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Abstract. With the increasing capability of MR imaging and Compu-
tational Fluid Dynamics (CFD) techniques, a significant amount of data
related to the haemodynamics of the cardiovascular systems are being
generated. Direct visualization of the data introduces unnecessary visual
clutter and hides away the underlying trend associated with the progres-
sion of the disease. To elucidate the main topological structure of the
flow fields, we present in this paper a 3D visualisation method based on
the abstraction of complex flow fields. It uses hierarchical clustering and
local linear expansion to extract salient topological flow features. This
is then combined with 3D streamline tracking, allowing most important
flow details to be visualized. Example results of the technique applied to
both CFD and in vivo MR data sets are provided.

1 Introduction

Blood flow patterns in vivo are highly complex. They vary considerably from
subject to subject and even more so in patients with cardiovascular diseases.
Despite the importance of studying such flow patterns, the field is relatively im-
mature primarily because of previous limitations in the methodologies involved
in acquiring and calculating expected flow details. The parallel advancement of
MRI and CFD has now come to a stage that their combined application allows
for a more accurate and detailed measurement of complex flow patterns. Veloc-
ity Magnetic resonance imaging was originally developed in the mid 1980’s [1,2]
and is now available on most commercial scanners. The accuracy of the method
has been validated for the quantification of volume flow and delineation of flow
patterns. There are now a wide range of clinical applications in acquired and
congenital heart disease as well as general vascular disease.

Computational fluid dynamics, on the other hand, involves the numerical
solution of a set of partial differential equations (PDEs), known as the Navier
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Fig. 1. Different flow field visualisation methods. (a) Arrow plot. (b) Interactive iso-
vorticity plot. (c) Streamline plot.

Stokes (N-S) equations. The application of CFD has become important in cardio-
vascular fluid mechanics as the technique has matured in its original engineering
applications. Moreover, with the parallel advancement of MR velocity imaging,
their combination has become an important area of research [3]. The strength of
this combination is that it enables subject-specific flow simulation based on in
vivo anatomical and flow data [4]. This strategy has been used to examine flows
in the left ventricle [5], the descending aorta, the carotid and aortic arterial
bifurcation [6], aortic aneurysms and bypass grafts.

With the availability of a detailed 3D model capturing the dynamics of the
LV and its associated inflow and outflow tracts, it is now possible to perform
patient specific LV blood flow simulation. For many years, techniques based
on CFD have been used to investigate LV flow within idealised models. The
combination of CFD with non-invasive imaging techniques has proven to be an
effective means of studying the complex dynamics of the cardiovascular system
as it is able to provide detailed haemodynamic information that is unobtainable
by using direct measurement techniques.

With the increasing use of combined MRI/CFD approach, the amount of data
needs to be interpreted is becoming significant and becomes challenging to anal-
yse and visualise (Figure 1). This is true especially when flow in major cardiac
chambers through the entire cardiac cycle needs to be simulated. To examine
detailed changes in flow topology, data reduction based on feature extraction
needs to be applied. Streamlines give a good indication of the transient pattern
of flow [7]. However, for 3D datasets these plots can be highly cluttered and for
complex flow they tend to intertwine with each other, limiting their practical
value [8]. The purpose of this paper is to present a new method for velocity MR
flow field visualisation based on flow clustering and automatic streamline selec-
tion. Flow clustering enables data simplification and compression. The method
assumes linearity around critical points to ensure that these are preserved by the
simplification process. Each cluster therefore contains points sharing a common
flow feature. Automatic streamline selection is then applied to determine the
salient flow features that are important to the vessel morphology.



A Data Clustering and Streamline Reduction Method 453

2 Materials and Methods

2.1 Clustering

Several methods based on hierarchical clustering have been proposed in recent
years. Current methods can be divided into two categories: top-down [9] and
bottom-up strategies [10,11] strategy. More recently, Garcke et al. [12] have
proposed a continuous clustering method for simplifying vector fields based on
the Cahn-Hilliard model that describes phase separation and coarsening in bi-
nary alloys. In general, all these methods use a single vector to represent a
cluster and are well suited for visualisation purposes, however, given a set of
such clusters, it is difficult to recover the original vector field.

To generate an abstract flow field from a dense flow field, the dense flow
field is partitioned into a set of flow regions each containing a cluster of vectors.
Local linear expansion is employed to represent the clustered flow vectors. Using
gradients to represent a flow field is particularly suitable for regions near criti-
cal points, and thus this representation technique intrinsically preserves critical
points.

