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Abstract

This paper describes the design and evaluation
of SouthamptonSCM, a finalist in the 2004 Trad-
ing Agent Supply Chain Management Competi-
tion (TAC SCM). In particular, we focus on the
way in which our agent sets its prices according to
the prevailing market situation and its own inven-
tory level (because this adaptivity and flexibility are
the key components of its success). Specifically,
we analyse our pricing model’s performance both
in the actual competition and in controlled exper-
iments (against both risk-seeking and risk-averse
price setting methods). Through this evaluation, we
show that SouthamptonSCM performs well across
a broad range of environments.

1 Introduction
Internet technologies have contributed significantly to e-
commerce by increasing the mutual visibility of consumers
and suppliers, and by raising the possibility that some of their
trading processes may be automated. However, despite these
advances, most procurement activities within supply chains
are still based on static long-term contracts and relationships.
Now, in many cases, such contracts are detrimental because
they fail to handle the dynamic nature of these environments,
where new suppliers and consumers may enter the market at
anytime and where trading partners may fail to fulfill their
commitments. To rectify this, we believe agent-based solu-
tions are needed. To date, however, the use of agents within
e-commerce has generally focused on simple auctions [3].
Whereas, the supply chain domain typically requires handling
a much more complex setting where decisions must be made
in the presence of much greater degrees of uncertainty and
dynamism [5].

To this end, the International Trading Agents Competition
for Supply Chain Management (http://www.sics.se/tac)
(TAC SCM) represents an ideal environment in which to test
the autonomous agents that we develop. Such multi-agent re-
search competitions present well-defined problems in which
alternative solutions can be tested, compared and evaluated.
In the TAC SCM scenario, agents are competing as computer
manufacturers in a virtual business world to handle three ba-
sic subtasks: acquiring components, managing a local manu-

facturing process, and selling assembled computers to cus-
tomers. The agents in this scenario are required to oper-
ate with severely incomplete and imperfect information and
have a high dimensional strategy space. Specifically, the
agents must simultaneously compete in separate, but depen-
dent, markets in order to buy the necessary components and
compete with other agents for customers’ orders. To add to
this complexity, the agents’ decision-making is constrained
by a severe time deadline and thus any proposed solution
must also be computationally efficient.

Against this background, we present our work in devel-
oping an adaptive agent that was a finalist in the 2004 TAC
SCM competition (6 out of 29 participants reached the finals).
The key contribution of this work is the techniques that we
develop to enable the agent to adapt its price setting to the
prevailing market situation, its own internal state (inventory
level) and the time that has elapsed. At their core, these tech-
niques employ fuzzy reasoning in order to allow the agent to
adapt its prices daily so that it can fully exploit its production
capacity, while still maximising its revenue by selling at ap-
propriate prices. Previously, fuzzy techniques have been suc-
cessfully applied to solve the problems of automated auction
[2; 4] and negotiation [6]. So, in this work we also employed
fuzzy techniques to tackle the problem.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly outlines the TAC SCM. Section 3 presents our
agent. Section 4 evaluates the performance of the agent (in
general) and the price model (in particular). Finally, Section
5 concludes.

2 The TAC SCM Game
In this game, six agents (competition entrants) compete with
one another to procure raw components and fulfil customer
orders for assembled PCs. Each PC is assembled from four
components: CPU, motherboard, memory and hard disk (e.g.
a PC with a 2GHz IMD processor with 1GB memory and
a 300GB hard drive or a PC with a 5GHz Pintel processor
with 2GB memory and a 500GB hard drive). The production
capabilities of all the agents are equal, in that they are all
capable of producing any of the 16 distinct computer types
and they all have the same limited production capacity. 1

1Different PC types require a different number of production cy-
cles and each agent is limited to 2000 of these cycles per day.



Figure 1: Overview of the SouthamptonSCM agent.

The agents operate simultaneously in separate markets to
buy components from a number of suppliers and to sell as-
sembled PCs to customers. Both of these markets operate
as follows: (i) the buyer issues Request For Quotes (RFQs)
to one or more sellers; (ii) the sellers respond to some or all
the RFQs with offers detailing the price, quantity or delivery
date; and (iii) the buyer sends orders to accept offers.

