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Abstract

Kernel Canonical Correlation Analysis (KCCA) is a method of correlating linear
relationship between two variables in a kernel defined feature space. A machine learn-
ing algorithm based on KCCA is studied for cross-language information retrieval. We
apply the algorithm in Japanese-English cross-language information retrieval. The re-
sults are quite encouraging and are significantly better than those obtained by other
state of the art methods. Computational complexity is an important issue when ap-
plying KCCA to large dataset as in information retrieval. We experimentally evaluate
several methods to alleviate the problem of applying KCCA to large datasets. We also
investigate cross-language document classification using KCCA as well as other meth-
ods. Our results show that it is feasible to use a classifier learned in one language to
classify the documents in other languages.

1 Introduction
Recently there is a growing need for advanced information retrieval techniques to help peo-
ple exploit a vast amount of information available through the Internets. Cross-language
information retrieval enables us to retrieve information from other languages using a query
written in the language we are familiar with. A cross-language information retrieval system
can be built up via two approaches. One is to use machine translation to translate the query
so that the problem is transformed into a monolingual information retrieval task where a
variety of techniques can be employed (e.g. [11]). Another way is to first automatically
induce a semantic correspondence between two languages by some automatic methods
such as machine learning and then use it to project the inquiry into another language to
accomplish cross-language information retrieval (e.g. [10], [12]). In [10] cross-language
latent semantic indexing (CL-LSI) was proposed as a fully automatic method for cross-
language information retrieval, which produced results comparable to (and sometimes bet-
ter than) those obtained with machine translation systems. In [12] kernel canonical corre-
lation analysis (KCCA) was used for cross-language information retrieval, which achieved
significantly better performance than CL-LSI on an English-French corpus. The machine
learning based method is interesting because its performance is comparable to the machine
translation based method but its implementation is easier.

Canonical correlation analysis (CCA), proposed by H. Hotelling in [5], aims to find
basis vectors for two sets of variables such that the correlation between the projections of
the variables onto these basis vectors are mutually maximised. CCA can be seen as using
complex labels as a way of guiding feature selection toward the underlying semantics. CCA
makes use of two views of the same semantic object to extract the representation of the
semantics. Here semantics refers to the content of an object (e.g. document) and different
views are the different representations of the object (i.e. the document’s text in different
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languages). In an attempt to increase the flexibility of the feature selection, kernelisation
of CCA (KCCA) has been applied to map the data to a higher-dimensional feature space.

KCCA is particularly suitable for applications where the semantics of the object with
two or more views are crucial. Two such problems are cross-language information retrieval
and multimedia content-based retrieval. In the former the semantics refers to the content
of a document and the texts of document in different languages represent different views.
In the latter the semantics is the content of the multimedia object and the different media
representations form different views. Actually KCCA has achieved state of the art results
for the two problems. In [4] KCCA with a Gaussian kernel was applied to a collection of
images with attached text to extract the semantic correspondence between image and text,
which was then used to perform content-based image retrieval from a text query. In [12]
KCCA with a linear kernel was used successfully to infer a semantic representation from an
English-French bilingual corpus, as shown by the experimental results for cross-language
information retrieval and text categorisation using the derived semantics.

In this paper we investigate KCCA for Japanese-English cross-language information
retrieval and other issues. We also study another interesting topic using KCCA — cross-
language document classification where a classifier learned in one language is used to clas-
sify documents in a second language. The paper has two novelties. One is that we applied
the KCCA to two very different languages Japanese and English for cross-language in-
formation retrieval. Previously the KCCA was successfully used for English and French
cross-language information retrieval. Another one is cross-language document classifica-
tion. Previously we had considered using the semantic space induced by KCCA from a
bilingual corpus to do classification on another monolingual corpus (see [12]), but not us-
ing the classifier trained in one language for documents in the other, as what we study in
this paper.

The paper is organised as the following. In Section 2 we formulate kernel canonical
correlation analysis in the context of cross-language text applications. In the following sec-
tions we present the experimental results using KCCA for Japanese-English cross-language
information retrieval and document classification. As KCCA has been shown to be suc-
cessful for cross-language English-French information retrieval, in Section 3 we investi-
gate whether it could perform as well for two very different languages like English and
Japanese. Section 4 addresses an important problem with KCCA — how to deal with large
datasets. More training data for KCCA may result in a better semantic representation. On
the other hand, as KCCA leads to a generalised eigenvalue problem, the computation time
for KCCA may be very long if the training set is very large. We experimentally evaluate
several methods which were proposed to help KCCA to alleviate the problem caused by
large datasets. Finally Section 5 presents the methods and experimental results for cross-
language document classification.

