Executable Semantics for Compensating CSP

Michael Butler and Shamim Ripon

School of Electronics and Computer Science, University of Southampton, UK,
{mjb,sr03r}Cecs.soton.ac.uk

Abstract. Compensation is an error recovery mechanism for long-running
transactions. Compensating CSP is a variant of the CSP process algebra
with constructs for orchestration of compensations. We present a simple
operational semantics for Compensating CSP and outline an encoding of
this semantics in Prolog. This provides a basis for implementation and
model checking of the language.

1 Introduction

Web services technology provides a platform on which to develop distributed
services. In order to define web service composition, that is, the definition of
complex services out of simple ones, web services choreography has been intro-
duced. There have been several proposals for describing web services for business
processes presented in the recent years including BPML [3] by BPMI, XLANG
[20] and BizTalk [16] by Microsoft, WSFL [15] by IBM, BPEL4WS [10] by OASIS
(draft standard).

Business transactions involve interaction and coordination between several
services. Business transactions need to deal with faults that can arise in any stage
of such an environment and this is both difficult and critical. In a long running
transaction the usual database approaches, e.g., rollback, are not possible to
handle faults. Usually, a long-running transaction interacts with the real world
which makes it difficult to undo the transaction. In order to recover from faults
in long-running transactions, the concept of compensation was introduced [11].
Compensation is the act of making amendments or making up of a previously
completed task. If a long-running transaction fails, appropriate compensations
are run to compensate for completed parts of the transaction.

Operational semantics is given by a set of rules which specify how the states
of a program change during execution. The overall states of the program are
divided into a number of components. Each rule specifies certain precondition
on the content of some component and their new content after application of the
rule.

The Compensating CSP (cCSP) language was introduced by Butler et al [9)
as a language to model long running transactions in the framework of CSP pro-
cess algebra [12]. The semantics of the cCSP language was described by using
denotational semantics (trace semantics). This paper presents the operational
semantics of standard as well as compensable processes of compensating CSP
using the approach of Plotkin [18]. The operational semantics gives a precise

understanding of the execution of the language. Roscoe [19] describes the oper-
ational semantics of standard CSP and our work builds on that.

‘We make the operational semantics executable by directly encoding the rules
in Prolog. Our hope is that this can serve as a useful basis for model checking
cCSP processes. XTL [1] is a model checker which allows a wide range of system
specification. It accepts specifications written by using high level Prolog pred-
icates describing the transition between different states of the system. Given a
Prolog encoding of the operational semantics, the XTL package provides us with
an experimental animator and model checker for cCSP.

This paper is organized as follows. Section 2 gives a brief introduction of the
cCSP language. Followed by the introduction of the language, Section 3 presents
the operational semantics of cCSP. An executable semantics of the operational
semantics is presented in Section 4. Section 5 presents the related work and
motivates our contribution with respect to them. Concluding remarks are drawn
up in Section 6 and some future directions of the present work are mentioned.

2 Compensating CSP

In this section we briefly introduce the cCSP language. The language was in-
spired by two main ideas: transaction processing features and process algebra,
especially CSP. As in CSP, processes in compensating CSP are modelled in terms
of atomic events they can engage in and the operators provided by the language
support sequencing, choice, parallel composition of processes. In order to sup-
port failed transactions, compensation operators are introduced and processes
are categorized into standard and compensable processes. We use P, @) to identify
standard processes and PP, Q@ to identify compensable processes.

The syntax of compensating CSP is summarised in Figure 1. The basic unit
of a standard process is an atomic event. Standard process are constructed with
the usual CSP operators for choice, sequencing and parallel composition. The
process SKIP terminates immediately successfully. The language also provides
interrupts and interrupt handling. The primitive process TH ROW throws an
interrupt immediately. In a purely sequential process, the exception causes an
immediate disruption to the flow of control. An interrupt handler may be used
to catch interrupts: in P > @, an interrupt raised by P triggers execution of the
handler @. In parallel processes, the whole group of parallel processes may fail
when one of the processes throws an exception and all the other processes are
willing to disrupt their flow of control and yield to the exception. A process that
is ready to terminate is also willing to yield to an interrupt. A process may also
yield at mid points in its execution. Yield points are inserted in a process though
the primitive YIFELD process. For example, P;YIFELD;@Q is willing to yield to
an interrupt in between execution of P and (). Parallel composition is defined
so that throwing of an interrupt in one process synchronises with yielding in
another process. The current version of cCSP does not support synchronised
communication between parallel processes. Parallel process groups synchronise
only on joint execution of compensation, joint termination and joint interruption.