Consequently, on each of the 220 simulation days of the
game, agents receive from the customers a new set of RFQs
and, in response to previously sent offers, they receive or-
ders for assembled computers. Likewise, component suppli-
ers that were previously sent RFQs respond with offers. Thus,
in each day of the game (lasting 15 seconds), the agent must
decide on the following: (i) which new supplier RFQs to is-
sue and which supplier offers to accept; (ii) which customer
RFQs to respond to, and what price to offer; and (iii) how to
schedule the production of PCs given the availability of com-
ponents, the limited capacity of the factory and the delivery
deadlines of pending orders.

An agent spends money on buying the components, paying
for the storage of both components and PCs, paying penalties
if it defaults on a promised delivery date and paying overdraft
penalties if it is in debt to the bank. The agent earns money by
selling PCs and receives interest from the bank if its balance
is positive. Success of an agent is measured in terms of its
profit (i.e., its bank balance at the end of the game).

3 SouthamptonSCM
SouthamptonSCM can be decomposed into three sub-agents
(see figure 1).2 The component agent decides which RFQs
and which orders to send to which suppliers. The customer
agent receives RFQs from the customers and decides what
offers to respond with. It also communicates with the fac-
tory agent to obtain the updated inventory levels and to send
the relevant customer PC orders. The factory agent receives
the supplies delivered from the suppliers, decides based on
the available resources (computer components and factory cy-
cles) in what order the customer orders should be produced,
and determines the schedules for delivering the finished PCs
to the customers. We now deal, in turn, with each of these
sub-agents.

2Here we use the notion of sub-agents (instead of modules) be-
cause each of them can autonomously communicate with the sup-
pliers and customers to get the RFQs, can send offers and obtain
orders, and can decide how to respond to this information.

3.1 The Component Agent

The price offered by a supplier in response to an RFQ is based
entirely on its available production capacity and the quantity
agents ask for (i.e., price increases as capacity decreases or
quantity required increases). On Day 0, all the suppliers have
their full capacity available, thus the prices they offer are at
their lowest value. Therefore, intuitively, it makes sense to or-
der a large number of components on Day 0 (indeed this was
a widely used tactic in the 2003 competition [8]). However,
due to a rule change, the components now attract a storage
cost. Thus the more the agent stores and the longer it stores
it, the higher the storage cost. This means the key challenge
of the component agent is to attain an appropriate balance be-
tween availability and timeliness. This is hard because if the
agent buys more units early (at lower prices) it has to pay for
storage and some components may be unused at the end of
the game. However if the agent just buys what it needs when
it is needed, it may end up without the necessary components
at the necessary time (since there is often a delay between the
actual delivery date and the one the suppliers promise). Given
this, our agent makes a trade-off between placing a big order
on Day 0 and buying gradually during the rest of the game.

In more detail, experience from practise games showed
that despite the storage cost, having a reasonably big order
on Day 0 is still profitable because of the low prices that
can be obtained. Specifically, we found it most effective
when this number just covers the quantity the agent needs
in low demand games (in order to avoid waste). Thus on
Day 0, SouthamptonSCM orders a large number of compo-
nents (2000, 2000, 2500, 3500, 5000) from each supplier with
corresponding delivery dates of Day 10, 25, 40, 70 and 110.
These dates were chosen in order to try and give the agent a
steady stream of components for the early to middle part of
the game. The agent accepts the corresponding offer if the
delivery date is not too far from the date it asks for. How-
ever, if the demand turns out to be greater than what the agent
ordered, it can still buy components (at higher prices) during
the rest of the game. In particular, after the Day 0 order, the
agent keeps asking for small quantities of components from
the suppliers and placing orders for them if the offer price is
low. At about Day 140, the agent starts to order components
for the rest of the game. It does this based on the average daily
demand for computers (as a predictor of how many compo-
nents are needed) and buys gradually if the offer prices from
the suppliers are low.

