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Identification of Nonlinear Systems Using
Generalized Kernel Models

Sheng Chen, Senior Member, IEEE, Xia Hong, Senior Member, IEEE, Chris J. Harris, and Xunxian Wang

Abstract—Nonlinear system identification is considered using a
generalized kernel regression model. Unlike the standard kernel
model, which employs a fixed common variance for all the kernel
regressors, each kernel regressor in the generalized kernel model
has an individually tuned diagonal covariance matrix that is de-
termined by maximizing the correlation between the training data
and the regressor using a repeated guided random search based on
boosting optimization. An efficient construction algorithm based
on orthogonal forward regression with leave-one-out (LOO) test
statistic and local regularization (LR) is then used to select a par-
simonious generalized kernel regression model from the resulting
full regression matrix. The proposed modeling algorithm is fully
automatic and the user is not required to specify any criterion
to terminate the construction procedure. Experimental results in-
volving two real data sets demonstrate the effectiveness of the pro-
posed nonlinear system identification approach.

Index Terms—Correlation, cross validation, kernel model, leave-
one-out (LOO) test score, neural networks, nonlinear system iden-
tification, orthogonal least squares (OLS), regression.

I. INTRODUCTION

MOST SYSTEMS encountered in the real world are
nonlinear and in many practical applications nonlinear

models are required to achieve an adequate modeling accu-
racy. A fundamental principle in system modeling is that the
model should be no more complex than is required to capture
the underlying system dynamics. This concept, known as the
parsimonious principle, is particularly relevant in nonlinear
model building because the size of a nonlinear model can easily
become explosively large [1]. Forward selection using the or-
thogonal least squares (OLS) algorithm [2]–[10] is an effective
construction method that is capable of producing parsimo-
nious linear-in-the-weights nonlinear models with excellent
generalization performance. Alternatively, the state-of-the
art sparse kernel modeling techniques, such as the support
vector machine and relevant vector machine [11]–[19], have
been gaining popularity in data modeling applications. These
existing sparse regression modeling techniques typically place
the kernel centers or mean vectors at the training input data and
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use a fixed common kernel variance for all the regressors. The
value of this common kernel variance has a crucial influence on
the sparsity level and generalization capability of the resulting
model, and it has to be determined via cross validation. For
example, in [5], a genetic algorithm is applied to determine the
appropriate common kernel variance through optimizing the
model generalization performance using a separate validation
data set.

In this paper, we extend the standard kernel modeling ap-
proach. Specifically, we consider the use of a generalized kernel
model for nonlinear systems, in which each kernel regressor has
an individually tuned diagonal covariance matrix. Such a gen-
eralized kernel regression model has the potential of enhancing
modeling capability and producing sparser final models, com-
pared with the standard approach of single fixed common vari-
ance. The difficult issue however is how to determine these
kernel covariance matrices. We note that the correlation func-
tion between a kernel regressor and the training data defines the
“similarity” between the regressor and the training data and it
can be used to “shape” the regressor by adjusting the associated
kernel covariance matrix in order to maximize the absolute value
of this correlation function. A guided random search method, re-
ferred to as the weighted optimization algorithm, is considered
to perform the associated optimization task. This weighted op-
timization algorithm has its root from boosting [20]–[23]. Since
the solution obtained by this weighted optimization algorithm
may depend on the initial choice of population, the algorithm
is augmented into a repeated weighted optimization method to
provide a robust optimization and guarantee stable “global” so-
lutions regardless the initial choice of population. The determi-
nation of kernel covariance matrices basically provides the pool
of regressors or the full regression matrix, from which a parsi-
monious subset model can be selected using a standard kernel
model construction approach.