Standard processes:

PQ:=A (atomic action)
| P (sequential composition)
| POQ (choice)
| P @ (parallel composition)
| SKIP (normal termination)
| THROW (throw an interrupt)
| YIELD (vield to an interrupt)
|P > Q (interrupt handler)
| [PP] (transaction block)

Compensable processes:
PP,QQ =P + Q (compensation pair)
| PP ; QQ
| PP O QQ
| PP || QQ
| SKIPP

| THROWW
| YIELDD

Fig. 1. Syntax of compensating CSP

A compensable process is one which has compensation actions attached to
it. A compensable process consists of a forward behaviour and a compensation
behaviour. In the case of an exception, compensation will be executed to com-
pensate the forward behaviour. Both the forward and compensation behaviour
are standard processes. The basic way of constructing a compensable process
is through the compensation pair construct P +), where P is the forward
behaviour and @ is its associated compensation. () should be designed to com-
pensate for the effect of P and may be run long after P has completed.

The parallel and sequential composition operators for compensable processes
are designed in a way which ensures that after the failure of a transaction the nec-
essary atomic transactions are performed in an appropriate order to compensate
the effect of already performed actions. Sequential composition of compensable
processes is defined so that the compensations for all performed actions will be
accumulated in the reverse order to their original performance. Parallel compo-
sition of compensable processes is defined so that compensations for performed
actions will be accumulated in parallel.

By enclosing a compensable process PP in a transaction block [PP] we get
a complete transaction which converts the compensable process PP into a stan-
dard process. The behaviours of the transaction block are defined in terms of the
behaviour of PP. Successfully completed PP represents successful completion of
the whole transaction block and compensations are no longer needed. When the
forward behaviour of PP throws an interrupt, the compensations are executed
in the appropriate order and the interrupt is not observable outside the block.

A standard process can be transformed onto a compensable process by adding
to it a compensation process, which actually does nothing (SKIP). The compens-
able basic processes, which we get from standard basic processes, are as follows:

SKIPP = SKIP -+ SKIP
THROWW =THROW <+ SKIP
YIELDD =YIELD +~ SKIP

An example of a transaction for processing customer orders in a warehouse is
presented in Figure 2 in the cCSP language. The first step in the transaction is
a compensation pair. The primary action of this pair is to accept the order and
deduct the order quantity from the inventory database. The compensation action
simply adds the order quantity back to the total in the inventory database. After
an order is received from a customer, the order is packed for shipment, and a
courier is booked to deliver the goods to the customer. The PackOrder process
packs each of the items in the order in parallel. Each Packltem activity can be
compensated by a corresponding Unpackltem. Simultaneously with the packing
of the order, a credit check is performed on the customer. The credit check is
performed in parallel because it normally succeeds, and in this normal case the
company does not wish to delay the order unnecessarily. In the case that a credit
check fails, an interrupt is thrown causing the transaction to stop its execution,
with the courier possibly having been booked and possibly some of the items
having being packed. In case of failure, the semantics of the transaction block
will ensure that the appropriate compensation activities will be invoked for those
activities that did take place.

OrderTransaction = [ProcessOrder]
ProcessOrder = (AcceptOrder + RestockOrder) ; Ful fillOrder
Ful fillOrder = BookCourier < CancelCourier ||
PackOrder ||

CreditCheck ; (Ok; SKIPP
O NotOk ; THROWW)

PackOrder = || € Items o (PackItem(i) <+ UnpackItem(i))

Fig. 2. Order transaction example

3 Operational Semantics

The operational semantics is a way of defining the behaviour of processes by
specifying atomic transitions on process terms. We will write labelled transition

p-A p
pp -4 pp'

to denote that execution of event A causes the transition from term P or PP to
term P’ or PP’ respectively.