3.2 The Customer Agent

The customer agent is the key component in Southampton-
SCM’s strategy (because we believe that offering the appro-
priate price at the right time is vital for success). If the price
is too low, the agent will receive a low profit and if it is
too high it will fail to win any orders (because customers al-
ways choose the lowest offer price among those they receive).
Here, the key challenges are to determine which customer
RFQs to bid for and at what price. To achieve this, we use in-
ventory driven methods to choose RFQs and soft computing
techniques to calculate the price (see below).



Choosing RFQs and setting prices.
The customer agent uses an inventory driven strategy when
selecting customer RFQs. That is, it only offers customers
PCs according to what is presently available in its inventory.
By doing this, the agent avoids getting penalties for commit-
ting to more than it can produce (the quantity of PCs it can
produce is constrained by the availability of components and
factory cycles).

In more detail, table 1 shows the strategy we use. Given a
customer RFQ (i, q, pres, cpenalty, ddue), where i∈ {1, · · · ,16}
is the type of PC the customer wants, q > 0 the quan-
tity, pres > 0 the reservation price (maximum it will pay),
cpenalty > 0 the fine if the computers are not delivered on time,
and ddue the desired delivery date. On each day, the customer
agent receives a bundle of such RFQs and sorts them in the or-
der of decreasing (pres−cpenalty/q). The intuition here is that
the agent will first serve customers with high reserve prices
and low penalties. This is because the higher the pres, the
more profit will be made (compared to selling the same prod-
uct to a customer with a low pres). At the same time, the agent
also wants to avoid getting high penalty orders because of the
inherent uncertainties that exist in the game.

The next consideration relates to the agent’s production ca-
pacity. Specifically, as there is only limited production capac-
ity per day, the agent needs to calculate the number of cycles
that can be offered to respond to the customer RFQs of that
day.3 Thus, it updates the available production cycles for each
day based on the customer orders that have just been received.
Specifically, for each RFQ, the agent first checks whether it
can be supplied from its stock of finished PCs (see Section
3.3). If it can, the corresponding PC inventory is decreased.
Otherwise, the agent checks whether it holds enough compo-
nents in its inventory and whether it has a sufficiently high
remaining production capacity C[ddue −2] on day (ddue −2),
which is the latest the PCs can be produced.4 If it does, the
agent decreases its component inventory and reservedCycles
for day (ddue − 2) accordingly and increases the number of
cycles offered (q× oi, where oi is the cycles needed for PC
type i) on that day.

Now the agent needs to consider what price can be offered
to the RFQ. Based on the demand in the market, the inventory
level, and how far we are into the game, the agent first com-
putes a reference price (pi

re f ) that corresponds to a reasonable
current market price. Thus for PC type i:

pi
re f = pi

low +(pi
high − pi

low)r (1)

where pi
low, pi

high are the lowest and highest transaction prices
of PC type i on the previous day, and r ∈ [0.4,1.2] is an ad-
justment factor that determines how far away the reference
price is from the lowest price. This adjustment factor is set

3Note here the agent does not offer the exact number of cycles
that are available (C[ddue − 2]) on day (ddue − 2), but rather it in-
cludes a risk factor (λ×C[ddue −2]) which enables it to offer more
than it actually has in order to maximise the production utilisation.
Here λ > 1.

4Note that for an RFQ with the due date d, the agent checks
whether it can be produced on the latest possible day (d−2) because
this has previously been shown to be effective in this scenario [1].

Table 1: Pricing strategy on day d.
• list RFQs in decreasing order of (pres −cpenalty/q)
• update the production capacity C[k] of each day k
• o f f eredCycles = 0 and reservedCycles[k] = 0
• calculate the reference price for each kind of PC pi

re f
• for each RFQ in the list

– po f f er = max{pi
re f × (1+ f (ddue)), pi

base}
– if PC inventory ≥ q then

- offer q PCs at po f f er
- decrease PC inventory by q

– else if component inventory ≥ q and
reservedCycles[ddue −2]+q×oi ≤C[ddue −2]×λ then
- offer q PCs at po f f er
- increase o f f eredCycles by q×oi

- decrease reservedCycles[ddue −2] by q×oi

- decrease component inventory accordingly
- else do not offer PCs to this customer

through the fuzzy reasoning mechanism and is adapted ac-
cording to the quantity of orders received and the number of
orders expected (see Section 3.2 for more details). However,
given an RFQ, the offer price is not the reference price of
PC type i. Rather, po f f er is the maximum of the cost for PC
type i (pi

base is the money spent buying the constituent com-
ponents) and the reference price modified by a factor related
to the requested delivery date. This ensures the agent sells the
PC at least for its cost. The use of ddue means that the sooner
the due date, the higher the offered price is compared to the
reference price (because the agent has little time to produce
the computers with a bigger risk of being penalised for being
late).