The construction algorithm that we adopt to select a sparse
generalized kernel model is the one that uses an OLS selection
with the leave-one-out (LOO) test score and local regulariza-
tion (LR) [10], which will be referred to as the LROLS with
LOO score for short. The motivation of this construction algo-
rithm is twofold. First, the objective of modeling should be to
optimize model generalization capability or test performance,
rather than aiming to minimize the training mean square error
(MSE). Moreover, it is highly desired that the model building
process is automatic without the need for the user to specify
some additional termination criterion. The so-called delete-one
cross validation with its associated LOO score [8], [24]–[29]
provides the capability to achieve this aim, without resorting to
use a separate validation data set. Second, the computational
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efficiency and level of sparsity are crucial to the model con-
struction process. The computational efficiency of adopting the
LOO test score is ensured by using the OLS algorithm, as is
shown in [8] and [10], and multiple-regularizers or LR is known
to be capable of providing very sparse solutions [6], [9], [10],
[15]. The previous work [10] has shown that the LROLS with
LOO score offers considerable advantages in realizing these
two critical objectives of sparse modeling over several other
state-of-the art methods. The outline of the paper is as follows.
Section II presents the generalized kernel regression model for
nonlinear system identification. Section III describes the pro-
posed approach for the construction of sparse generalized kernel
models. Section IV gives our modeling experiments, while Sec-
tion V offers our conclusions.

II. GENERALIZED KERNEL REGRESSION MODEL

Consider a general discrete stochastic nonlinear system rep-
resented by [30]

(1)

where and are the system input and output vari-
ables, respectively, and are positive integers rep-
resenting the known lags in and , respectively,
the observation noise is uncorrelated with zero mean,

denotes the system
input vector with a known dimension
is a priori unknown system mapping, and is an unknown
parameter vector associated with the appropriate, but yet to
be determined, model structure. The system model (1) is to
be identified from an -sample system observational data set

, using some suitable functional which can
approximate with arbitrary accuracy. One class of such
functionals is the regression model of the form

(2)

where denotes the model output given the input , are
the model weight parameters, are the model regressors,
and is the total number of candidate regressors. The model
(2) is very general and includes all the kernel based models, the
polynomial-expansion model [2] and the general linear-in-the-
weights nonlinear model [31]. In particular, for a kernel based
model, the kernel mean vectors are placed at the training input
data points giving rise to , and the regressor
takes the form

(3)

where are the training input vectors, is a common kernel
variance and a chosen kernel function.

We will model the unknown dynamical process (1) by using a
generalized kernel regression model. Specifically, we allow the
kernel regressor defined in (3) to be extended to

(4)

where the th kernel covariance matrix takes the form of
. For example, the generalized

Gaussian kernel model adopts a general Gaussian function
regressor with

(5)

This generalized kernel model will have better modeling capa-
bility than the standard kernel model. However, it is more diffi-
cult to construct, as all the diagonal kernel covariance matrices
must be specified.

With the regressor taking the form of (4), the regression
model (2) becomes a generalized kernel model. This kernel
model for the data point can be expressed as

(6)

with the following notations:

(7)

(8)

Furthermore, this generalized kernel model over the training set
can be written in the matrix form as

(9)

by defining the following additional notations:

(10)

(11)

(12)

(13)

Note that denotes the th column of the regression matrix
, while is the th row of .
Let an orthogonal decomposition of the regression matrix

be

(14)

where

. . .
...

...
. . .

. . .
(15)

and

(16)

with orthogonal columns that satisfy , if .
The regression model (9) can alternatively be expressed as

(17)

where the weight vector , defined in the
new space , satisfy the triangular system

(18)

Knowing and can readily be solved from (18). The space
spanned by the original model bases , is identical
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to the space spanned by the orthogonal bases ,
and the model output is equivalently expressed by

(19)

where is the th row of .

III. CONSTRUCTION ALGORITHM FOR GENERALIZED

KERNEL MODELS

The objective of sparse modeling is to construct a subset
model consisting of significant regressors only from
the full set of regressors defined in (13), which can adequately
model the underlying system (1).

