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Abstract— Large arrays of cameras are increasingly being
employed for producing high quality image sequences needed
for motion analysis research. This leads to the logistical problem
with coordination and control of a large number of cameras. In
this paper, we used a lightweight multi-agent system for coordi-
nating such camera arrays. The agent framework provides more
than a remote sensor access API. It allows reconfigurable and
transparent access to cameras, as well as software agents capable
of intelligent processing. Furthermore, it eases maintenance by
encouraging code reuse. Additionally, our agent system includes
an automatic discovery mechanism at startup, and multiple
language bindings. Performance tests showed the lightweight
nature of the framework while validating its correctness and
scalability. Two different camera agents were implemented to
provide access to a large array of distributed cameras. Correct
operation of these camera agents was confirmed via several
image processing agents.

I. INTRODUCTION

Increasingly, people are using large arrays of high quality
cameras for capture and analysis of motion. Kanade et al.
mounted 49 cameras in a room to capture motion for virtu-
alised reality [6]. Wilburn et al. built a dense camera array to
achieve high resolution and high framerate capturing of image
data using many low resolution CMOS cameras [13]. Zhang
and Chen built a large self configuring camera array capable
of rendering novel views of scenes in near real time [16]. In
all these works multiple cameras are employed to produce a
higher quality image than would be possible with a single
camera. Specifically, we seek to deploy high resolution video
rate data captured from multiple cameras for the analysis of
human gait.

In this paper we propose a middleware framework for a
camera data acquisition system. The aim of this framework
is to allow transparent and reconfigurable access to visual data
and image processing software while minimising maintenance
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Fig. 1. Overview of how the middleware and camera systems fit together.
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Fig. 2. An overview of how the middleware and agents fit together.

by encouraging code reuse. Fig. 1 shows the system overview
of the proposed framework. The middleware facilitates com-
munication between dedicated camera computers and image
and gait processing software. It has the following features:

o Zeroconf [14]: This allows agents to automatically locate
middleware components in a TCP/IP network.

o Multi language support: This allows users to exploit the
benefits of different languages.

o Lightweight: The algorithms used in gait analysis are
CPU intensive, thus the middleware must not be an
additional drain on resources.

e Service discovery: Agents can query the middleware to
discover and utilise services provided by other agents.

e Locking: Cameras are stateful devices. It is important
that processes cannot be interrupted mid-session.

Hori et al. [4] also implemented a middleware for networks
of computers with attached cameras. In their work, the
cameras were accessed as if they were a local device with
commands such as camera.capture (). This is similar
to player/stage [2], a popular middleware among the robotics
community. Player/stage provides software abstraction for a
large variety of robot sensors, such as pan/tilt cameras, sonar
and laser range finders, and wheel encoders. However, these
systems are not suitable for our application as their goals
are to provide direct access to sensor data over a network.
In contrast, we want intelligent agents in our framework,
where researchers can provide agents that do, for example,
background subtraction or image mosaicing.

Multi-camera tracking systems [8], [9] also attempt to look
at the problem of controlling a large array of cameras. Here,
the camera agents not only act as capture devices, but also
perform processing on the image data. The middleware is
highly focused on the task of tracking. For instance, the mes-
sages in Sato et al. [9] are high level commands like location
of outgoing object and measured height. The middleware is
also responsible for coordinating the movement and focus of
the cameras to achieve the system goal. In comparison, the



middleware in our application has to be more general purpose.
This is because researchers have different objectives from the
image data. For example, in our research group, there are
people who work with raw image data, silhouettes [11], and
2D and 3D models [12].

A final approach to this camera coordination problem is
to leverage an existing middleware. The most common is
CORBA [3]. It was originally developed for business applica-
tions but has since been used in many problem domains [15].
The middleware is very generic. A stub is written in an
interface description language and used to create a client to
the middleware. CORBA additionally offers many services
such as brokers and a directory. However, a CORBA orb (the
centre of the middleware) requires a lot of resources to run.
Many features not required in our application are included
by default, and they cannot be optionally switched off. Also,
there is a steep learning curve before researchers can add their
existing code to this framework. Consequently, CORBA was
not suitable for our application.