In more detail, the fuzzy reasoning inference mechanism
employed to set the adjustment factor in Equation (1) is based
on the standard Sugeno controller [7] and the following is a
representative rule for determining it:5

R j: if D is high and I is high and E is f ar then r j is big

where the customer demand (D) is expressed in the fuzzy lin-
guistic terms high, medium, and low, the inventory level (I)
in the terms very-high, high, medium, and low, and days to
the end of the game (E) in the terms: far, medium, and close.
r j is the output of the individual rule j (i.e., the adjustment
factor discussed above). Thus, the above rule captures the
fact that if the type of PC is in high demand in the market,
the agent has a high inventory for this kind of PC and there
is a long time until the end of the game, then the adjustment
factor should be big (thus resulting in a higher bid price). The
firing level α j ∈ [0,1] of rule R j is computed in the standard
way by using the Min operator on the membership values of
the corresponding fuzzy sets. According to the Sugeno con-
troller definition, the crisp control action (i.e., the output of
the fuzzy rule base fed into Equation (1)) is:

r =
∑n

j=1 α jr j

∑n
j=1 α j

(2)

5Our agent incorporates some 20 rules which vary the price ac-
cording to the market demand, its inventory level and time into the
game.



Table 2: Adaptation of the offer prices.
• update receivedTotalCycles;
• calculate receivedCycles;
• expectedCycles = min{2000,o f f eredCycles×µ};
• if receivedCycles < expectedCycles then r = r−δ;
• else if receivedCycles > expectedCycles then r = r +δ.

Adaptation of offer prices.
Given the uncertainty in TAC SCM, we believe it is essen-
tial for the agents to be responsive to the prevailing situation
during the course of bidding for customer orders. The idea
is that the agent can only use 2000 production cycles every
day, so, to maximise throughput, the number of cycles neces-
sary to produce the received customer orders should also be
2000. Thus if the received orders require more than this fig-
ure, it means that the agent has set its offer price too low. In
contrast, if the number is too small, it means the agent is not
winning enough customer orders (which implies that its offer
price is too high). However, we cannot just base our decision
on 2000 cycles because some of that day’s production cycles
might be reserved by the orders of previous days (because
more than 2000 cycles were needed previously). In this case,
the number of expected cycles for the day’s order is only part
of the offered cycles of the previous day (because all agents
compete for customer orders and only the lowest price can be
accepted). With this information, the agent can adapt its of-
fer prices in order to try and keep the factory working at high
capacity, but still be responsive to the prices other agents of-
fer (based on the highest and lowest transaction prices of the
previous day). Specifically, the adaptation rule is if the orders
the agent receives need more cycles than it expected, it will
increase its price, otherwise it will decrease it.

Table 2 shows how the adaptation of the offer prices works.
Here, receivedTotalCycles represents the total number of cy-
cles needed to produce the PCs for the orders just received;
receivedCycles represents the cycles needed for the orders
that the agent offers from the component inventory rather than
the finished PCs (finished PCs do not count since they do not
require more cycles to produce them); o f f eredCycles is the
actual total number of cycles offered on the previous day (as
per table 1) and expectedCycles is o f f eredCycles multiplied
by the expected acceptance rate (µ = 0.75), i.e., how many
cycles are expected to win customer orders among all the cy-
cles offered. Now if receivedCycles is much less than the
expected number of cycles, the agent will decrease the ad-
justment factor (thus the price is decreased, see Equation (1))
by δ (here δ = 0.02), otherwise it will increase the adjust-
ment factor (thus the price is increased). However sometimes
if the expected number of cycles is only slightly smaller than
the actual number of received cycles, we do not decrease the
offer prices (since this is a close enough approximation in a
noisy environment). To realise this, we view expectedCycles
as a fuzzy number [9].