A. Determination of the Full Regression Matrix

To specify the pool of regressors or the full regression ma-
trix , one needs to determine all the associated diagonal co-
variance matrices . The correlation between a
regressor and the training data is defined by

(20)

This correlation represents the “similarity” between and ,
and it is a function of the regressor’s kernel covariance matrix.
Thus, we can adopt this correlation function as the optimiza-
tion criterion to determine the regressor’s kernel covariance ma-
trix. Specifically, we should choose so that is max-
imized. We now explain why this is a good strategy to specify
the pool of regressors. Let us first define the least squares cost
or MSE associated with an -term model as

(21)

where for the notational simplicity the same notation is also
used for representing the -term model output. Obviously

. Assuming that is selected to form a
one-term model, the associated reduction in the MSE value can
be shown to be

(22)

which can be rewritten as

(23)

Since is a constant, maximizing leads to a max-
imum reduction in the MSE value.

With the correlation function as the optimization criterion,
we now turn our attention to optimization algorithm. We pro-
pose a repeated guided random search method to perform the
associated optimization tasks. This method adopts ideas from
boosting [20]–[23]. The basic component of the proposed opti-

mizer is the weighted optimization algorithm, which is a simple
guided random search method with boosting mechanism. Given
the training data and for fitting the th regressor’s covari-
ance matrix, the algorithm is summarized as follows.

1) Weighted Optimization Algorithm:
Initialization: Set iteration index , give the

randomly chosen initial values for
, with the associated weightings for ,

and specify a small positive value for terminating the search.

Step 1) Boosting
1) Calculate the loss of each point in the population,

namely

2) Find

3) Normalize the loss

4) Compute a weighting factor according to

5) Update the weighting vector

6) Normalize the weighting vector

Step 2) Parameter updating
1) Construct the th point using the formula

2) Construct the th point using the formula

3) Choose a better point (smaller loss value) from
and to replace , which

will inherit the weighting value from .
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Set and repeat from Step 1) until

Then choose the th regressor covariance matrix as
.

The algorithmic parameter that needs to be set appropriately
is the population size . The previous weighted optimization al-
gorithm performs a guided random search. However, the solu-
tion obtained may depend on the initial choice of population.
To derive a robust algorithm that guarantees a “global” optimal
solution, we augment the algorithm into the following repeated
weighted optimization algorithm.

2) Repeated Weighted Optimization Algorithm:
a) Initialization: Give a positive integer number for

controlling the maximum repeating times, and choose a small
positive number for terminating the search.

b) First Generation: Randomly choose the number of
the initial population , and call the weighted op-
timization algorithm to obtain a solution .

c) Repeat Loop: For

Set , and randomly generate the other points
for .

Call the weighted optimization algorithm to obtain a solution
.

If
Exit loop;

End if
End for.

Choose the th regressor’s covariance matrix as .
The important algorithmic parameters that need to be chosen

appropriately are the maximum repeating times and the
termination criterion . To further simplify control, we may
simply let the loop repeat times. Then we only needs to
set an appropriate value for . We have applied this repeated
weighted optimization algorithm as a generic global optimizer
in several difficult optimization applications [32], and analysis
and empirical results given in [32] have shown that this guided
random search algorithm is effective. The need to determine
the diagonal covariance matrices of every candidate regressors
represents additional computational complexity of the proposed
generalized kernel modeling approach, in comparison with the
standard kernel method. However, the standard kernel approach
would typically require cross validation for specifying the
common single kernel variance, and this may involve additional
validation data set and can also be computationally expensive.
The proposed method does not require cross validation to tune
kernel parameters, which is an important practical advantage.

B. LROLS Algorithm With LOO Test Score for Subset Model
Selection

Once the full regression matrix has been designed, the
LROLS algorithm with the LOO test score [10] can be used to
select a subset model. In this construction algorithm, the weight

parameter vector is the regularized least squares solution ob-
tained by minimizing the following regularized error criterion:

(24)

where is the regularization parameter
vector, which is optimized based on the evidence procedure
[33] with the iterative updating formulas [9], [10]

(25)

where

(26)

Usually a few iterations (typically less than 10) are sufficient
to find a local optimal . The criterion (24) has its root in the
Bayesian learning framework. This Bayesian interpretation of

together with the full derivation of the updating for-
mulas (25) and (26) can be found in [9].