The set of events that a process can perform is called its alphabet. We dif-
ferentiate between observable and terminal events. The set of observable events
is represented by Y. The terminal events 2 = {v/,!, 7} represent the different
ways in which a process may terminate: successful termination is represented by
the y/ event, throwing of an interrupt is represented by the ! event and yielding
is represented by the ? event. In order to define the semantics we extend the
syntax with the null process 0 that cannot perform any events. The terminal
events effect standard and compensable processes differently. When a standard
process performs a terminal event w (w € {2) then the process is finished either
normally or abnormally and no further operation occurs.

P50 (we)

When a compensable process PP executes a terminal event, instead of evolv-
ing to the null process (0), it evolves to a standard process P representing its
compensation.

PP P (wef)

In Section 3.2 we will see how these resulting compensations are treated by the
various operators for compensable processes.

3.1 Semantics of Standard Processes

This section presents the operational semantics of standard processes of com-
pensating CSP. A process A performs the atomic event and then terminates
successfully:

AL SKIP (A€ X)
SKIP, THROW and YIELD are primitive processes of cCSP. The effect of

terminal events on the special processes are presented here:

SKIP Y50

THROW —— 0

YIELD - 0

YIELD -0

In a sequential composition P; @, P may perform non-terminal events while
Q is preserved:
PP
P;Q = P;Q
If the first process P terminates normally, then @ starts and the ./ action is
hidden from outside:

(€ X)

PLooAQ -2

PiQ Q'
When the first process P performs a throw or a yield then the whole sequential
composition is terminated:

(e XUN)

P50
- 1.?
po o @l

The interrupt handler is similar to sequential composition, except that the
flow of control from the first to the second process is caused by the throw event
rather than the ./ event:

P p (o 2)
«

PrQ-5P >Q

! «@ /
P—0rQ =@ cxup)
P> @Q—Q

P w
P0G eonw A
P> Q—0

In choice operation occurrence of an event in either of the processes resolves
the choice:
p-=p Q- Q
POQ-5 P POQ-5Q
We are only considering the parallel processes synchronising on terminal
events. In a parallel composition, either process may progress independently by
performing a non-terminal event:

PP Q-
PlQ=P|lQ P|Q>P|

Processes placed in parallel will synchronise on joint termination or joint inter-
ruption. If we consider w and w’ are the terminal events of two distinct parallel

processes then their joint event will be wé&w’. The definition of this operator is
shown in Table 1. Synchronisation of standard processes is defined as follows:

(xe XU

(€ X))

PoaAQ<lo
PlQ“so

w W' w&w

<0 =

<R R =

Q0) = e

Table 1. Synchronization of terminal events

3.2 Semantics of Compensable Processes

In this section we present the semantics of the operators for compensable pro-
cesses. Recall that a compensable process consists of forward behaviour and
compensation behaviour.

The compensation pair (P + @) is constructed from two standard processes.
The first one is called forward process which is executed during normal execution
and the second one is called the compensation of the forward process which is
stored for future use when it is required for compensation. If the forward process
can perform a non-terminal event, then so can the pair:

P p
P+Q-5%P +Q

(€ X)

If the forward process terminates normally, then the pair terminates with @ as
the resulting compensation.

rYo

P+QLQ

If the forward process terminates abnormally, then so does the pair, resulting in
an empty compensation process:

P =0
P + Q-5 SKIP

(we{,7})

The definition of the compensation pair defined in the traces model of ¢cCSP [9]
has a subtle difference to that presented here. An extra behaviour for the com-
pensation pair was included in the traces model definition which allows the com-
pensation pair to yield immediately with an empty compensation. This forces
an automatic yield at the beginning of the compensation pair. The same be-
haviour can be obtained using the definition presented here by adding a yield
sequentially followed by the forward process.

P+"Q=(YIELD;P)=Q

As for the standard case, in a sequential composition PP;QQ, PP may
perform non-terminal events while Q@ is preserved:

PP -, pp!
PP;QQ - PP;QQ

(e X)

If PP throws or yields to an interrupt, the whole process terminates and the
compensation from PP is returned:

w

PP——LP (weNRNwH#L)
PP;QQ — P

If PP terminates normally, Q@ commences and the compensation from PP
should be maintained to be composed with the compensation from Q@ at a later
stage. In order to deal with this we introduce a new auxiliary construct to the
language of the form (QQ, P). The effect of (QQ, P) is to execute the forward
behaviour of Q@ and then compose the compensation from Q@ with P. This is
used to define the transfer of control in a sequential composition:

PP L PAQQ - QU

PP;QQ — (QQ', P)

(e X)

However, if Q@ involves in a terminal event after PP terminates normally,
then instead of introducing the new auxiliary construct, the maintained com-
pensations of both processes are accumulated.