3.3 The Factory Agent
One of the main challenges for the factory agent is scheduling
what to produce and when to produce it (i.e., how to allocate
supply resources and factory time). The strategy we use in-

Table 3: Production scheduling for day d.
• list the orders with due date d +2 in list 1;
• list late orders (but still valid d−3 ≤ ddue ≤ d +1) in the

decreasing order of the due date into list 2;
• list the future orders (due date ≥ d +3) in the increasing order

of the due date into list 3;
• append list 2 to list 1 and list 3 to list 2;
• for each order in the combined list

– if computers in the inventory can fill the order then deliver the
computers;

– else if components are available and factory capacity is not full
then produce more PCs to fill the order;

• if there is extra factory capacity left and enough components,
then check whether additional PCs should be produced.

cludes: manufacturing PCs according to customer orders and
satisfying orders with an earlier delivery date (see table 3 for
more detail). Now, since the computers stored in the factory
will be charged storage cost, each order will be delivered as
soon as it is filled. The agent builds the PCs according to
the customers’ orders it has obtained (which has the advan-
tage of ensuring that the factory always produces the needed
computers on time). However, if there are still factory assem-
bling cycles left and the numbers of finished PCs are below
a certain threshold then the agent produces additional PCs
of each kind uniformly (if there are enough components) to
maximise the factory utilisation. In particular, this strategy
benefits the agent when there is a low demand in the market
(because there are actually spare cycles) and it works well in
the final stages of the game. For example, on Day 217, the
agent can bid on customer orders that come in on that day,
meaning it gets the orders on Day 218 and delivers the com-
puters on the last day of the game. If it just used the build-
to-order strategy, the agent would not be able to bid for the
customer orders on Day 217 because after it wins the order,
there would be no time for it to buy the necessary components
and produce the PCs.

4 Evaluation
Our evaluation is composed of three components: (i) the re-
sults from the 2004 competition; (ii) our post-hoc analysis of
some of the games in the actual competition; and (iii) a sys-
tematic range of controlled experiments.

4.1 TAC SCM Results
TAC SCM consists of a preliminary round (mainly used for
practice and fine tuning), a seeding round, quarter-finals,
semi-finals, and final. The seeding round determined group-
ings for the quarter-finals. The top 24 agents were organised
into 4 “heats” for the quarter-finals based on the positions in
the seeding round and the first 3 teams for the quarter-finals
of heat 1 and 3 entered into semi-final 1 and, similarly, the
first 3 teams from heat 2 and 4 were entered into semi-final
2. Finally, the first 3 teams in both semi-finals entered into
the final round. In the seeding round, SouthamptonSCM ob-
tained the third highest score among all the participants and
entered heat 1 for the quarter-final. In the quarter-final, we
had the second highest score and we were first in our semi-



final. In the final, our agent finished in 6th position. In the
final, our agent was adversely affected by the fact that several
agents sent RFQs on Day 0 for huge quantities of compo-
nents. Then, if the corresponding offers were expensive they
declined to buy them or if they were cheap they took up the
offers. However, in the meantime, since the suppliers have
limited capacity they scheduled other Day 0 orders for much
later in the game. Thus when this happened our Day 0 bid-
ding was severely effected (sometimes up to Day 70) and we
received severely delayed delivery dates for our orders. In
such cases, we were simply unable to obtain the components
we needed through our Day-0 procurement policy and so we
made very few sales.

4.2 Competition Game Analysis
To complement and better understand the competition result
and to evaluate the effectiveness of our pricing model we con-
ducted a post hoc analysis. However it is hard to see how the
pricing works from only the game results since the compe-
tition entrants contain a variety of interrelated strategies (for
the different facets of their operation). Thus we decided to
compare for the RFQs that the agents responded to during the
game, how the price varies among different agents. 6 To do
this, we analysed competition games and we were especially
interested in those cases where there were strong agents. Here
we take a randomly chosen representative game in the semi-
final (game 1136) and analyse it in more detail. 7 In this game,
we compare our agent with FreeAgent and Mr.UMBC which
were the first and second placed agents in the final. Thus, in
each such competition, we extracted from the game data, de-
tails of the RFQs that were received by the competing agents,
the offers that they sent to the customers in response and the
orders that resulted.8 This data enabled us to compare the
orders that the agents were winning with the prices that they
offered. Specifically, figure 2 shows for each simulation day,
the daily price (per production cycle, see figure 2 (a)) offered
by each agent and the average daily number of orders that
each agent won (again measured in cycles, see figure 2 (b)).
These values are averaged over all PC types. Since the ulti-
mate profitability of the agents depends on both these factors,
we also calculate the average daily revenue (i.e. the number
of PC orders multiplied by their prices, see figure 2 (c)).