2 KCCA for cross-language text applications
KCCA induces a set of basis vectors in feature space from a collection of bilingual doc-
uments. Those vectors can be regarded as a semantic representation of the bilingual cor-
pus. Here the semantic representation means that a basis vector of KCCA corresponds
to one theme or several mixed themes of the corpus, which are represented by the typi-
cal terms about the themes in two languages. Figure 1 shows two examples of the basis
vector obtained from a Japanese-English patent collection (see Section 3 for the detailed
explanations of this collection). Each of such basis vector has more than 150 thousands
components, of which we only list the first 10 largest components (the values and the cor-
responding terms) respectively for Japanese and English. It looks that the vector in the left
of Figure 1 represents three mixed themes: a natural farming method, stepping motor and
a new device for photo development, while the vector in the right is mainly for one theme,
stepping motor. Since the KCCA extracts distinct themes from a text collection and repre-
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Figure 1: The semantic representation of KCCA basis vector: ten terms respectively in
Japanese and English which correspond to the largest components of vector. Note that the
English terms are the stemmed words.

sents the themes respectively in two languages, we could represent a document in one or
another language as some combination of the themes and use this kind of semantic repre-
sentation for cross-language text applications such as information retrieval and document
classification. For example, we can first obtain the semantic representations of a query in
one language and some documents in another language by projecting them onto the KCCA
basis vectors and then retrieve relevant documents for the query by comparing the semantic
representations (see Section 3 for more details). In the following we will show how KCCA
infers a set of basis vectors from a bilingual corpus as the semantic representation.

Suppose we are given N pairs of documents in two languages, i.e. every document
ci (i = 1, . . . , N) in one language is a translation of document di in another language.
After some preprocessing, we obtain a feature vector xi ∈ X for every document ci and a
feature vector yi ∈ Y for document di, where X and Y are the feature spaces of the two
languages, respectively. By using canonical correlation analysis (CCA), we can find some
directions fx ∈ X and fy ∈ Y in the two spaces such that the projections {(fx, xi)}

N
i=1

and {(fy, yi)}
N
i=1 of the feature vectors of documents from the two languages would be

maximally correlated. Then we can find another maximally correlated directions in the
two complementary subspaces of the one-dimensional subspaces fx and fy in the feature
spaces X and Y , respectively, and so on. If the features consists of content terms (i.e. the
stemmed words excluding stop words) from the documents as in the experiments described
in [12] and in this paper (which corresponds to linear kernel, see the discussions below),
then the directions fx and fy may represent the terms about the most popular topics in the
collection in two languages, respectively, as these terms are most common in the document
pairs (c, d) ∈ X×Y . Therefore, the pair of directions fx and fy may represents some of the
most distinct themes in the document collection, which could be useful for cross-language
applications.

Formally, CCA finds a canonical correlation ρ in the space X × Y which is defined as

ρ = max(fx,fy)∈X×Ycorr((fx, xi), (fy, yi))

= max(fx,fy)∈X×Y

∑N

i=1 (fx, xi)(fy, yi)
√

∑

i (fx, xi)2
∑

j (fy, yj)2
(1)

We search for fx and fy in the space spanned by the corresponding feature vectors, i.e.

fx =
∑

l

αlxl, fy =
∑

m

βmym (2)
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This rewrites the numerator of (1) as
∑

i

(fx, xi)(fy, yi) =
∑

i

∑

lm

αlβm(xl, xi)(ym, yi) = αT GxGyβ (3)

where α is the vector with components αl (l = 1, ..., N) and β the vector with components
βm (m = 1, ..., N) and Gx is the Gram matrix of {xi}

N
i=1 and Gy the Gram matrix of

{yj}
N
j=1. The problem (1) can then be reformulated as

ρ = maxα,β

αT GxGyβ
√

αT G2
xα · βT G2

yβ
(4)

In order to force non-trivial learning on the correlation, we introduce a regularisation pa-
rameter to penalise the norms of the associated weights (e.g. see [1]). By doing so, the
problem (4) becomes

ρ = maxα,β

αT GxGyβ
√

(αT G2
xα + καT α) · (βT G2

yβ + κβT β)
(5)

Note that the new regularised equation is not affected by re-scaling of α or β, hence the
optimisation problem is subject to the two constraints

αT G2
xα + καT α = 1 (6)

βT G2
yβ + κβT β = 1 (7)

The corresponding Lagrangian is as

L(α, β, λα, λβ) = αT GxGyβ −
λα

2
(αT G2

xα + καT α − 1) −
λβ

2
(βT G2

yβ + κβT β − 1)

Taking derivatives of the Lagrangian with respect to α and β and setting them to be zero,
respectively, we have the equations

GxGyβ − λα(G2
x + κI)α = 0 (8)

GyGxα − λβ(G2
y + κI)β = 0 (9)

The solution (α, β) of the equations (8) and (9) is the solution of the optimisation problem
(5) with the constraints (6) and (7). Taking αT times equation (8) we have

αT GxGyβ − λααT (G2
x + κI)α = 0

which together with (6) implies that

λα = αT GxGyβ

Similarly taking βT times equation (9) together with the constraint (7) we have

λβ = βT GyGxα

The above two equations imply that

λα = λβ = αT GxGyβ (10)

Letting λ = λα = λβ , we can rewrite the equations (8) and (9) as a generalised eigenvalue
problem

Bξ = λDξ (11)
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where λ is the canonical correlation ρ between the projections (fx, xi) and (fy, yi) (i =
1, ..., N), and

B =

(

0 GxGy

GyGx 0

)

, D =

(

G2
x + κI 0

0 G2
y + κI

)

, ξ =

(

α
β

)

(12)

Finally, note that the vectors α and β of eigenvector ξ would be used to deduce the basis
vector fx and fy in two languages, respectively, and the regularisation might cause the two
basis vectors being differently scaled. Hence, using the equations (2) we should rescale the
vectors α and β such that