The solution we propose contains some of the features from
all the approaches outlined above, while being easy to use and
lightweight. This paper extends an earlier version of this work
published in [7]. It is organised as follows: Section II provides
an overview of the Lightweight Agent Framework (LAF).
This is followed by an introduction to two agents essential to
our camera data acquisition system, camera and super camera,
in Section III and Section I'V. Section V presents results from
simple performance tests. Finally, Section VI describes four
agents that employ the services provided by the camera and
super camera agents.

II. SYSTEM OVERVIEW

Fig. 2 shows an overview of LAF. The system has been si-
multaneously developed on C++, Java, and Python. Central to
the system is the router. It is the main point of communication
and coordination. All messages between components (except
streamers) are sent via the router. Also, it acts as a broker for
agents providing and requiring services. Agents are providers
of services. Remote agents are clients of services provided
by agents. To use the service provided by an agent, a remote
agent requests a lock on the agent from the router. However,
LAF is not restricted to a simple model of clients (remote
agents) and servers (agents). An agent can contain one or
more remote agents, thus allowing it to be both a client and
a server at the same time. An example of an agent which
is also a remote agent is described in Section IV. Agents
and remote agents communicate via ports and streamers.
Ports are inputs and outputs of agents. Streamers are direct
socket connections, mediated via the router. This allows video
information to be sent directly between agents without the
traffic passing through the router.

A. Ports and Streamers

There are two types of ports in LAF: input and output.
Input ports are used to pass data to an agent. It can be
optional or non-optional. Processing (via the CALL command,
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Fig. 3. Diagram showing the interrelation of the software objects.

see Section II-B) cannot proceed until all non-optional ports
are set. Output ports are used to pass data to remote agents.
As an example, if a user wants an agent to add two strings
together. The agent should have, as a minimum, two input
ports and one output port. The input ports should be non-
optional, as concatenation is not possible without both inputs
set. The concatenated string can be read from the output port.

In applications involving a large array of cameras, a large
amount of data is generated. If this data is to be sent via
the router, this could result in more traffic than the router
can deal with. For this reason, streamers were implemented.
A streamer is a direct socket connection between an agent
and a remote agent. The router is responsible for instigating
this connection, so address (IP and port) information is not
required ahead of time.

B. Messages

LAF employs XML messages for communication between
the router, agents and remote agents. The structure of the
message is defined using XML schema [1]:

<complexType name="message">
<sequence>
<element name="command" type="string"/>
<element name="sender" type="string"/>
<element name="target" type="string"/>
<element name="name" type="string" minOccurs="0"/>
<element name="data" type="string" minOccurs="0"/>
</sequence>
<attribute name="id" type="nonNegativelInteger" use="
required">
<attribute name="replyto" type="nonNegativeInteger">
</complexType>

Broadly, there are three classes of messages — status, router
and agent. There are two status messages, OK and NOKXK,
which give feedback about the success of an action. Router
messages are actions that only the router can perform. Two
router commands are defined in LAF: PING and SHOW'.
Agent messages are communications, via the router, be-
tween agents and remote agents. They deal with control
and communication. Agent messages recognised by LAF are
SUBSCRIBE, UNSUBSCRIBE, LOCK, UNLOCK, SETPORT,
GETPORT, GETSTREAMER and CALLZ2. The use of some of
these commands will be explained in subsequent sections.

C. Router

The router, agent and remote agent are implemented in a
common class hierarchy, as shown in Fig. 3. At the top level is
CommsThread, which contains the low level threading and

'SHOW returns a list of all agents currently registered with the router.
2CALL executes the action of an agent.



networking. Below CommsThread are two derived classes:
Router and BaseAgent. BaseAgent implements the
ports mechanism and provides a connection handler. Inherited
from the BaseAgent are Agent and RemoteAgent.

The router is responsible for agent subscription, message
re-direction, and agent selection. It employs a plugin system
which makes it simple to extend its functionality.

Upon starting, the router registers itself as a multicast
DNS service (mDNS) in zeroconf. The mDNS service allows
information to be passed to any subscriber of the service. In
this case the port and IP address of the router are passed via
mDNS. Essentially this means that connection to the router
by any agent is potentially an automatic process.