Throughout the game, SouthamptonSCM adaptively ad-
justs the price offered to the customer to ensure that the fac-
tory maintains as close to full production as possible (the fac-
tory utilisation for our agent, FreeAgent and Mr.UMBC are
76%, 58%, and 61%). Generally, having a high factory util-

6We aim to compare the pricing model and the revenue made
by responding to the customer RFQs. Thus the price paid for the
components and any late penalties need not be considered here.

7We did not choose a game from the final because of the skew-
ing introduced by the Day 0 bidding strategies used by some of
the agents. Also it’s impossible to compare the pricing of multi-
ple games in one figure, thus we only show one representative game
in the figure. However, the following discussion also applies to the
other games we analysed.

8For clarity, we omit from this plot the other three agents, and
just show data for SouthamptonSCM, FreeAgent and Mr.UMBC.
The plots of the other agents show they were less effective.
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Figure 2: Comparison of daily offer prices, order quantity and
revenue in game 1136.

isation means the agent can produce more PCs and thus win
more customer orders. For example, in this game, the num-
ber of orders for these three agents are 5405, 4011, and 4300.
In this example, all three agents have sufficient components
to allow them to compete for the same orders. However, our
pricing model is particularly successful. The prices offered
by SouthamptonSCM are just low enough that the offers of
the competing agents are undercut, but high enough that the
resulting orders generate as much revenue as possible.

After analysing more semi-final games, we found that the
prices SouthamptonSCM offers follow the same broad trend
compared with the other two. And, in particular, the trend is
when the customer demand is high, the prices are high, and
vice versa. This can be seen from figure 2 (a), where the de-
mand for the first half of the game is high, and the demand
decreases gradually till Day 160 and increases again. Ac-



cordingly, the prices are high before Day 110 and then start
to decrease gradually. At the end of the game, although the
demand is increasing, the agents do not increase their prices
because they want to offload their stock. Moreover, in most
of the games we considered, the prices SouthamptonSCM of-
fered just undercut the other two. This is also reflected by the
quantity of orders our agent won which was again usually the
highest.

4.3 Controlled Experiments
To evaluate the performance of our agent in a more systematic
fashion than is possible in the competition, we decided to run
a series of controlled experiments. As mentioned before, we
attribute the success of our agent to the adaptive control of the
offering price and this is what we are most interested in here.
Thus, we decided to analyse how the pricing works compared
with other methods. To do this, we devised two competi-
tor agents that adopt identical strategies to SouthamptonSCM
except for the method they use to offer prices. The alternative
methods we consider are consistent with the broad classes of
behaviour that were adopted by several of the agents in the
competition:

• Risk-seeking agent (RS-agent). This agent bids ag-
gressively at high offer prices to obtain a higher profit
margin in selling the PCs. It will take the risk of stock-
ing a large number of PCs and components in the factory
and paying storage cost for them. But when its PCs are
sold they fetch high prices and mean it can very quickly
build up profits. In more detail, the prices that RS-agent
offer are the maximum of the cost of the computer plus
a fixed profit margin (here it is 300) and the computers’
reserve price minus 1. Thus, at the end of the game it
sells all its computers at very low prices since it is better
to sell than retain stock.

• Risk-averse agent (RA-agent). This agent bids cau-
tiously and only seeks to attain a reasonable profit mar-
gin. This means that the agent wants to sell its PCs
quickly and it does not want to take the risk of stock-
ing components or PCs (especially in games with low
customer demand). Specifically, it offers the computers
at the minimum of the cost of the computer plus a small
margin and the reserve price minus 1. Here the margin
is set to 300 in the first 180 days of the game and this is
then decreased to 0 linearly till the end of the game. This
policy is adopted because the agent hopes that it can sell
all the computers by the end of the game.