αT G2
xα = 1 = βT G2

yβ (13)

Considering the constraints (6) and (7), the rescaling can be achieved by

α = α/
√

1 − καT α, β = β/
√

1 − κβT β (14)

Therefore, the optimisation problem of the CCA has been transformed into a gener-
alised eigenvalue problem (11), where the eigenvectors with the largest eigenvalues repre-
sent the maximally correlated directions in feature space. In other words, the eigenvector
ξ1 = (αT

1 , βT
1 )T with the largest eigenvalue λ1 forms the maximally correlated directions

fx and fy in the feature spaces X and Y by using the equations (2). The eigenvector
ξ2 = (αT

2 , βT
2 )T with the second largest eigenvalue λ2 forms the maximally correlated

directions in the complementary subspaces of the subspaces fx and fy in the feature spaces
X and Y , respectively, and so on.

We can see that, either in the optimisation problem (5), (6) and (7) or in the eigen-
problem (11), the training points {xi}

N
i=1 and {yi}

N
i=1 are involved only through the Gram

matrix Gx and Gy. Therefore, the so-called “kernel-trick” can be used to introduce ex-
tra flexibility into CCA. Kernelisation of CCA means that the training points {xi}

N
i=1 and

{yi}
N
i=1 are mapped to another (some high-dimensional) feature space by a kernel function

(see e.g. [2]) and the canonical correlation is then computed in the new feature space. This
can be done easily by replacing the Gram matrices with the corresponding kernel matrices
in the optimisation formulation (5), (6) and (7) and in the eigenproblem (11). A Gaussian
kernel was employed in [4] for text-image content based retrieval. The experiments in [12]
showed that the linear kernel was quite good for cross-language applications of KCCA (As
a matter of fact, [6] also showed that the linear kernel performed similarly with other types
of kernel for the monolingual document categorisation). Moreover, linear kernel is simpler
and leads to faster learning algorithm than other kernels. Hence, the linear kernel was used
in our experiments as well. Using the terms (i.e. stemmed words) as features together with
linear kernel means that the feature space is basically vocabularies. Precisely every dimen-
sion of the feature space corresponds to a term (i.e. a stemmed word). Also, we used the
same value of regularisation parameter as in [12], i.e. κ = 1.5 (also see [12] for a detailed
discussion of the regularisation parameter).

3 Using KCCA for cross-language information retrieval
Cross-language information retrieval with KCCA. In the previous section we have shown
that KCCA leads to a generalised eigenvalue problem. The eigenvectors with the largest
eigenvalues correspond to the maximally correlating directions in the feature spaces, which
constitute some kind of semantic basis vectors. These basis vectors represent semantic cor-
respondence between the training documents of the two languages, i.e. every vector repre-
sents a theme or several mixed themes of training documents in two languages and a theme
is represented by a distribution among the vectors (also see Figure 1). These basis vectors
provides a framework for performing cross-language information retrieval where, given a
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query in one language, we try to find out the relevant documents in another language. Here
we adopt the procedure described in [12] for cross-language information retrieval using
KCCA. We first pick a number d of eigenvectors with largest eigenvalues from the solution
of (11) for two languages A and B, and compute the corresponding maximally correlated
directions in the feature spaces which represents the most distinct themes of the collection
in the two language. Then we represent query in language A as a combination of themes
by projecting the query onto the language A part of the basis vectors, and also represent
some documents in language B by the same themes by projecting them onto the language
B part of the basis vectors. Finally we compare the semantic representations of the query
and the documents to select the relevant documents in language B for the query in language
A. Formally, to process a query q we represent q as a feature vector q̃ and project it onto
the d canonical correlation directions in feature space

q̃d = AT ZT q̃ (15)

where A is N × d matrix whose columns are the first or the second half (depending on
which language was used in the query) of eigenvectors of (11) with the largest d eigenval-
ues, and each column of Z is a training vector in the same language as the query. Similarly,
we represent the documents for retrieval in another language as d-dimensional vectors by
projecting them onto the d-dimensional canonical correlation directions. Then the docu-
ments with the shortest distances to the query in the d-dimensional space are regarded as
being relevant to the query.

The dataset used for the experiments. The dataset we used was from the NTCIR-3 patent
retrieval test collection1. The collection includes about 1.7 million Japanese patent ab-
stracts and their English translations, spanning five years (1995–99). Only the 336,929
documents from 1995 (referred to as the 1995 collection hereafter) was used in the experi-
ments we did. First of all, we collected the terms and computed the idf (inverse document
frequency) for every term from the 1995 collection. The English terms were collected in
the usual way, i.e. down-casing the alphabetic characters, removing the stop words, replac-
ing every non-alphabetic character with a blank space, stemming words using the Porter
stemmer, and finally removing the terms which appear less than 3 times in the corpus. We
preprocessed the Japanese documents using a Japanese morphological analysis software
Chasen2 version 2.3.3, as was done in [11]. From the documents processed by the Chasen,
we picked up as our terms those words whose part of speech tags were either noun (but not
dependent noun, proper noun or number noun), or independent verb, or independent ad-
jective, or unknown. We also removed the Japanese terms appearing less than three times
in the documents of the 1995 collection. By doing so, 61583 English terms and 90055
Japanese terms were obtained, respectively. Then we computed the tf ∗ idf feature vectors
for the Japanese patent abstracts and the corresponding English translations in the usual
way (e.g. see [6]) and finally normalised the feature vectors.