A forward selection procedure is used to construct a sparse
model by incrementally minimizing the LOO test score. Assume
that an -term model is selected from the full model (17). Then
the LOO test error [24], [27]–[29], denoted as , for the
selected -term model can be shown to be [8], [10]

(27)

where is the -term modeling error and is the asso-
ciated LOO error weighting given by

(28)

The mean square LOO error for the model with a size is
defined by

(29)

This LOO test score is a measure of the model generalization
performance and it can be computed efficiently due to the fact
that the -term model error and the associated LOO error
weighting can be calculated recursively according to

(30)

and

(31)

respectively. For the benefits of those readers who are unfamiliar
with the LOO statistics, the idea of delete-one cross validation
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Fig. 1. Engine data set. (a) System input u . (b) System output y .

and the computation of the LOO test error are explained in the
Appendix.

The subset model selection procedure can be carried as fol-
lows: at the th stage of the selection procedure, a model term
is selected among the remaining to candidates if the re-
sulting -term model produces the smallest LOO test score .
It has been shown in [8], that the LOO statistic is convex
with respect to the model size . That is, there exists an “op-
timal” model size such that for decreases as

increases while for increases as increases.
This property is extremely useful, as it enables the selection pro-
cedure to be automatically terminated with an -term model
when , without the need for the user to specify a
separate termination criterion. The iterative procedure for con-
structing a sparse generalized kernel model based on the LROLS
with the LOO test score can now be summarized:

Initialization: Set , to the same small posi-
tive value (e.g., 0.0001). Set iteration index .

Step 1) Given the current and with the following initial
conditions:

and

(32)

use the procedure described in the Appendix to se-
lect a subset model with terms.

TABLE I
SUBSET GENERALIZED GAUSSIAN KERNEL MODEL GENERATED FOR THE

ENGINE DATA SET BY THE LROLS ALGORITHM WITH THE LOO TEST

SCORE. THE KERNEL COVARIANCE MATRICES ARE DETERMINED BY

MAXIMIZING THE CORRELATION CRITERION USING THE REPEATED

WEIGHTED OPTIMIZATION ALGORITHM

Fig. 2. Performance of the 15-term generalized Gaussian kernel model for the
engine data set. (a) Model prediction ŷ (dashed) superimposed on the system
output y (solid). (b) Model prediction error � = y � ŷ .

Step 2) Update using (25) and (26) with . If
remains sufficiently unchanged in two successive it-
erations or a preset maximum iteration number (e.g.,
10) is reached, stop; otherwise set and go to
Step 1).

The computational complexity of the previous algorithm is
dominated by the first iteration. After the first iteration, the
model set contains only terms, and the complexity of
the subsequent iteration decreases dramatically. It is worth em-
phasizing that regressor selection is based on the LOO statistic,
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Fig. 3. Performance of the 15-term generalized Gaussian kernel model for the
engine data set. (a) Iterative model output ŷ (dashed) superimposed on the
system output y (solid). (b) Iterative model error � = y � ŷ .

not the usual training MSE. Thus, the subset model selection
is directly based on the model generalization capability using
a single training set, with the LR further enforcing sparsity.
Moreover, the subset model selection is fully automatic, and
the user does not require to specify a termination criterion.

IV. MODELING EXAMPLES

Two real-data sets were used to demonstrate the effective-
ness of the proposed approach for constructing sparse gener-
alized kernel models. The population size and the maximum
repeating times for fitting kernel covariance matrices were
chosen empirically to ensure that the subset selection procedure
could produce consistent final models with the same levels of
modeling accuracy and model sparsity for repeating runs. Em-
pirically, it was found that the values of and did not criti-
cally influence the modeling result.