Besides these two kinds of agents, the other competing par-
ticipants are the dummy agents provided by the organisers.
These use a build-to-order method and offer prices which are
chosen uniformly from 80−100% of the reserve prices. Gen-
erally, the dummy agent can be viewed as being risk averse
because it often offers a low price (but it differs from our RA-
agent in that it uses the build-to-order method). Given this
background, three groups of experiments were conducted to
examine the performance of each kind of agent in various sit-
uations. In experiment A, there is one SouthamptonSCM,
one RS-agent, one RA-agent and three dummy agents. In ex-
periment B, we increase the number of RS-agents to 2 and
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Figure 3: Revenue of each kind of agent.

decrease the number of dummy agents to 2. In experiment C
the number of RS-agents is 3 and the number of dummies is
1. The average revenue of each kind of agent in each of the
experiments are then plotted.

We now start to analyse the performance of the different
agents as shown in figure 3.9 In experiment A, it can be seen
that SouthamtptonSCM performs significantly better than the
other two agents and that the RS-agent is better than the
RAs. In experiment B, SouthamptonSCM is significantly bet-
ter than both RS-agents and RA-agents and the RS-agents are
better than the RAs. In experiment C, SouthamptonSCM is
significantly better than the other two, however we cannot dif-
ferentiate statistically which agent is better between RS and
RA agents. Now, in all cases, we can attribute this success of
SouthamptonSCM solely to the adaptivity aspect of its pric-
ing (because this is the only difference between the agents).
Moreover, we found that the average revenue Southampton-
SCM obtained is 49.7% higher than RS-agents in experiment
A, 129.7% higher in experiment B, and 58% higher in ex-
periment C. This means, relatively speaking, Southampton-
SCM does best in experiment B. It is interesting that there
are more RS-agents in experiment B than in A (i.e., our agent

9Statistical significance is computed by a Students t-test and this
shows all results are significant (p < 0.05).



performs better in a more uncertain environment). This fur-
ther shows that the adaptivity of prices are effective in this
case. However, in experiment C, more agents use the Day-
0 bidding strategy and this affects all the agents greatly (see
the discussion below). To understand better about how the
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Figure 4: Comparison of daily offer prices, order quantity and
revenue in the controlled experiment.

pricing of SouthamptonSCM works, we further observed for
each simulation day, the daily price (figure 4 (a)) offered by
each agent and the average daily number of orders that each
agent won (figure 4 (b)). These values are averaged over all
PC types. We then plot the average daily revenue (figure 4
(c)). Here, again, we take a randomly chosen representative
game to show how the pricing of these three kinds of agents
operates. As expected, the prices that SouthamptonSCM of-
fers are roughly between the other two (below that of RS-
agents and above that of RA-agents). For an RA-agent, the
offer prices are very low, thus, although it can sell a large

quantity of PCs, it cannot make much profit. Specifically, we
found that the RA-agent can almost always win orders (the
ratio of the number of orders offered to the quantity of or-
ders won is almost 1 : 1 and the factory utilisation is almost
100%). For the RS-agent, however, the prices are always
high, meaning they build up a large stock of PCs and compo-
nents in the factory. Thus only a small number of their orders
make much profit although selling prices are high. Through
adaptation, SouthamptonSCM can make its offer prices high
enough (sometimes the average prices are even higher than
RS-agents, see figure 4 (a)), but, at the same time, guarantee
a large number of orders (see figure 4 (b)). This is demon-
strated by the fact that its factory utilisation is almost 100%.
Consequently, its revenue is higher than the other two (see
figure 4 (c)).

Besides these observations about the performance of each
agent, the following general observations can be made from
these experiments. First, in all cases, the three kinds of agents
perform much better than the Dummy agents. This means that
our Day-0 procurement strategy can be viewed as being more
effective than build-to-order procurement. This happens be-
cause when the Dummy agent starts to order the components
after it wins the customer order, there will always be a delay
between the delivery date the agent asks for and the real one.
Thus the Dummy agents are often penalised for being late
or missing the delivery deadline. Moreover, as shown in fig-
ure 3, the more risky agents there are, the worse the Dummy
agent behaves.