Mate retrieval. We first conducted experiments for mate retrieval. In mate retrieval a
document in one language was treated as a query and only the mate document in another
language was considered as relevant. A mate document was considered to be retrieved if
it is most close to the query document in the semantic space. We applied KCCA to the
first 1000 Japanese documents and the English translations of the 1995 collection. For
comparison, we also implemented LSI for cross-language information retrieval (see [10])
under the same experimental settings, since the results of LSI on the collection we used
was not available from other people.

The results presented in the upper part of Table 1 is for 1000 training documents as
queries. The lower part of Table1 shows the results for the 2000 test documents used as
queries. These results are consistent with those on the English-French documents (see

1See http://research.nii.ac.jp/ntcir/permission/perm-en.html
2See http://chasen.aist-nara.ac.jp/
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[12]). That is, KCCA can achieve quite good performance using a fraction of eigenvectors
(say 200) while LSI achieved the same results only when using the full 1000 eigenvectors.
We can also see that the KCCA significantly outperformed LSI on the test documents.

Table 1: Mate retrieval (1000 training documents): the accuracy rates averaged over all the
training documents and over other 2000 test documents, respectively. Different numbers
of the eigenvectors were used and KCCA was compared with LSI. E→J means using En-
glish query to retrieve Japanese documents and J→E means Japanese query and English
documents.

#Eigenvectors 5 10 50 100 200 300 400 500 1000
Training docs as queries
KCCA(E-J) 0.675 0.898 0.973 0.988 0.993 0.994 0.993 0.992 0.995
KCCA(J-E) 0.661 0.876 0.973 0.979 0.987 0.988 0.988 0.985 0.998
LSI(E-J) 0.093 0.328 0.769 0.898 0.949 0.960 0.965 0.966 0.996
LSI(J-E) 0.091 0.264 0.652 0.827 0.923 0.946 0.952 0.959 0.996
Test docs as queries
KCCA(E-J) 0.050 0.154 0.402 0.466 0.528 0.519 0.496 0.471 0.338
KCCA(J-E) 0.084 0.174 0.368 0.449 0.462 0.423 0.388 0.356 0.233
LSI(E-J) 0.037 0.095 0.296 0.376 0.431 0.431 0.417 0.393 0.247
LSI(J-E) 0.029 0.079 0.212 0.294 0.362 0.355 0.329 0.304 0.170

Pseudo query retrieval. We also carried out experiments for pseudo query retrieval. We
generated a short query consisting of the five most probable words for each test document.
And the relevant document is the mate of the document in another language. Table 2 shows
the relative number of correctly retrieved documents in each experimental setting. Once
again, we present the results for the queries from the 1000 training documents and the
2000 test documents, respectively. The retrieval accuracy of KCCA is high and is better
than those using LSI when a short query was generated from training document.

The experimental results have shown that KCCA outperformed LSI consistently for
cross-language information retrieval. We can also see that similar results were obtained
for the English-Japanese bilingual corpus as that reported for English-French documents in
[12], despite that English is much more different from Japanese than from French. There-
fore, the KCCA provides a very encouraging way for cross-language information retrieval.

We can also see from the above results that, while the retrieval accuracy was quite high
with training documents as queries, the retrieval accuracy became low when the documents
not in training set were used as queries. This may be due to the small number of training
documents. KCCA extracted a semantic correspondence between two languages from the
training documents. If the training set is too small to be representative, then the semantic
correspondence may not have a good coverage for documents not in training set.

More training documents. We expected that the KCCA have better generalisation perfor-
mance when the training set became larger. To verify it, we added another 1000 documents
into the training set and then repeated the above experiments with the enlarged training set.
In the case of training documents as queries, the results for 2000 training documents were
similar to those for 1000 training documents. The results for the 2000 other test documents
as queries are presented in Table 3. Comparing with the corresponding results in Table 1
and Table 2, we can see from Table 3 that the generalisation performance has indeed im-
proved when using more training documents.

It is possible that the generalisation performance of KCCA will become better if we use
yet more training documents. However, we are unable to use a very large training set for
KCCA because the computation time becomes very long when using for example 50,000
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Table 2: Pseudo query retrieval (1000 training documents): the accuracy rates averaged
over all the training documents and over 2000 test documents, respectively. Different num-
bers of eigenvectors were used and KCCA was compared with LSI. E→J means using
English query to retrieve Japanese documents and J→E means Japanese query and English
documents.

