
A probabilistic framework for mismatch and
profile string kernels

Alexei Vinokourov1, Andrei N. Soklakov2 and Craig Saunders1 ∗

1- University of Southampton - School of Electronics and Computer Science
Southampton, Hants, SO17 1BJ - UK

2- Royal Holloway, University of London - Department of Mathematics
Egham, Surrey, TW20 0EX - UK

Abstract. There has recently been numerous applications of kernel
methods in the field of bioinformatics. In particular, the problem of protein
homology has served as a benchmark for the performance of many new
kernels which operate directly on strings (such as amino-acid sequences).
Several new kernels have been developed and successfully applied to this
type of data, including spectrum, string, mismatch, and profile kernels.
In this paper we introduce a general probabilistic framework for string-
type kernels which uses the fisher-kernel approach and includes spectrum,
mismatch and profile kernels, among others, as special cases. The use
of a probabilistic model however provides additional flexibility both in
definition and for the re-weighting of features through feature selection
methods, prior knowledge or semi-supervised approaches which use data
repositories such as BLAST. We give details of the framework, place well-
known kernels in the framework and give preliminary experimental results
which show some effects of using the probabilistic approach.

1 Introduction

In this paper we focus on the protein homology problem, which has become a
benchmark for the application of string-type kernels. The model we present,
however, has a wider range of applications to other sequence data, as the prob-
abilistic framework allows for many tailored kernels to be produced, each with
a clear method for introducing prior knowledge. In particular, the profile-based
kernel [4] and mismatch kernel [5] have been shown to achieve state of the art
performance on the protein sequence homology detection problem, while retain-
ing efficiency due to possibility of implementation through a modification of fast
string kernel algorithm. In this work both of this kernels are obtained from our
attempt to derive an efficient kernel from a generative probabilistic model under
very general assumptions about input sequences.

We first give some general definitions that will be useful later on. Let α be a
string of symbols from a fixed alphabet A, i.e. α ∈ A*. In what follows we will
use the notation α[i] to mean the ith symbol in α (i = 1, 2, . . . , |α|). Furthermore,

∗The first and third author thank the EPSRC for their support through grant no
GR/S22301/01 (”Development and Application of String-Type Kernels”)

by α[i : j], where j > i, we will mean a section of the string beginning with the
ith symbol and ending with the jth symbol: α[i : j] = α[i]α[i + 1] . . . α[j]. Let
Φ(α) be a feature vector with components φβ(α). The corresponding kernel is
then defined as a dot product in the feature space

k(α1, α2) �
∑

β

φβ(α1)φβ(α2) . (1)

Our statistical methods will be based on counts of fixed length substrings β ∈ Ak

of strings α ∈ A|α| denoted as #(β|α), when the fact that string β occurred
in string α will be denoted as β � α. Wherever square brackets surround a
boolean expression they will mean an indicator function: [A] = 1 if A is true
and 0 otherwise.

We shall mostly be concerned with ’all contiguous substrings’ type of kernels
for which the feature mapping φβ(α) is simply

φβ(α) = #(β|α) �
|α|−k∑
i=1

[α[i : i + k − 1] = β] . (2)

The Fisher kernel [3] for a generative model P (α|Θ), α ∈ A*, with parame-
ters Θ = {θβ}β is a kernel defined by the following mapping:

φFisher
β (α) � ∂ log P (α|Θ)

∂θβ
,

where a common assumption of approximation of the Fisher information matrix
by identity matrix is used, sometimes referred to as the näıve Fisher kernel.

A mismatch kernel [5] is a step further to account for possible mutations
in input strings. A (k,m)-mismatch neighbourhood of a k-length string α is
denoted N(k,m)(α) and is a set of all such k-length strings that differ from α in
no more than k symbols. The mismatch kernel feature mapping of a string α is
then defined in the following way:

φmismatch
β (α) �

|α|−k+1∑
i=1

[β ∈ N(k,m)(α[i : i + k − 1])]. (3)

This kernel can be efficiently computed, see [5] for details.
A string profile P(α) of a string α is a sequence of distributions pi(a) over the

alphabet A: P(α) =
{
pi(a) : a ∈ A, i = 1 . . . |α|, ∑

a∈A pi(a) = 1, pi(a) � 0
}

.
A k-length profile segment at position i is then simply P(α[i : i + k − 1]). A
profile can be obtained, for example, as a result of running a commonly known
PSI-BLAST program [1]. One can define a neighbourhood similar to a (k,m)-
mismatch neighbourhood but in a ’profile sense’ as follows. Let P(α) be a profile
defined over a string α. A profile neighbourhood PN(k,σ)(P(α[i : i + k − 1])),
i = 1, . . . , |α| − k, is a set of k-length strings which differ from α[i + 1 : i + k]

with a log-probability not greater than σ:

PN(k,σ)(P(α[i : i + k − 1])) =
{

β ∈ Ak : −
k∑

j=1

log pi+j−1(β[j]) < σ
}
,

A profile kernel [4] is then defined by the feature vector

φprofile
β (α) �

|α|−k∑
i=1

[β ∈ Np
(k,σ)(P(α[i : i + k − 1])] . (4)

This can be implemented by a minor modification of the fast string kernel al-
gorithm leading to the same computational complexity. At the same time it
incorporates a widely tested PSI-BLAST model. It has been also reported ex-
perimentally superior to the mismatch kernel [4]. We shall rewrite (4) in proba-
bilistic terms. Since we are given a profile P(α[i : i + k− 1]) it would be natural
to weight each component with the corresponding probability:

φweight−profile
β (α) �

|α|−k∑
i=1

[β ∈ PN(k,σ)(P(α[i : i + k − 1]))]Pα(β @ i) , (5)

where Pα(β @ i) �
∏k

j=1 pi+j−1(β[j]).

2 The Model

Let Mα be the set of all possible mutations of string α. For every mutation
µ ∈ Mα we assume to know its probability Pµ|α and the effect it has on
the original string α → µ(α). The effect and the importance of each muta-
tion can be visualized using the concept of an extended string D as follows.
Let D = α1, α2, . . . , αN be a sequence of strings obtained from the original
string α by drawing randomly a sequence of mutually independent mutations
µ1, µ2, . . . , µN ∈ Mα according to the distribution Pµ|α and defining αi = µi(α),
i = 1, 2, . . . , N . By definition, D contains the entire ensemble of strings gener-
ated from the original α by mutations. We can estimate the probability of an
element in D as the average

PN (D) =

(
N∏

i=1

P (αi)

)1/N

, (6)

where the values of P (αi) are given by a k-stage Markov model. Let Bα =
β1, β2, . . . , β|α|−k+1 be a sequence of all contiguous k-length substrings generated
from α, i.e. βj = α[j : j + k − 1]. Then we have according to the model
P (α) =

∏
β∈Bα

pβ . Substituting this into (6) and taking the logarithm gives

ln PN (D) =
1
N

N∑
i=1

∑
β∈Bαi

ln pβ . (7)

In order to calculate derivatives correctly we now parameterize our model using
arbitrary real numbers τ such that pβ = τβ∑

β τβ
. This gives

∂ ln PN (D)
∂pβ

=
1
N

N∑
i=1

#(β|αi)
τβ

− 1
N

∑
β τβ

N∑
i=1

|αi| − k + 1. (8)

If all documents are of equal length, then the second term in the equation is
constant. We can easily extend a document by a set of extra symbols that
do not appear in any corpus so that all documents are of equal length. We
can therefore ignore the second term and just use the first one directly. In the
following we use pβ rather than τβ as the two models can be made equivalent.
Let #(γ|D) be the number of times the string γ appears in D, and let D be the
set of all (different) strings that constitute D. Then one can find that

∂ ln PN (D)
∂pβ

=
1
N

∑
γ∈D

#(β|γ) #(γ|D)
pβ

. (9)

For large values of N one can replace the ratio #(γ|D)/N by the probability Pµ|α
of the mutation that corresponds to γ, i.e. γ = µ(α). Similarly, for large N , the
set D contains strings resulted from all possible mutations Md, and therefore

∂ ln PN (D)
∂pβ

N→∞−→ φprofker−fisher
β (α) =

1
pβ

∑
µ∈Md

#(β|µ(α)) Pµ|α . (10)

Equation (10) defines a kernel which, within our model, accounts for all pos-
sible mutations {Mα} of the original strings {α}. However, the direct use of
(10) demands large computational resources: in the most general case one has
no alternative apart from using Monte-Carlo sampling over all possible muta-
tions. Let us now develop approximations that result in a much more efficient
algorithm. As a byproduct of our analysis we derive the profile kernel.

Let Pα(β @ i) be the probability of finding β as a substring of µ(α) at the
ith position. Then, the probability, Pα(β), that β was found in µ(α) regardless
of the position can be calculated as

Pα(β) = Pα(β @ 1) + Pα(β̄ @ 1)Pα(β @ 2) + Pα(β̄ @ 1, 2)Pα(β @ 3)
+ . . . + Pα(β̄ @ 1, 2, . . . , (|α| − k))Pα(β @(|α| − k + 1)) , (11)

where Pα(β̄ @ r, s, t, . . .) denotes the probability that β was not found as a
substring of µ(α) at any of the positions r, s, t, In (11) we have written
out a decomposition of Pα(β) starting with the position 1. It is clear that
one can write similar expressions for Pα(β) starting with any position i, i.e.,
Pα(β) = Pα(β @ i)+Pα(β̄ @ i)Pα(β @(i+1))+ . . . , where we assume that after
the position |α| − k we proceed with the position 1, 2, . . . to go through all the
positions as in (11). For Pα(β) we have |α| − k possible decompositions of this
type, and since all such decompositions are equivalent we can write

Pα(β) =
1

|α| − k

|α|−k∑
i=1

(
Pα(β @ i) + Pα(β̄ @ i)Pα(β @ (i + 1)) + . . .