The subscription process of an agent from the perspective
of the router begins when a SUBSCRIBE message is received.
This message contains the fype of agent which is being sub-
scribed. The type is something like st ring.concat which
could be the name of an agent which concatenates strings
together. The type of an agent is purely a descriptive name
describing the service it provides. When the subscription is
received the router assigns a unique name for the agent. This
is made up of the type and a unique (for the lifetime of the
router) id number. For example the name assigned by the
router in the case of the string concatenation agent could
be string.concat0. Once an agent is subscribed, it is
added to two lists (connected agents and free agents) which
is maintained in the router. If an agent unsubscribes or dies,
the router removes it from both lists.

All messages pass through the router. As a result of this
the router can perform filtering of the messages. For example,
some messages are permitted only if the sender has a lock on
the target, for example SETPORT, GETPORT and CALL. If
the sender does not have the required lock, the router returns
an NOK message to the sender. In most cases however the
extent of the routers manipulation of the message is handling
acknowledgements and passing it onward to the appropriate
target.

The last function of the router is the agent selection process.
This is used primarily when a remote agent is trying to lock an
agent. The selection mechanism currently employed is a naive
one. Basically, a list of free agents is maintained. Acquisition
of a lock involves taking the first free agent and returning it
to the remote agent. This agent is then removed from the free
agent list and added to a locked agent list.

D. Agents and Remote agents

Users writing agents for LAF will need to create a derived
class of Agent. The Agent class provides the underlying
networking and messaging required for all agents. The derived
class will minimally need to (a) provide type, ports, and
streamers in the constructor, and (b) overwrite the action ()
method. The type is a string which describes the service
which the agent provides. This is used by remote agents to
request its service. Ports and streamers provide the inputs and
outputs of this agent. The action method is the engine of
the agent. The user writes their own action method to provide
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class TestAgent ( Agent ):
def _ _init__ ( self ):
Agent.__init__ ( self )
self.setIdentityPort ( "type’, ’string.concat’ )
self.addPort( "a’, self.INPUT )
self.addPort( "b’, self.INPUT
self.addPort ( 'c’, self.OUTPUT
def action( self ):
if self.setOutputPort( ’"c’, self.getInputPort(’a’).
upper () + self.getInputPort ('b’).upper() ):
return True
return False
if _ name_ =='__main__ ':
p = TestAgent ( )
if p.connect():
p.join( )

Fig. 4. Python string concatenation agent.

int main (void) {
RemoteAgent ra();
if(!ra.connect_and_lock ("string.concat"))
return 0;
ra.setInputPort ( "a", "foo" );
ra.setInputPort ( "b", "bar" );
ra.call();
cout << ra.getOutputPort( "c" ) << "\n";
ra.disconnect_and_unlock();
return 0;

Fig. 5. C++ string concatenation remote agent.

the agents’ functionality. In the case of a string concatenation
agent this method will read the input ports and set the output
port appropriately. An example of this is shown in Fig. 4.

Users writing remote agents will need to create an instance
of RemoteAgent (or a derived class). The instance will need
to specify the name(s) of the agent(s) it wishes to lock, set
the agent’s input ports and execute the CALL message. The
CALL message runs the locked agent’s action () method.
An example is shown in Fig. 5.

Agents and remote agents can connect to LAF either au-
tomatically or manually. Automatic connection is performed
using zeroconf. Manual connection uses environment vari-
ables ROUTERHOST and ROUTERPORT.

III. CAMERA AGENT

Since the goal of LAF is to coordinate an array of cameras,
the first agent implemented was naturally one that provides
transparent access and control of cameras over the network.
Currently, we are using Point Grey Dragonfly firewire cam-
eras in our laboratory. However, the agent is not camera
platform dependent and other cameras can be controlled as
long as drivers for accessing the camera are available.