#Eigenvectors 5 10 50 100 200 300 400 500 1000
Training docs as queries
KCCA(E-J) 0.042 0.132 0.484 0.711 0.906 0.966 0.965 0.959 0.949
KCCA(J-E) 0.061 0.144 0.379 0.608 0.813 0.966 0.972 0.952 0.946
LSI(E-J) 0.062 0.170 0.415 0.561 0.734 0.785 0.829 0.862 0.911
LSI(J-E) 0.048 0.128 0.244 0.317 0.433 0.495 0.528 0.539 0.548
Test docs as queries
KCCA(E-J) 0.024 0.068 0.167 0.200 0.219 0.228 0.227 0.223 0.197
KCCA(J-E) 0.029 0.061 0.136 0.162 0.166 0.156 0.149 0.139 0.107
LSI(E-J) 0.028 0.077 0.152 0.186 0.203 0.212 0.220 0.211 0.172
LSI(J-E) 0.023 0.061 0.114 0.137 0.140 0.140 0.133 0.126 0.093

Table 3: Results of experiments with the 2000 training documents: the accuracy rates
averaged over 2000 test documents. Different numbers of the eigenvectors were used.
E→J means using English query to retrieve Japanese documents and J→E means Japanese
query and English documents.

#Eigenvectors 5 10 50 100 200 300 400 500 1000
Mate retrieval
KCCA(E-J) 0.134 0.245 0.565 0.609 0.638 0.642 0.628 0.607 0.469
KCCA(J-E) 0.160 0.287 0.525 0.573 0.591 0.569 0.537 0.499 0.351
Pseudo query retrieval
KCCA(E-J) 0.063 0.101 0.209 0.249 0.274 0.287 0.297 0.326 0.273
KCCA(J-E) 0.054 0.089 0.169 0.194 0.207 0.217 0.213 0.202 0.166

documents for training. In the next section we will discuss several methods to help KCCA
deal with a large training set. In the rest of this section, we discuss two problems raised
from the above results.

One problem we can see from the results of our experiments is that the accuracy of
retrieving English documents from a Japanese query (from Japanese to English) is lower
than from English to Japanese in almost all cases. On the other hand, when applying KCCA
to English-French corpus for cross-language information retrieval in [12], the results were
very similar when using English document as query for retrieving French documents or
using French document for retrieving English documents. Note that the main difference
between processing English and Japanese documents was in the procedure of collecting
the terms. The English (or French) terms were basically the stemmed words. However, in
Japanese, unlike in English or French, there is no delimiter between words in a sentence.
Hence we had to employ some procedure to segment Japanese sentence into a sequence
of words and then to select Japanese terms according to the POS tags. The procedure of
collecting Japanese terms may introduce more errors than that of collecting English term.
Therefore, we think that the lower accuracy of using Japanese query for retrieving English
documents may due to the fact that the quality of the Japanese terms we collected was not
as good as that of English terms. Searching a better method of collecting Japanese terms
than the one we used would be part of the future work.

Another problem is how to choose the optimal number of KCCA eigenvectors. First,
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we can see from the above tables that the performance is not very sensitive to the number
of KCCA eigenvectors. For example, in most cases, the number of eigenvectors which was
not far (say 100) from the optimal one gave similar results. In the application we may use
some empirical methods for choosing a good number of eigenvectors. Actually determining
the optimal values of parameters in a learning algorithm is an important research problem
in machine learning. Several empirical methods such as n-fold cross-validation have been
studied and work well in some applications (see e.g. [7] or the machine learning textbooks).

4 Methods for KCCA to deal with large training sets
As shown above, KCCA’s performance was improved when we used more training ex-
amples. Since KCCA is a kind of unsupervised learning algorithm, we can easily collect
a large (unlabeled) training set for it. Hence we can use a large training set for KCCA to
achieve better performance for cross-language information retrieval. However, it is difficult
to apply KCCA directly to a large training set because of its computational complexity. A
naive implementation of KCCA would scale as O(N 3), a computational complexity with
cubic growth in the number of data points N . So we have to use some method to help
KCCA handle large training sets. To this end, we consider two strategies. One is to only
use the salient examples from the training set. The partial Gram-Schmidt orthogonalisation
of the training examples (or equivalently the incomplete Cholesky decomposition of the
kernel matrix) is one example using this kind of strategy. Another strategy is to split the
training set into small groups and compute KCCA for each group. In [12] the large training
set was randomly split in order to alleviate the problem of large datasets. Here we propose
a further method — cluster the training set before applying KCCA.

Incomplete Cholesky decomposition of the Gram matrix was used in [1] to reduce the
computational complexity of a similar algorithm. A positive semidefinite N×N matrix K,
such as the Gram matrix, can always be factored as GGT , where G is an N ×N matrix as
well. This factorisation can be found via Cholesky decomposition. Incomplete Cholesky
decomposition is to find a matrix G̃ of size N × M , for small M , such that the difference
K−G̃G̃T has norm less than a given precision. As shown in [1], this kind of approximation
can reduce the computational complexity to be quadratic in the size of the training set (i.e.
O(N2)).

The partial Gram-Schmidt orthogonalisation was explored for KCCA in [4]. The Gram-
Schmidt orthogonalisation algorithm was basically to determine a subset of examples with
a pre-defined size, which were furthest from each other in the feature space and could
be regarded as the most salient examples of training set. See [3] for more detail about the
algorithm. By the partial Gram-Schmidt orthogonalisation, a semantic space was formed as
a span of a subset of training examples which were selected by performing Gram-Schmidt
orthogonalisation procedure on the training vectors in the feature space. The partial Gram-
Schmidt orthogonalisation is equivalent to an incomplete Cholesky decomposition as the
latter is the dual implementation of the former.