)
. (12)

It is easy to see that the component sums in (12) are decreasing.
Let Nk

α be the total number of different strings of length k that can be derived
as substrings of all possible versions {µ(α)}µ∈Mα

of the original string α. Then
the expected number of times that a string β appears as a substring in µ(α)
is

∑
µ∈Mα

#(β|µ(α)) Pµ|α = Pα(β)Nk
α . Substituting this into (10) we obtain

φprofker−fisher
β (α) = Nk

α

pβ
Pα(β) . Ignoring the higher order terms in (12) we thus

obtain from (10)

φprofker−fisher
β (α) =

Nk
α

pβ
Pα(β) ≈ Nk

α

(|α| − k) pβ

|α|−k∑
i=1

Pα(β @ i) . (13)

One can ignore small terms in the sum above by introducing a threshold σ:

φprofker−fisher
β (α) =

Nk
α

(|α| − k) pβ

|α|−k∑
i=1

[β ∈ N(k,σ)(P (α @ i))]Pα(β @ i) . (14)

Apart from the prefactor this coincides with the weighted profile kernel (5). It
can be observed also that the mismatch kernel (3) can be recovered from (14)
by setting all profiles Pα(β[j] @ i) to a constant value, in which case profile
neighbourhoods PN(k,σ) turn into mismatch neighbourhoods N(k,m).

3 Experiments

The experimental setting was similar to one described in [6] [5] and [4] for SCOP
dataset. For the mismatch kernel (plain-mism) the parameter setting was (k =
5,m = 1) (for the spectrum kernel [6] k = 5 too) and for the profile kernel
(profkernel) - (k = 4 and σ = 6). To test Monte Carlo approach to (10) we
have generated N = 20 mutations of each training example. The FSA model
was trained as described in [7] with the Markov process memory k = 3 to get
parameter estimates pβ that were also used in kernel (14) (profker-fisher).
The extended examples were subsequently used in both spectrum (ext-spectr)
and mismatch (ext-mism) kernels. We noticed that results are much improved
if one adds a 0.5 prior to the probability of ’non-mutation’. Higher values did
not affect much the output.

For our experiments we chose a subset collected by Liao et al. [2] which
has been described as lacking positive training examples and therefore more
challenging. We plotted the number of protein families with performance above
given ROC score vs. ROC score each method in Figure 1. One can observe that
even the first approximation of (12) achieves the state-of-the-art performance of
the profile kernel.

4 Conclusions

We started with an N -th rank Monte Carlo approximation of a Markov model
with possible mutations defined by a BLAST profile and obtained (10) as a limit

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

plain−mism
spectr
ext−spectr
ext−mism
profkernel
profker−fisher

Fig. 1: The number of protein families with performance above given ROC score
vs. ROC score for each method.

case N → ∞. Having made rather weak assumptions we obtained a computable
version of (10) given by formula (14) which includes state of the art performing
profile kernel as well as mismatch and spectrum kernels as special cases. This
result opens wide prospectives for further theoretical analysis of all-contiguous-
substrings type of kernels along with possible modifications and extensions.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman. Gapped BLAST and PSI–BLAST: a new generation of protein database search
programs. Nucleic Acids Res., 25:3389–3402, 1997.

[2] C.Liao and W.C. Noble. Combining pairwise sequence similarity and support vector ma-
chines for remote protein homology detection. In Proceedings of the Sixth Annual Inter-
national Conference on Research in Computational Molecular Biology, 2002.

[3] T. Jaakkola, M. Diekhaus, and D. Haussler. Using the fisher kernel method to detect
remote protein homologies. Journal of Computational Biology, 7(1,2):95–114, 2000.

[4] Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and Christina S.
Leslie. Profile-based string kernels for remote homology detection and motif extraction. In
3rd International IEEE Computer Society Computational Systems Bioinformatics Con-
ference (CSB 2004), pages 152–160. IEEE Computer Society, 2004.

[5] Christina Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and William Stafford No-
ble. Mismatch string kernels for discriminative protein classification. Bioinformatics,
20(4):467–76, 2004.

[6] Christina S. Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A
string kernel for svm protein classification. In Pacific Symposium on Biocomputing, pages
566–575, 2002.

[7] Craig Saunders, John Shawe-Taylor, and Alexei Vinokourov. String kernels, fisher kernels
and finite state automata. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances
of Neural Information Processing Systems 15. MIT Press, 2003.