PP Y PAQQ -4 Q

PP;QQ = Q; P

(we)

The process Q@ in the construct (QQ,P) can perform non-terminating
events:

QQ = Q'
(QQ,P) = (QQ', P)
When QQ terminates then its compensation is composed in front of the existing

compensation, which ensures that the compensations are accumulated in reverse
order to their original sequential operation:

(€ X))

QQ - Q
(QQ,P) = Q; P

(we)

An event in PP or QQ resolves the choice in a choice composition.

PP -, PP’ QQ % QQ’
PP O QQ - PP’ PP 0O QQ = QQ'

(€ X))

The terminal events (1/,!,?) also resolve the choice resulting in the corresponding
compensations:

PP - P QQ - Q

" m (we 2)
PPOQQR P PPOQQ--Q

Parallel processes evolve independently through non-terminal events:
PP % PP’ QQ =% QQ’
PP QQ = PP' | QQ PP | QQ - PP | Q'

As the processes are compensable, when they synchronise over any terminal
events, the forward processes are terminated and the corresponding compensa-
tion processes will be accumulated in parallel:

(veX})

PP P A QQ-“50Q
PP QR4 P Q

Although a transaction block is a standard process rather than a compensable
process, we describe its semantics in this section rather than the previous one
since it requires an understanding of the semantics of compensable processes. A
transaction block is formed from a compensable process PP by enclosing PP in
a transaction block [PP]. A transaction block converts a compensable process
into a standard process. A non-terminal event changes the state of the process
inside the block:

PP - PP’
[PP] % [PP/]
Successful completion of the forward behaviour of the compensable process of a
transaction block represents successful completion of the whole block and com-
pensation is no longer needed and it is discarded:

(€ X)

rp Y,

PP] Y50

When the forward behaviour throws an exception, then the resulting compensa-
tion is run: '
PP —PAP-5 P

PP] -2 P!

(e XU

Since a transaction block is a standard process, P’ in this rule is not a com-
pensation that is stored for later execution, rather it describes the behaviour of
[PP] after execution of event «.

Note that there is no rule for a yield transition (?) in a transaction block.
This is because a transaction block does not yield to interrupts from the outside.
Yields by a sub-process of PP will synchronise with interrupts from some other
sub-process resulting in the ! event making yields within PP non-observable.

3.3 Correspondence with Trace Semantics

When both an operational and denotational semantics are defined for a partic-
ular language, a natural question is how these are related. In this section, we
briefly describe the way in which we are attempting to show the correspondence
between the operational semantics presented in this paper and the denotational
semantics presented in traces model shown in [9].

Given our operational rules for cCSP which defines a labelled transition re-
lation between process terms, we can define a lifted transition relation labelled
by sequences of events in the usual way:

P->Q
Roscoe [19] describes how to extract the traces from operational rules as follows:
traces(P) = {s € E*‘/| 3Q.P % Q)

We derive traces from the operational rules in a similar way. In the standard
traces model for CSP, process are modelled as prefixed-closed sets of traces.
However, in the traces model for cCSP, processes are modelled as sets of com-
pleted traces, where a completed trace ends in one of the terminal symbols
2 ={v,7,1}. The traces model for cCSP is not closed under trace prefixes.

Standard traces are defined as set of traces of the form p(w) where p € X*
and w € §2. The derived traces of a standard cCSP process P are denoted by
DT(P) which is defined as follows:

DT(P) = { plw) | P™ 0}

As compensable processes contain forward behaviour and compensation be-
haviour, they are modelled as pairs of traces of the form (p(w),p’(w’)) where
p{w) represents forward behaviour and p’(w’) represents the corresponding com-
pensation behaviour. The derived traces of a compensable cCSP process PP are
denoted by DT(PP) which is defined as follows:

DT(PP) = { (plw),p/ () | 3P+ PPEE PP ™) 0}

Let T(P) be the traces of a standard term P as defined in [9]. Similarly
for T(PP). By structural induction over process terms P and PP, it should be
possible to prove the following correspondence:

DT(P) = T(P)
DT(PP) = T(PP)

4 Prolog Implementation

In this section we outline a prolog implementation of the operational semantics
presented in Section 3. We encode the operational rules as Prolog clauses and we

10

use a tool which can animate this encoded semantics and support model checking
and refinement of the specification. XTL [1] is a model checker which allows a
wide range of system specification. It accepts specifications written by using high
level Prolog predicates describing the transition between different states of the
system. The XTL animator supports step by step animation showing transition
between different states of specification and also support backtracking.