Another way for KCCA to deal with large training set is to split the training set into
some relatively small subsets and apply KCCA to each subset independently and then inte-
grate the solutions of the KCCAs from the subsets into a general semantic correspondence
between two languages. One obvious way was to split the training set randomly. An-
other possible approach is to cluster the training set into small groups. We hypothesis that
clustering a large training set may be a better way for KCCA to handle large dataset than
splitting it randomly into small groups. Clustering a large dataset not only results in small
training sets for KCCA, it can also put together documents with similar contents so that the
semantic correspondence extracted by KCCA from the cluster could be a good semantic
representation of the cluster.

We carried out the experiments to make a comparison among the methods described
above. We put together the 101 documents, each of which is relevant to one of the first five
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topics in the NTCIR-3 collection, as the training set (denoted as Set-A hereafter). In order
to evaluate the scalability of the results, we also did experiments using a larger set of the
306 documents (denoted as Set-B hereafter) each of which was relevant to one of the first
ten topics in the NTCIR-3 collection.

Four methods were compared in these experiments, i.e. the partial Gram-Schmidt or-
thogonalisation, the clustering, splitting the training set randomly, and applying KCCA
directly. For the clustering method, as we know that a document in the training set is rele-
vant to one of the five topics for Set-A (or ten topics for Set-B), we did not implement any
clustering algorithm in our experiment. Instead we checked two cases. One is the perfect
clustering, which meant we had five clusters for Set-A (or ten clusters for Set-B) and a
cluster consisted of the documents relevant to one unique topic. Another is the clustering
with 20% noise. In this case we had five (or ten) clusters again but on average only 80%
of the documents in a cluster are relevant to a topic. Correspondingly, for the random split,
we randomly divided the document set into five (or ten) partitions of the same size (the last
partition may be larger than others so that the partitions contained all the documents).

For the partial Gram-Schmidt method, we had to specify an important parameter, i.e.
the number of training examples to be selected (the dimension of the subset used). It can
be determined automatically through a predefined precision parameter as shown in [4]. In
our experiments, however, we tried several values of the parameter to see the effect of the
parameter on the overall performance (see Table 4) and then used the optimal one.

The KCCA eigenvectors obtained were then used for a cross-language information re-
trieval task where an English document in the training set was regarded as a query and the
Japanese documents which were on the same topic as the query were considered as rele-
vant. The averaged precision was computed to measure the retrieval performance for one
query. The means of the averaged precisions over all the English documents were used to
evaluate the different methods.

In Table 4 we present the results for the partial Gram-Schmidt method with different
dimensions of subsets used for two document sets, respectively. For the Set-A, we obtained
the best result with the dimension 60 of the subset. For the Set-B, the dimension 120 of
the subset was the best. We can see that the performances just decreased slightly for other
dimensions not very different (say 20) from the optimal one for both sets, which means
that the performance of Gram-Schmidt method for KCCA is stable with respect to the
dimensional parameter. On the other hand, the optimal numbers are different for the two
sets, which is not surprising because the two set has different numbers of documents and
more importantly different numbers of topics. The optimal values of dimensional parameter
(namely 60 and 120 for the Set-A and Set-B, respectively) would be used in the subsequent
experiments.

Table 4: The results for Gram-Schmidt method with different dimensions of subset for two
document sets, the Set-A and Set-B, respectively. The means of averaged precisions were
used to measure the overall performances for cross-language document retrieval. Note that
we cannot obtain a subset of dimension 120 or 140 for the set-A because the total number
of data in Set-A is 101.

Dimension 5 10 20 40 60 80 100 120 140
Set-A 0.699 0.700 0.845 0.856 0.881 0.851 0.833 * *
Set-B 0.445 0.668 0.689 0.737 0.846 0.866 0.876 0.894 0.873

Table 5 presents the results3 for the methods we evaluated, i.e. the partial Gram-
Schmidt orthogonalisation (with the optimal value of the dimensional parameter, 60 for the

3Note that we used the averaged precision as measure rather than the commonly used F1 in the experiments,
because the F1 need a parameter to threshold the retrieved results but the averaged precision need not – it was
computed from a ranked list of results and we just obtained a ranked list of documents from KCCA. See e.g. [9]
for a detailed explanation of the averaged precision.
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Set-A and 120 for the Set-B (see Table 4)), perfect clustering, noise clustering, randomly
splitting the training set and applying the KCCA directly. The Gram-Schmidt method and
the perfect clustering achieved the similar results, which was much better than both the
noise clustering and the randomly split. They were even better than applying KCCA di-
rectly. Secondly, as we expected, the clustering based method outperformed the randomly
split significantly. Thirdly, though the perfect clustering achieved similar performance to
the Gram-Schmidt method, noisy clustering can badly decrease the overall performance.
Note that in general we are currently unable to perform the perfect clustering in most
cases. Therefore, at least for the moment, the clustering method may not be very helpful
for KCCA. Hence, the Gram-Schmidt method appears the most practical way for KCCA
to deal with large datasets.