Example 1: This example constructed a model representing
the relationship between the fuel rack position (input ) and the
engine speed (output ) for a Leyland TL11 turbocharged, di-
rect injection diesel engine operated at a low engine speed. De-
tailed system description and experimental setup can be found
in [34]. The data set, depicted in Fig. 1, contained 410 sam-
ples. The first 210 data points were used in training and the
last 200 points in model validation. The previous study [34] has

Fig. 4. Gas furnace data set. (a) System input u . (b) System output y .

shown that this data set can be modeled adequately by a non-
linear model of the form

(33)

with describing the unknown underlying system and the
system input vector defining by

(34)

Since every training input data points were considered as a can-
didate regressor’s center, there were 210 regressors for
the full regression model. The previous results [9], [10] had
shown that when fitting a Gaussian kernel model with a single
common variance, 1.69 was the optimal value for this
kernel variance. Various kernel modeling techniques were em-
ployed in [10] to fit this data set, and the best Gaussian kernel
model was provided by the LROLS with the LOO test score,
which consisted of 22 terms. The MSE values of this model over
the training and validation sets were 0.000453 and 0.000490,
respectively.

The proposed sparse model construction algorithm was ap-
plied to construct a generalized Gaussian kernel model for this
data set. The kernel covariance matrices were first identified by
optimizing the associated correlation criteria using the repeated
weighted optimization algorithm with 21 and 10. The
LROLS algorithm based on the LOO test score then selected a



CHEN et al.: IDENTIFICATION OF NONLINEAR SYSTEMS USING GENERALIZED KERNEL MODELS 407

TABLE II
SUBSET GENERALIZED GAUSSIAN KERNEL MODEL GENERATED FOR THE GAS FURNACE DATA SET BY THE LROLS ALGORITHM WITH THE LOO TEST SCORE. THE

KERNEL COVARIANCE MATRICES ARE DETERMINED BY MAXIMIZING THE CORRELATION CRITERION USING THE REPEATED WEIGHTED OPTIMIZATION ALGORITHM

15-term subset generalized Gaussian kernel model from the re-
sulting full regression matrix, and the constructed model is given
in Table I. The MSE values of this model were 0.000482 over the
training set and 0.000496 over the validation set, respectively.
The model prediction and prediction error
generated by this model are illustrated in Fig. 2. The obtained
15-term generalized Gaussian kernel model was used to itera-
tively generate the model output according to

(35)

with

(36)

where denotes the model mapping. The iterative model
output and the iterative model error , are
depicted in Fig. 3. Compared with the standard kernel method,

the proposed generalized kernel modeling approach is able to
produce more parsimonious model with a similar modeling
accuracy.

Example 2: This example constructed a model for the gas
furnace data set [35, Series J]. The data set, illustrated in Fig. 4,
contained 296 pairs of input–output points, where the input
was the coded input gas feed rate and the output represented
CO concentration from the gas furnace. All the 296 data points
were used in training, with the model input vector defined by

(37)

The number of candidate regressors was 296 for this
data set. The previous experiments had found out that the ex-
isting state-of-the art kernel regression techniques failed to fit a
Gaussian kernel regression model using a common kernel vari-
ance [10]. Various existing kernel regression techniques were
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Fig. 5. Performance of the 21-term generalized Gaussian kernel model for the
gas furnace data set. (a) Model prediction ŷ (dashed) superimposed on the
system output y (solid). (b) Model prediction error � = y � ŷ .

then used in [10] to fit a thin-plate-spline regression model for
this data set, where the regressors were given by

(38)

and the best result obtained was again given by the LROLS with
the LOO test score, which yielded a 28-term thin-plate-spline
model with a training MSE of 0.053 306.

By adopting a generalized Gaussian kernel model structure,
the LROLS with the LOO test score was able to identify a
21-term model, as listed in Table II, with a training MSE of
0.053 452. The candidate regressors’ kernel covariance ma-
trices were fitted by optimizing the correlation criterion using
the repeated weighted optimization with 21 and 10.
The model prediction and prediction error generated by this
21-term generalized Gaussian kernel model are shown in Fig. 5.
The obtained model was also used to iteratively produce the
model output given the input

(39)

The iterative model output and the associated modeling error
are illustrated in Fig. 6.