Second, as more agents use the same broad strategy of
Day-0 procurement, it is more likely that there will be a big-
ger delay between the original delivery date and the actual
one (because each agent sends RFQs with a big quantity of
components and the production capability of the supplier is
limited, see Section 3.1). Thus, this phenomena greatly in-
creases the uncertainty in the game and the performance of
all the agents are negatively affected, (i.e., the performance
of all the agents is getting worse from experiment A to B and
B to C). This can be seen clearly in figure 3 and explains why
SouthamtptonSCM sometimes got the second or third posi-
tion in a game. Through the analysis of the game data, we
found that in those games, there is a significant delay in the
component delivery and the factory stops working for about
20 days. This is also what happened in the final of the com-
petition (as detailed in Section 4.1).

Third, as more agents use the risk-seeking strategy, the per-
formance of the RS-agents is more negatively affected. This
happens because the RS-agents are mutually destructive. In
this situation (e.g., in experiment C), although RS-agents sell
PCs at high prices, the quantity of PCs sold is not sufficient to
make up the cost they have spent on the raw materials of the
PCs they produce. In contrast, RA-agents sell many PCs at
reasonably low prices and their revenue remains high. Thus,
as we can see in figure 3 (c), it is sometimes the case that the
RA-agent is doing the best.

Fourth, the agent that can best adapt its offer price to the
changing environment will thrive best in the game. This is
because the random nature of the customer demand and the
strategies of other participants make the environment highly
unpredictable in terms of what is the appropriate price to set



for the PCs. As can be seen from the above experiments, nei-
ther the agent that seeks a high price, nor the one that only
pursues a fixed margin are effective in all cases. Thus adap-
tivity is a critical requirement for effective performance in
dynamic games.

5 Conclusions

This paper provides a number of insights into building agents
for supply chain applications. Specifically, it details the de-
sign, implementation and evaluation of SouthamptonSCM;
an agent that successfully participated in the 2004 trading
agent competition. The agent employs fuzzy techniques at
its core. In particular, it uses fuzzy reasoning to determine
how to set prices according to its inventory level, the market
demand and the time into the game. Moreover, the parame-
ters involved in the fuzzy rules can be adapted according to
the quantity of the received customer orders and the expected
number of orders so as to maximise the factory utilisation.
To evaluate the efficiency of our pricing model, we analysed
actual competition games and conducted controlled experi-
ments where we compete our agents with various numbers of
risk-seeking and risk-averse agents. The actual game analysis
shows that our agent is able to obtain a high revenue by offer-
ing high prices that are, nevertheless, low enough to win cus-
tomer orders. In the controlled experiments, we show that in
all environments we considered, SouthamptonSCM is signif-
icantly better than the other two kinds of agents (with highest
average performance and lowest variance). When taken to-
gether, these evaluations show that out pricing model is both
efficient and robust.

We also believe several aspects of our agent design and
strategy are applicable outside the confines of this competi-
tion. First of all, the general idea of the component agent
is to periodically request large orders to cover the baseline
quantities needed in low demand (steady state) markets and,
at the same time, buy smaller amounts of supplies when the
selling price is low during the rest of the production. This
mixture of baseline and opportunistic purchasing behaviour
is a common strategy in this domain and the technology we
develop for achieving this can be readily transferred. Second,
we believe our pricing model technology will also be useful in
real SCM applications where just undercutting competitors’
prices can significantly improve profitability. Specifically, to
apply our model in other domains, the designers of the rule
base would need to adapt the fuzzy rules to reflect the fac-
tors that are relevant to their domain. Now we believe that
customer demand and inventory level are highly likely to be
critical factors for almost all cases and thus these rules can
remain unaltered. However, the time into the game is not so
broadly applicable since there is not always a rigidly fixed
deadline to real life supply chains (thus some changes may
be needed here). Third, the strategy employed by the factory
agent for managing resources in uncertain and dynamically
changing environments is generally applicable. In this case,
it incorporates little in the way of domain specific knowledge
and so it can remain broadly as is.
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