise for noise or variations Isuas clothing. Model-based techniques [2] use the shape and
dynamics of gait to guide the extraction of a featureoveth this paper we utilize the dynamic method of Wagg and
Nixon [2, 3] and the static method of Veres et al [1].

In many recognition approaches, recognition relieslistance metrics, typically Euclidean distance, i.eranfof
nearest neighbor classifier, between two vectors: ara known subjectc, and one of an unidentified subjeigt, A
classification decision can be made based on the Eanlidistanced, between the two vectors. This approach has a
number of weaknesses; principal amongst them is tHatlstto exploit any knowledge of variation within the ajat
particularly which variation is due to changes betweenrtings of the same subject (intra-class variatiang)which
variation is due to changes between subjects (intss-#ariations). The second important weakness of tthsigue is
the uncertainty about the range or distribution of scthraswill be produced. This is an important factor in veaifon
and in data fusion. The Euclidean distance can strugdle wvdrification since unimportant dimensions in the
measurement vector can contribute greatly to theaiityilscore, exacerbating difficulty in finding a suitatiieeshold.

Data fusion combines metrics from various techniqudsitiol one single identification score [4-6]. These rodth
struggle when using distance based metrics since the aodl distribution of scores across multiple techniques a
unlikely to be similar. To compensate for this, score diamation is often used to approximate the posterior
probability [7, 8]; however it is not clear whetheesle are good approximations of the posterior probgabitit this
paper we describe a more suitable method, where theiposti®babilities are calculated directly. Previous apphes
to combining gait metrics [7, 9] have all relied on sdogesformation to allow data fusion, also only staigion rules
are used and no consideration is given to the imbalafrdassifiers.

One solution for all of the problems described above evdadl to use the Bayesian classifier [10] to provide a
probabilistic measure for the verification (or cléisation) decision. A well designed Bayesian classifidf take into
account intra and inter-class variation, as well asigng well scaled (guaranteed between zero and one) ahd we
distributed outputs. The use of Bayesian classifiers ismawk in gait recognition, although there have been some
attempts to implement Bayesian classifiers in facegmition [11-14]. Whilst these implementations have peré&tm
well in the classification task, initial experimentsv@asuggested that similar performance is not achievethdan
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verification task. It would appear that the suitabilityttoé Gaussian distribution for modelling these distrimgibas
not been fully explored and that the likelihoods arisimgifthese models are poorly scaled and distributed [15].

In this paper we examine the application of our novel prdibabiframework to the task of data fusion. We describe
our method for obtaining confidences in verification diecis using static and dynamic gait vectors. Thesedmmes
are combined using static and weighted fusion rules tosatisegperformance of our method using a large publicly
available database [16]. We show that probabilistithous for data fusion are beneficial to the problenfusing
multiple imbalanced gait measures for verification.

2. THEORY

2.1. Gait signature extraction

For our gait signatures we employ two methods, a dynarmibad proposed by Wagg and Nixon [2, 3] and a static
method described by Veres et al [1]. For the dynamicasiga we follow the methods of Wagg and Nixon to extract a
seventy-three dimensional measurement vedtousing model based estimation. This signature derives frolk
motion and shape characteristics of the subject, aatemilmotion estimation using an adaptive model and motion
estimation using deformable contours; examples offdlese processes can be seen in Figure 1. Aftgorpoessing
to remove noise and background the sequence is edge detéhtedSobel operator. A motion compensated temporal
accumulation algorithm [17] is used to extract the bulk madfcthe subject in the horizontal plane. This is thikeared
using template matching, leaving only motion due todhleject. Shape estimation is then performed using a more
accurate model of the subject’s shape.

Articulated motion is estimated as sinusoidal models mfikmee, ankle and pelvic rotation. These provide réirsga
point for model adaptation of the subject’s limb moeets. An adaptive process for joint location is thpplied to the
sequence to form a more accurate and robust model offiaement. This adaptive process is based on an igrativ
gradient descent model repeated until no changes occutheventire sequence.

By feature selection, the processes described in [3] $elparameters based on are joint rotation modelsddmifh
knee and ankle and 18 parameters describing the subjpets,sgait frequency and body proportions. A further 10
parameters are extracted from the processes descrifgdd Adl of these parameters are normalised to makmthiee
invariant.