Fig. 6. Performance of the 21-term generalized Gaussian kernel model for the
gas furnace data set. (a) Iterative model output ŷ (dashed) superimposed on
the system output y (solid). (b) Iterative model error � = y � ŷ .

V. CONCLUSION

Identification of discrete-time nonlinear systems has been
considered using a generalized kernel regression model struc-
ture. As with the standard kernel model, the kernel mean vectors
are directly placed on the training input points. However, each
regressor in the generalized kernel model has an individually
fitted diagonal covariance matrix. This generalized kernel
model structure, thus, has an enhanced modeling capability
and is capable of producing more parsimonious models for
nonlinear systems, compared with the standard kernel model
structure. The design of the pool of regressors or the determi-
nation of the candidate kernel covariance matrices is performed
by maximizing a correlation criterion using a repeated guided
random search based on boosting optimization. The efficient
OLS algorithm based on the leave-one-out (LOO) test statistic
and LR can then automatically select a sparse model from the
resulting pool of candidate regressors. The effectiveness of the
proposed nonlinear system identification approach has been
demonstrated by the experimental results involving two real
data sets.

APPENDIX

Consider the model selection problem where a set of
models have been identified using the training data set .
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Denote these models, identified using all the data points of
, as and the corresponding modeling errors as

(40)

with index . A commonly used cross validation
for model selection is the delete-one cross validation. The idea
is as follows. For every model, each data point in the training set

is sequentially set aside in turn, a model is estimated using
the remaining data points, and the prediction error is de-
rived using only the data point that was removed from training.
Specifically, let be the resulting data set by removing the
th data point from , and denote the th model estimated

using as and the related predicted model residual
at as

(41)

The mean square LOO test error [24], [27] for the th model
is obtained by averaging all these prediction errors

(42)

The mean square LOO test error is a measure of the model gen-
eralization capability. To select the best model from the can-
didate models , the same modeling procedure
is applied to each of the predictors, and the model with the
minimum LOO test error is selected.

For linear-in-the-weights models, the LOO test errors can be
generated, without actually sequentially splitting the training
data set and repeatedly estimating the associated models, by
using the Sherman–Morrison–Woodbury theorem [24]. More-
over within the forward model selection procedure using the
OLS algorithm, the LOO test errors for the -term model can
be computed very efficiently. It can readily be shown [8], [10]
that the computation of the LOO error for the -term
model is based on the previously selected -term model
and the currently selected th model term via the efficient re-
cursion formulas (30) and (31).

The modified Gram–Schmidt orthogonalization procedure
[2] calculates the matrix row by row and orthogonalizes as
follows: at the th stage make the columns ,
orthogonal to the th column and repeat the operation for

. Specifically, denoting , ,
then for

(43)

The last stage of the procedure is simply . The
elements of are computed by transforming in a
similar way

(44)

This orthogonalization scheme can be used to derive a simple
and efficient algorithm for selecting subset models in a forward-
regression manner [2]. First define

(45)

If some of the columns in have been
interchanged, this will still be referred to as for no-
tational convenience. Let a very small positive number be
given, which specifies the zero threshold and is used to automat-
ically avoiding any ill-conditioning or singular problem. With
the initial conditions as specified in (32), the th stage of the se-
lection procedure is given as follows.

Step 1) For :
Test—Conditioning number check. If

, the th candidate is
not considered.

Compute

and calculate, for ,

where and are the th elements of

and , respectively. Let the index set
be

Step 2) Find

Then the th column of is interchanged with
the th column of , the th column of is
interchanged with the th column of up to the

th row, and the th element of is interchanged
with the th element of . This effectively selects
the th candidate as the th regressor in the subset
model.

Step 3) The selection procedure is terminated with a
-term model, if . Otherwise, perform

the orthogonalization as indicated in (43) to derive
the th row of and to transform into ;
calculate and update into in the way
shown in (44); update the LOO error weightings

and go to Step 1).
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