We can also see that these methods had the similar behaviors on the Set-A and Set-
B, showing that the results here are scalable. In addition, the optimal number of KCCA
eigenvectors was 5 for the Set-A and 10 for the Set-B. As the Set-A contained 5 topics and
the Set-B contained 10 topics, we may speculate that the optimal number of KCCA eigen-
vectors for cross-language applications could be around the number of topics in dataset.
However, we need do more experiments to verify the speculation.

Table 5: The results of experiments for the Set-A of 5 topics and the Set-B of 10 topics,
respectively: means of averaged precisions for cross-language document retrieval. The
methods evaluated included the partial Gram-Schmidt, perfect lustering, noise clustering,
Randomly split, and applying KCCA directly. Different numbers of eigenvectors were
used. An English document was used as a query and all the Japanese documents on the
same topic were considered as relevant. Note that we could not compute results for the
Set-B for both clustering and randomly split methods in the case of using 5 eigenvectors,
because we divided the Set-B into 10 subsets and took at least one eigenvector from every
subset.

#Eigenvectors 5 (or 1×5) 10 (or 2×5 or 1×10) 20 (or 4×5 or 2×10)
Set-A Gram-Schmidt 0.881 0.775 0.617

Perfect Clustering 0.880 0.694 0.552
Noise Clustering 0.639 0.582 0.493
Randomly Split 0.356 0.340 0.336
KCCA only 0.834 0.731 0.573

Set-B Gram-Schmidt 0.809 0.894 0.781
Perfect Clustering * 0.900 0.659
Noise Clustering * 0.585 0.533
Randomly Split * 0.142 0.160
KCCA only 0.755 0.859 0.761

5 Cross-language document classification
Cross-language document classification is about using a classifier learned from one lan-
guage to classify documents in other languages, by exploiting the semantic correspondence
between the languages. It is useful in the context of multi-lingual information management
because by doing so we need not learn different classifiers for multi-lingual document clas-
sification (instead we just learn a single classifier and then use it to classify documents in all
languages). In addition, the results of cross-language document classification can be used
to check how good the semantic correspondence is, since successfully applying a classifier
in another language requires a good semantic correspondence between two languages.

As the SVM gives state of the art results for text classification (see [6]), we used the
SVM as cross-language document classifier in our experiments. Fortunately, the SVM
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learned in one language can be used easily in another language if we are given pairs of
the training documents in two languages — we can first train an SVM using documents in
one language and then transform it into a new SVM for another language by substituting
the training feature vectors in the dual form of the SVM by the mates in another language,
since the SVM in dual form is a weighted sum of the training vectors in feature space.
On the other hand, the semantic correspondence inferred by e.g. KCCA between the two
languages could also be used as a basis to form the correspondence of feature vectors
representing the documents in two languages.

We therefore proposed two methods to use the SVM for cross-language classification.
The first one was to just exploit pairs of training documents in the two languages, i.e.
{(xi, yi) : i = 1, ..., N}. If an SVM was trained from the training documents {xi : i =
1, ..., N} in one language, which can be represented in dual form as

hx(·) = sgn

(

N
∑

i=1

αiK(·, xi)

)

(16)

then we can transform it into an SVM classifier in another language as

hy(·) = sgn

(

N
∑

i=1

αiK(·, yi)

)

(17)

We call the new SVM classifier (17) pSVM since it just employs the semantic correspon-
dence derived directly from the pairings of the training documents in two languages.

Note that this approach can only be applied if the training set is a paired dataset, though
one could envisage using the approach by first training an SVM in one language and then
only translating the so-called support documents for which the dual variable αi > 0. Typi-
cally this only holds for a small subset of the full training set.

Another method used the semantic correspondence derived using KCCA. Given a train-
ing set containing pairs of documents in both languages, projecting the training documents
onto the semantic space of KCCA resulted in pairs of semantic feature vectors, exactly as
we obtained in Section 3 for cross-language information retrieval. These pairs of semantic
vectors can then be used to project an SVM classifier from one language into another lan-
guage, just as was done for the pSVM. We call this kind of classifier kcca SVM. Note that
crucially the training set for KCCA may be different from that for the SVM. This implies
that a large (unlabeled) training set can be used in KCCA to deduce a good semantic cor-
respondence between the two languages and another labeled document set would be used
to train the SVM. However, in the experiments described below, only one and the same
training set was used for both KCCA and the SVM.

We also implemented an algorithm based on the generalised vector space model (GVSM)
for comparison (see [4]). This uses as a semantic feature vector the vector of inner products
between a document and the training documents in the same language. We call this kind of
SVM classifier gvsm SVM.

The dataset used in our experiment was also from the NTCIR-3 patent retrieval test
collection. The collection includes 31 topics. For each topic some pairs of documents in
Japanese and English were annotated as relevant or irrelevant. The annotated documents
for one topic form a dataset for cross-language document classification, where a classifier
can be learned from one language and then be tested in another language.

In the experiments we randomly split the dataset into two equal parts, one for training
and another for test. We used the English part of the training documents to train an SVM
classifier and then induced the pSVM, kcca SVM and gvsm SVM classifiers for the Japanese
documents, respectively. In order to test these cross-language classifiers, we also trained
an SVM directly using the Japanese training set and tested it on the Japanese test set. As

12



in the experiments presented in Section 4, We used averaged precision4 to evaluate the
performances of all the SVM classifiers on the Japanese test set (see e.g. [9] for a detailed
explanation of the averaged precision). We ran the experiments 10 times for one topic
and then the statistical measures mean and std were computed for the averaged precisions
from the 10 runs.