Shape Estimation  Period Estimation ~ Adaptive Model Defbtena
Countours

Figure 1 — Gait parameter extraction

For the static signature the sequence undergoes the safpeopessing to remove distortion and background and
silhouettes are obtained by connected component anahgisorphological operators. The output of this oparasi@
series of binary images of the subject silhouette ovenplete gait cycle. These silhouettes are normalisptbtade a
common centre of mass and then summed to form aage/eilnouette across the complete gait cycle. Nesage
silhouette yields a vector of 4,096 dimensions.

2.2. Intraand inter-classvariation

We seek to exploit our knowledge of the variation withia difference measure d to provide a probabilistic oreas
of whether the feature vectdgsandiy belong to the same subject. Specifically we wish seidlee the variation in two
ways, the variation that arises from differencesnigasurements from the same subject (intra-clasatizarj and the
variation that is the result of differences betweemtleasurements of different subjects (inter-classanas).



To describe this variance we take a corpus of trainirtg et contains a number of subjects each with multiple
measurement vectors. From this corpus we subtract geetgr from all other vectors of the same subject aloiv
this to form our intra-class training s€lg; we also subtract every vector from every othetorein the corpus where
the subjects are not identical, this forms the intassctraining seD,.

Having created our two training sets we then find teamand variance of each set:
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This process is undertaken for both the intra and ingmsdrraining sets to givee, 1, o°c, andd?. We justify the
use of the variance rather than the covariance follpwin and Wechsler’'s work in face recognition [13] whéreyt
make the assumption that the covariance matrices agerdil:

3= diag{af,azz,...,arzn} (3)

Initial experiments performed on our data show that thart@ance matrices are indeed sparse except on the diagonal
and we concur with Liu and Wechsler's experiments shgwio loss of performance using variance rather than
covariance.

2.3. Likelihood estimation

We wish to describe a new sequence’s similarity ttoeed sequence of a known subject in a probabilistic nmanne
using the information on the mean and variance obtainefl) and (2). To achieve this we must calculate the
likelihoods of obtaining the distance d given eitherairttass variationP(d|C), or an inter-class variatio®(d|l), i.e
that the subject is either a client or an impostor.

It is desirable to model these two distributions suchRij@|C) tends to one witld less than:c, tending to zero ad
increases beyonet; converselyP(d|l) should tend to zero witthless than, and tend to one akincreases beyond. If
the distributions ofl from clients and impostors then the functionsR¢|C) andP(d|l) should appear as in Figure 2.
To achieve this distribution we have chosen to mBd&|C) andP(d|l) as logistic functions (Figure 2) such that:
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b, =302/ mOi,c (6)

These functions conform to our requirements that thiey itato account knowledge of the variationdinthat they
are well distributed and that they are guaranteed to prampats between zero and one.

2.4. Bayesian Classification

From our estimates of the posterior the probability sfibject being a clien®(C|d), can be calculated directly. To
achieve this we use Bayes’ rule (7), with the assumpiianthe prior probabilities of a client or an imposice equal,
(8), and calculating(d) using (9):
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Equation (7) then simplifies to:
PCld)=— 9 IC) (10)

P(|C)+P(d]I)

Having calculated the posterior probability, a suitatgeision threshold, t, can be implemented for the vatiéio
task. Hence iP(CJd)is greater than t we accept the assertion that thjecsih a client, otherwise we reject them as an
impostor. The value of t may be adjusted to achieve tbieedetrade-off between false accept and false regtes.

2.5. Datafuson rules

Having obtained the posterior probability for our statind dynamic gait vectors we may now combine thengusin
either static or weighted product and sum decision rules].[Zhe rules are given by (11) and (12), wHef€|d) is the
posterior probability from thé" classifier andR is the number of classifiers to be fused:; in the cdske static fusion
rules the weights are set1R

R
sumrule:  P(C|dy,...dg) =X wP(C|d;) (11)

Product rule: P(Cldl,...,dR):F\?/ﬁP(Cldi)W'R (12)

The optimal weightsy;, for weighted fusion are determined by the additive eEgg,from each classifier [18] and

may be found using:
-1
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Due to the difficulties in calculating the valueEf;; we instead approximate this value with the equal eater of
each classifier.