With multiple cameras connected to the firewire bus, the
capture process happens in one operation. By this it is meant
that data from each camera is transferred via the bus to the
user in a single read operation. Therefore a single agent
is used to abstract all cameras on the bus. Study of usage
patterns reveals two distinct modes of behaviour that the
camera agent has to encapsulate — grabbing image sequences
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Fig. 7. Sending image data via a streamer in the camera agent.

and configuring camera features. Transmission of image data
is achieved with a streamer. Fig. 6 illustrates the specific
ports and general configuration for a camera agent and how
it interacts with a remote agent. The agent was implemented
in C++ as it required access to device level calls to control
the camera.

Of the illustrated input ports, only service was compulsory.
The service port exposes the features of the cameras con-
trolled by the agent, such as grab image, set shutter speed,
and turn on auto white balance. The other input ports were
employed to set required parameters, such as the value of the
shutter speed.

The streamer is used to send the video data directly to a
remote agent. The video data is sent a frame at a time with
the frame from each camera on the bus interleaved as shown
in Fig. 7.

Two different sorts of camera agents have been imple-
mented. The first delivers the raw bayer information and the
second delivers colour information. When transmitting image
data the colour camera agent requires 3 times the bandwidth
of the bayer one. This is a consequence of colour data
requiring 3 bytes to represent each pixel (one for each of the
colour channels). There is scope to write other sorts of camera
agents which could potentially perform more complex image
processing operations. For instance to save on transmission
bandwidth an image which is cropped about a region of
interest could be sent. Alternatively compression could be
used to save bandwidth. Note that any such modifications
would result in different data being sent via the streamer.

IV. SUPER CAMERA AGENT

The camera agent provides access to the camera array on
a per PC basis. However, accessing and controlling a large
number of cameras can be cumbersome using camera agents
alone. For instance to access 6 cameras which are connected
in pairs to three PCs, the user needs to maintain three separate
camera agents. Moreover, when cameras are connected to the
firewire bus they do not necessarily get allocated in the order
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of connection but in the order that the operating system first
polls them. This can lead to inconsistencies with experimental
set up from one day to the next. Primarily to solve these issues
the super camera agent was written in C++.

The configuration of the super camera agent is shown in
Fig. 8. It contains a number of remote agents which control
all camera agents connected to the router. Thus in terms of the
middleware system the super camera agent is both a remote
agent and an agent. The image data is transmitted to the
super camera agent via a number of streamers - one for each
camera agent connected. An output streamer is provided for
remote agents to read the collated image data. Ports are used
to control features of the camera agents. Similar to the camera
agent, the only compulsory input port is the service port.

To handle the incoming streams and the outgoing stream
a design pattern known as a producer-consumer model is
employed. This is illustrated in Fig. 9. Each incoming stream
is assigned a producer which appends each completed frame
as it arrives onto a queue. In this way each queue corresponds
to a unique camera on each of the camera agents. The
consumer then takes one frame from each queue in turn and
appends it to the output stream. The order in which it takes the
items from the queues depends on an internal map. As each
camera has a unique serial number then this serial number
can be associated with one of the queues. The map is just
a lookup table which says what order the queues should be
emptied in terms of the serial numbers.

V. PERFORMANCE TESTING

Four tests were carried out to evaluate the performance
of LAF. The first test evaluates scalability. Fig. 10 shows
that connection and disconnection times to LAF do not
increase with an increasing number of registered agents.
The second test measures the overhead of messaging. One
hundred separate operations were invoked against a string



25

T
connect
disconnect

20

time (in ms)

I I I
0 200 400 600 800 1000
number of agents registered

Fig. 10.
registered.

Connection and disconnection time against number of agents

remote agents
agents C++

Python
C++ 943 1771
Python 1596 2158
TABLE I

TIME (IN MS) TO PERFORM 100 STRING CONCATENATION OPERATIONS.

concatenation agent. The result is shown in Table 1. The
third test measures the average startup times of agents and is
illustrated in Table II. The slower start up times of the remote
agents is the overhead due to locking. The messaging test
and the startup time test demonstrate the lightweight nature
of LAF. The fourth test evaluates the streaming performance
of streamers. For a camera agent we achieved an average of
661 Mbit/s with a gigabit network. This means we can directly

stream video data from 9 cameras’.

VI. APPLICATION AGENTS

As an example of the system in operation several applica-
tion agents which have been developed are described here.
The first allows the cameras to be configured remotely, the
second is for performing a simple mosaicing operation of the
images of all the cameras on the network, and the final one
performs background subtraction on images.