Table 6 shows the results for six topics, Topic 01, 02, 03, 07, 12 and 14 in the NT-
CIR collection. It also lists the numbers of relevant and irrelevant documents for each
topic. These topics were selected such that they were variable in respect of the ratio of
relevant and irrelevant documents (the ratios for the six topics were from 0.019 to 0.84).
For the kcca SVM we present the results with different numbers of eigenvectors derived
from KCCA. First, not surprisingly, the SVM learned directly from Japanese training doc-
uments achieved the best results on the Japanese test documents. However, the pSVM was
comparable to the SVM and the performance of kcca SVM did not drop much from that
of the SVM, which shows that the cross-language classification is feasible, in particular by
using the pSVM. Secondly, the pSVM and kcca SVM outperformed gvsm SVM on all the
six topics, showing that the semantic correspondences of the former two are better than that
of the last one. Finally, note that the results were various among the six topics but were
consistency among the methods. The result for a topic were dependent upon the topic itself
(whether it is hard for classification) as well as the training set (e.g. the number of relevant
examples). Moreover, if we had used F1 as the measure instead of the averaged precision,
the differences of the results among the topics would become bigger (see Footnote 4).

Table 6: Result for cross-language classification for six topics: the mean and std of the
averaged precisions over 10 experiments of the SVM classifiers on Japanese test set. The
SVM classifiers were learned from English training set and then induced pSVM, kcca SVM
and GVSM classifiers in Japanese. KCCA 100 means using the 100 eigenvectors with
largest eigenvalues from KCCA and KCCA full using all the eigenvectors. The last column
presents the results of the SVM learned directly from the Japanese training documents.

Topic #docs of relevant/irrelevant GVSM pSVM KCCA 100 KCCA full SVM
01 26/811 (0.032) 0.511± 0.090 0.594± 0.123 0.561± 0.90 0.603± 0.087 0.666± 0.087
02 17/912 (0.019) 0.550±0.210 0.711± 0.143 0.603±0.107 0.684±0.139 0.730±0.128
03 33/500 (0.066) 0.111±0.025 0.167±0.038 0.133±0.042 0.131±0.033 0.188±0.050
07 102/264 (0.386) 0.669±0.055 0.749±0.056 0.757±0.042 0.760±0.035 0.767±0.042
12 330/393 (0.840) 0.707±0.041 0.750±0.025 0.728±0.030 0.736±0.025 0.768±0.031
14 64/368 (0.174) 0.692±0.066 0.760±0.052 0.733±0.021 0.715±0.0.49 0.809±0.042

6 Conclusions
We described a method for fully automated cross-language information retrieval in which
no query translation was required. The method was based on KCCA, a method of find-
ing out the maximally correlating relationship between documents in two languages. We
used KCCA for cross-language Japanese-English information retrieval. The experimental
results were quite encouraging and were better than those obtained by another state of the
art method CL-LSI. As the computational complexity issue became serious when applying
KCCA to large datasets, we investigated several methods to alleviate the computational

4We did not use the F1, a commonly used measure in information retrieval research, to measure the perfor-
mance, because of another reason rather than the one for the experiments in Section 4 (see Footnote 3). The F1

is dependent on the bias b of the SVM solution but the average precision is not. It is known that the SVM would
learn a poor bias if the number of positive training patterns is very small and the bias can be improved by some
algorithms (see [8] and [7] ). But our purpose here is to compare different algorithms rather than achieving high
value of F1. Therefore, we think that the averaged precision is a better measure than F1 for the experiments.
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problem with KCCA. Our experiments showed that the partial Gram-Schmidt orthogonal-
isation was a practical way to help KCCA deal with large datasets.

We also presented two methods for cross-language document classification. The pSVM
projected the SVM classifier learned in one language onto another language directly through
the pairs of training documents in two languages. The KCCA SVM induced an SVM clas-
sifier in another language by using the semantic correspondence inferred by KCCA. We
tested the methods using an English training set and a Japanese test set. Both methods
obtained promising results and the pSVM performed better than the KCCA SVM. In com-
parison with the SVM classifier learned directly from Japanese training documents, the
pSVM achieved similar performance and the KCCA SVM did not deteriorate much on the
six various topics.

Note that we have investigated the capability of KCCA for cross-language information
retrieval by implementing some special tasks such as mate retrieval and pseudo query re-
trieval. Further work is required to implement the KCCA based method incorporating the
partial Gram-Schmidt orthogonalisation for more practical information retrieval tasks such
as those defined in the NTCIR-3 collection. In the experiments we just used the stemmed
words as features for document, which means the feature space is basically vocabularies.
It is interesting to incorporate linguistic information (such as the semantic features derived
from e.g. the WordNet) into feature space for KCCA. Another interesting work is to inves-
tigate further the KCCA based method for cross-language document classification by using
two different training sets one for KCCA and the second for the SVM to check if it is more
helpful of the semantic representation which is inferred from a larger unlabeled training
set. We are also interested in seeking a better approach than the one we used to collect the
Japanese terms.
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