The input language for XTL is very simple. There are two key predicates
that can be entered into XTL: trans/3 and prop/2 where:

trans(A,S81,52): A transition from state S1 to state S2 by the action A.
prop(S,P): property P holds in state S.

Consider the following simple system specified in this way:

trans(al,p,q). trans(a2,q,p). trans(a3,r,r).
prop(p,safe). prop(q,safe). prop(r,unsafe).

These lines specify that by the action a1, there is a transition from p to g, that
action a2 causes the reverse transition and action a3 causes r to r. The property
clauses specify that state p and q are safe and that r is unsafe. The XTL model
checker supports checking of temporal properties written in CTL (Computation
Tree Logic) of systems specified in this way.

As the operational semantics of compensating CSP are described by using op-
erational rules, they are easily transferable to corresponding trans/3 predicates.
We reproduce some operational rules and their corresponding Prolog predicates.
For example, consider one of the rules for sequential composition of standard
processes:

PP
P;Q = P;Q

The Prolog representation of this is:

(€ X)

trans(seq(P,Q) ,A,seq(P1,Q)):-
member (A,sigma),
trans(P,A,P1).

Compensable processes are encoded in a similar way with the compensable
operators being differentiated from the standard ones. For example, consider the
following rule for compensable sequential composition:

PP -, pp!
PP;QQ - PP;QQ

(e X)

This is represented in prolog as:

trans(cseq(PP,QQ) ,A,cseq(PP1,QQ)) : -
member (A,sigma),
trans(PP,A,PP1).

11

The XTL package provides us with an experimental animator and model
checker for cCSP. We are currently investigating the use of this further. We
are also investigating the use of the prolog encoding as a basis for a refinement
checking tool. Refinement checking is currently supported by the ProB model
checker [14] using similar prolog techniques to XTL.

5 Related Work

Bocchi et al [2] define a language wt-calculus for modelling long-running trans-
actions based on Milner’s w-calculus [17]. The wt-calculus includes a transaction
construct that contains a compensation handler and a fault manager. In this ap-
proach a transaction process remains active as long as its compensation might
be required. This doesn’t allow for the sequential composition of compensable
transactions in which compensations are composed in reverse order.

Recently, Laneve and Zavattaro [13] defined a calculus for web transactions
called webm which is an extension of asynchronous 7-calculus with timed transac-
tion construct. The major aspects considered in websw are that the processes are
interruptible, failure handlers are activated when main processes are interrupted
and time which is considered in order to deal with latency of web activities or
with message losses. A transaction executes either until its termination or un-
til it fails and upon failure the compensation is activated. However, it has the
similar problem as wt-calculus where compensations of sequentially composed
transactions are not preserved in reverse order and it is not possible to get the
compensation of a successfully completed process after the failure of a process
composed sequentially with the previous one.

One of the authors (Butler) was involved in the development of the StAC
(Structured Activity Compensation) language [6,7] for modelling long-running
business transactions which includes compensation constructs. An important
difference between StAC and cCSP is that instead of the execution of compen-
sations being part of the definition of a transaction block, StAC has explicit
primitives for running or discarding installed compensations (reverse and accept
respectively). This separation of the accept and reverse operators from com-
pensation scoping prevents the definition of a simple compositional semantics:
the semantics of the reverse operator cannot be defined on its own as its be-
haviour depends on the context in which it is called. This necessitated the use of
configurations involving installed compensation contexts in the operational se-
mantics for StAC. Note that BPEL also has an operator for explicit invocation
of compensation. A mapping from BPEL to StAC may be found in [8].