3. METHODOLOGY

Using the Southampton HiD database [16] consisting of 1,6q%sces from 115 subjects walking to the left (such
as the example image shown in Figure 3) we were algertstruct training, gallery, client and impostor setsséhsets
were converted to both dynamic and static feature vecthes training set consisted of 145 sequences of 15 subjects
that could be used to estimate the intra and inter-clags ared variance; the gallery consisted of single seqsdrare
100 subjects; the client set consisted of 834 sequencesredched to a subject in the gallery set; the impostor se
consisted of 834 sequences where the sequences were cittdrtata subject in the gallery.

Using the procedure described in section 2.2 the traivégors were differenced from those of the same and
different subjects to form 1,322 and 19,558 difference vectsmectively. These were then used to calculate tree in
and inter-class means and variances for each madadisgerior probabilities were then calculated usieglethods set
out above for the client and impostors sets for each fitypdahe two modalities were then fused using the statit
weighted product and sum rules.
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Figure 2 — Intra and Inter Class Distributions
and Likelihoods

Figure 3 — Example Image for Gait Sequence

4. RESULTS

The Equal Error Rates for all of the experiments hoeve in Table 1. As can be seen the EERSs for therdiynand
static modalities alone are 7.3% and 15.5% respectithds/makes the fusion task highly imbalanced and acuopttdi
Daughman [6] we would expect to see no improvement througbnfudowever we can see that all fusion methods
show some improvement over the use of the dynamic miediame. Using McNemar’s Test [19] to evaluate the
statistical significance of any improvement over tlyaaimic method we show that the improvement using tic st
product rule is not statistically significant, howetlee improvements shown by the other fusion rules arsatlktically
significant at the 1% level. Despite these improvenagpearing small it must be remembered that the methedse
using are already highly effective and that since theltseesare statistically significant it is unlikely thatigh
improvement is due to feature space noise.

Receiver Operator Characteristic curves over the ragfiorterest can be seen in Figure 3; from these weeaithg
poor performance of the static method together withmibee effective dynamic method and the improvemeniteeda
by using the fusion rules. It can be seen that theseireprent does not hold in all regions for all methoddhayes this
is because the weights are trained for the EER damegh further experiments would be needed to confirm this.
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Table 1 — Equal Error Rates Figure 3 — Receiver Opetitaracteristic Curves



The results of our experiments show that in the caseighfiyhimbalanced classifiers statistically signifitan
improvement is possible through the use of fusion metliaonjunction with probabilistic techniques. The glts
used for these experiments were obtained in a principlethenathough more work is needed to determine if this
approach is optimal.

It is also of interest to consider how the fusion psedenproves the separability of the clients and impsstbis
can be measured by Daugman’s decidability index [6] and éndiy:

q = |/Jl_/Jz| (14)
\/%(Uf +a3)

Whereu, andyu, are the mean values of the client and impostor posterafmabilities respectively, and, ando?,
are the variances for the client and impostor posteriababilities. By way of comparison the decidabilitgex for an
experiment with a classification rate of 99.2% on 252 exampdas3.43 [20]. The values fdi can be seen in Table 2
with example distributions from the dynamic, static amibiwted sum experiments in figures 4(a) through (c).
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Using the decidability index to evaluate the various nuthee see that they are generally in agreement téh t
Equal Error Rates above, the exception is the staticasuhweighted product rules, although the difference in bath t
decidability index and EER is slight (Figure 5). It is appartat the decidability index is roughly inversely
proportional to the Equal Error Rate for our example waththis is to be expected as the more separatedehearid
impostor sets are, the greater noise immunity onedwvexpect the method to have.

@ Eror Rate
mDecidability

Equal Error Rate (%)

Decidabiliy Index

Dyhamic Static Static Sum Static Product \Weighted Sum  Weighted Product
Wathod

Figure 5 — Equal Error Rates and Decidability

5. CONCLUSIONS

In this paper we have described a novel probabilistiméwork for biometric recognition and data fusion; vevs
the framework applied to the fusion of two highly imipeded gait modalities. Our results indicate that it is iptes$o
achieve improvements in verification performance rirbalanced classifiers using probabilistic methods anidrfus
rules; in addition we show that the Weighted Sum rutkésmost effective in our tests. We show that the ingarent
in error rate is due to an increased separation ircltbet and impostor distributions and that this increageughly
proportional to the improvement in error rate. In faturork we will aim to assess if the method we usesdbculating
weights is optimal and whether these weights may be tungrbtide better performance in certain areas of the ROC
curve; we shall also extend this work to other biornetrodalities.
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