A. Camera control application

Scientists in our laboratory often require different camera
configurations. Thus, an application for configuring the cam-
eras was written. This application used the locking mech-
anism of LAF to stop simultaneous camera access. The
application interface and current camera view are shown in

30ur cameras run at a resolution of 640x480 with a framerate of 30
frames per second.

| time (ms)
C++ agent 263
C++ remote agent 291
Python agent 512
Python remote agent 604

TABLE 1T
STARTUP TIME.
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Fig. 11. This application was written using the C++ bindings.
The design of this application is similar to the camera agent as
shown in Fig. 12. Notice that only one remote agent is needed.
This remote agent is locked to a particular camera agent via
the router and unlocked when the user selects another camera.
If the newly selected camera is also controlled by the same
camera agent then the unlocking process is not performed.
In order to send the video data a streamer is used. When the
camera is changed, the current streamer is shut down and a
new one is reconnected. To control the various features of
the camera the service input port to is set to the feature of
interest.

B. Image mosaicing

An image mosaicing agent was written in Python. The out-
put from one frame of an example run is given in Fig. 13(a).
This was achieved with 3 PCs each with 2 cameras connected.
The program locked a super camera agent and then grabbed a
few seconds worth of data. From this data a large composite
image was created. Notice that this program requires no
knowledge of the camera arrangement (as evidenced by the
mosaic), or the numbers of cameras connected as this is
handled automatically by the super camera agent.

C. Background subtraction

A common first step of many of image processing algo-
rithms is background subtraction. This process divides an
image to foreground (moving) and background (static) parts

(b)

Fig. 13. (a) Creation of an uncalibrated image mosaic from six cameras.
(b) Removal of the background from a single camera.
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Fig. 14. (a) Path of laser pointer viewed from five cameras. (b) Calibrated
reconstruction of the original path.

and remove the background. In gait analysis, this effectively
highlights the gait subject. An agent was written in Python
to perform background subtraction. Fig. 13(b) shows an
example output frame. This agent locks a single camera and
statistically computes a reference background when no subject
is in view. When the subject is in the scene, the reference is
used to find portions of the image that have changed.

D. Camera calibration

3D processing of image data requires cameras to be cali-
brated. Calibration establishes the parameters of the cameras,
eg pose and CCD configurations. Projective factorisation is
a simple method for calibration [10]. As input, this requires
a known set of 3D correspondences such as the path of a
laser pointer viewed from multiple cameras. To perform this,
a camera agent was extended to process raw video data and
return coordinates of the laser pointer. A remote agent was
written to collect these coordinates and perform projective
factorisation. Figure 14 shows the path of the laser pointer as
viewed by 5 different cameras.

VII. CONCLUSIONS

This paper described the development of a middleware,
LAF, for the control of a large array of cameras. LAF consists
of a router, and superclasses for agents (service providers)
and remote agents (clients). Since agents can contain remote
agents, LAF is not limited to a simple client/server model.
LAF provides transparent access to camera control. Addi-
tionally, it facilitates access and reuse of intelligent agents
that provide a variety of image processing operations. Other
features of LAF include minimal computational overhead,
zeroconf for automatic discovery of components in the frame-
work, locking, and multiple language support. LAF has been
shown to be easy to use via the string.concat example.
In this paper, LAF has been used to control an array of
cameras. However, the framework is general purpose and is
not solely limited to controlling camera arrays [5].

The performance of LAF is tested by scalability, messag-
ing and streaming tests. Agents implemented with the C++
binding were found to be faster than those using the Python
binding. However, the Python binding is still very useful as
it allows rapid code development. The streaming test showed
that LAF is capable of operating real time streams of video
data from 9 cameras. This is sufficient for our needs but if
more cameras are required in the future compression at the
camera agent end needs to be examined. Four application
agents were also demonstrated in this paper. One which
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allows users to control the configuration of the cameras, one
which performs a simple mosaicing of the video data, and one
which performs background subtraction. These applications
validated the correctness of the design and demonstrated the
ease of implementation of simple applications.
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