Bruni et al [5] have developed an operational semantics for a language with
similar operators to cCSP, including compensation pairs and transaction blocks
(or sagas as they call them). As in ¢cCSP, and unlike StAC, the invocation of
compensation in a saga is automatic depending on failure or success which leads
to a neater operational semantics. However, unlike the work presented here,
the operational semantics in [5] is defined by using big-step semantics. Big-step
semantics describe how the overall results of the execution are obtained. The big

12

step semantics are closer to the trace semantics while our small-step semantics
describes how compensating processes should be executed. A comparison of the
operators of cCSP and the language described in [5] may be found in [4].

6 Conclusions and Future Work

Compensating CSP has evolved from the development of the StAC language.
StAC has a somewhat complicated operational semantics because of the need to
maintain compensation contexts in process configurations. Compensating CSP
was developed through a trace semantics which forces a compositional semantic
definition. This leads to a more structured treatment of compensation which
in turn has lead to a much simpler operational semantics than that of StAC.
We are currently working on proving the corespondence between the trace and
operational semantic models of cCSP.

Our operational semantics provides the basis for a prototype model checker
for cCSP as well as a basis for an implementation strategy for a language with
compensations.

7 Acknowledgements

Thanks to Hernan Melgratti and to the anonymous WS-FMO05 referees for useful
comments on an earlier version of the paper. Thanks for Michael Leuschel for
help with XTL.

References

1. Juan C. Augusto, Michael Leuschel, Michael Butler, and Carla Ferreira. Using
the extensible model checker XTL to verify StAC business specifications. In 3rd
Workshop on Automated Verification of Critical Systems (AVoCS 2003), pages
253-266, Southampton, UK, 2003.

2. Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattaro. A calulus for long-running
transactions. In FMOODS’08, volume 2884 of LNCS, pages 124—138. Springer-
Verlag, 2003.

3. Business Process Modeling Language (BPML). [www.bpmi.org].

4. Roberto Bruni, Michael Butler, Carla Ferreira, Tony Hoare, Hernan Melgratti, and
Ugo Montanari. Reconciling two approaches to compensable flow composition.
Technical report, 2005.

5. Roberto Bruni, Herndn Melgratti, and Ugo Montanari. Theoretical foundations
for compensations in flow composition languages. In POPL, pages 209-220, 2005.

6. Michael Butler and Carla Ferreira. A process compensation language. In Integrated
Formal Methods(IFM’2000), volume 1945 of LNCS, pages 61 — 76. Springer-Verlag,
2000.

7. Michael Butler and Carla Ferreira. An operational semantics for StAC, a language
for modelling long-running business transactions. In Coordination 2004, volume
2949 of LNCS. Springer-Verlag, 2004.

13

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

Michael Butler, Carla Ferreira, and M.Y. Ng. Precise modelling of compensating
business transactions and its application to BPEL. Journal of Universal Computer
Science, to appear, 2005.

. Michael Butler, Tony Hoare, and Carla Ferreira. A trace semactics for long-running

transaction. In A.E. Abdallah, C.B. Jones, and J.E. Sanders, editors, Proceedings
of 25 Years of CSP, volume 3525 of Springer LNCS, London, 2004.

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business process execution language for web services, version 1.1., 2003.
[http://www-106.ibm.com/developerworks/library /ws-bpel/].

H. Garcia-Molina and K. Salem. Sagas. In ACM SIGMOD, pages 249-259. ACM
Press, 1987.

C.A.R. Hoare. Communicating Sequential Process. Prentice Hall, 1985.

Cosimo Laneve and Gianluigi Zavattaro. Foundations of web transactions. In
FoS5S5aCS, volume 3441 of LNCS, pages 282-298, 2005.

Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855—-874. Springer-Verlag, September 2003.

Frank Leymann. The web services flow language (WSFL 1.0). Technical report,
Member IBM Academy of Technology, IBM Software Group, 2001. [http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf].

B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein, and A. Mi-
tal. Biztalk server 2000 business process orchestration. IEEE Data Engineering
Bulletin,, 24(1):35-39, 2001.

Robin Milner. A calculus of mobile processes. Journal of Information and com-
puting, 100(1):1-77, 1992.

G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department, September 1981.
A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, pearson
edition, 1998.

S.Thatte. XLANG: Web Services for Business Process Design. Microsoft Corpo-
ration, 2001. [www.gotdotnet.com/team/xml/wsspace/xlang-c].

14