A hierarchical clustering algorithm merges flow vectors in an iterative pro-
cess. The fitting error, E(C), for each cluster C is defined as the total square
distance between the original data points and the those fitted by the gradients.
The cost MC of merging two clusters, C1 and C2, to form a new cluster Cnew is:

MC(C1, C2) = E(Cnew) − [E(C1) + E(C2)] . (1)

Initially, each vector forms its own cluster and the neighbouring vectors are
used to approximate the local linear expansion of this cluster. Subsequently, the
associated cost of merging a pair of clusters is calculated and stored in a pool for
each pair of neighbouring clusters. The following steps are then repeated until
all clusters are merged to form one single cluster enclosing the entire flow field.
First, the pair of clusters with the smallest merging cost in the pool is removed
and merged to form a new cluster. Then, the cost of merging the latter with
its neighbours is calculated and inserted into the pool. By repeatedly merging
clusters, a hierarchical binary tree is constructed in the process, with each node
representing a cluster and its children representing its sub-clusters. Once the
hierarchical tree is constructed, abstract flow fields at various clustering levels
can then be obtained from this tree efficiently.

2.2 Local Linear Expansion

The flow field near critical points is assumed here to be linear. In order to enclose
regions around critical points, each cluster joins points with approximately the
same velocity gradients. Local linear expansion is carried out to determine these
gradients inside each cluster.
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We assume that the velocity in a region, R, is given by

v = A(x − x0)
= Ax − v0 (2)

where v0 = Ax0.
We know the velocity v at a set of cluster points. We therefore perform a

least squares fitting over the lattice points in each cluster’s region R =
{
x(i)

}N

i=1,
where x(i) designates the coordinates of each cluster point, and N is the size of
the cluster. Least squares is equivalent to minimising the energy

E =
1
N

∑

i=1

∥
∥v(i) − Ax(i) + v0

∥
∥2

. (3)

where v(i) = v(x(i)) (i.e. the value of the velocity at the cluster point x(i)).
Optimising with respect to v0 we obtain

v0 = A
〈
x
〉 − 〈

v
〉

, (4)

where
〈 · · ·〉 denotes averaging over the points in the cluster.

Substituting the optimal value of v0 into the energy and differentiating with
respect to A, we can compute A using

A = WT V−1 (5)

where
W =

1
N

∑

i=1

(
x(i) − 〈

x
〉) (

v(i) − 〈
v
〉)T

V =
1
N

∑

i=1

(
x(i) − 〈

x
〉) (

x(i) − 〈
x
〉)T

.

To be able to reconstruct the flow field, we store v0 and the contents of A for each
cluster. Retrieving the field’s velocities then simply involves applying equation
(2).

2.3 Topology Display

Streamlines are generated in the same way as steady flow streamlines, but they
must be interpreted as transient in time as they do not result from steady flow.
Used in conjunction with clustering, however, they can be used to convey the
overall topology of the field.

After clusters have been formed from the flow field, streamlines are grown
from equally spaced points throughout the image and stored in a streamline
array. Each streamline passes through one or several clusters, and this is recorded
in a list. A streamline “correlation” matrix Ccluster is then built by computing
the ratio between common clusters occupied by streamlines and the total number
of clusters spanned by each streamline:

Ccluster(e, v) =
τcluster(e, v)
γcluster(e)

(6)
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where e, v are streamline array indices, τcluster(e, v) is the number of clusters
occupied by both e and v and γcluster(e) is the total number of clusters occupied
by streamline e.

The most representative streamlines can then be selected by setting a maxi-
mum streamline correlation Tcluster(e), the value of which is interactively chosen
by the user. This is defined as:

Tcluster(e) =
N∑

v=1
v �=e

Ccluster(e, v) (7)

where N is the total number of streamlines in the streamline array.

3 Results and Discussions

The proposed method was applied to 3D flow through the human heart simulated
from a CFD model [13]. The model after mesh processing contained 54,230
nodes and 41,000 cells. A total of 16 meshes representing the LV across the
complete cardiac cycle were generated from the original image data. In order to
permit CFD simulation, it was necessary to increase the temporal resolution of
the model. This ensured that none of the constituent cells underwent excessive
deformation or displacement between adjacent time steps. To this end, cubic
spline interpolations were performed to generate a total of 49 meshes across the
cardiac cycle. The Navier-Stokes equations for 3D time-dependent laminar flow
with prescribed wall motion was solved using a finite-volume based CFD solver -
CFX4 (CFX international, AEA technology, Harwell). The blood was treated as
an incompressible Newtonian fluid with a constant viscosity of 0.004 Kg/(ms).
The simulation was started from the beginning of systole with the pressure of
the aortic valve plane set to zero and with the mitral valve plane treated as a
non-slip wall. At the onset of diastole, the aortic valve was closed by treating
it as a solid wall, whilst the mitral valve was opened by using a combination of
pressure and flow boundaries.

As can be seen in Figure 2, the choice of the maximum total correlation is
important for the rendering result. If that value is too low, this results in too
few streamlines being selected and flow features being missed (Figure 2(c)); if
the value is too high, the display is cluttered by excessive streamlines (Figure
2(a)). This visualisation method was also applied along the time series data of
the same dataset. The previous results depict the flow during diastole showing
flow through the mitral valve, as shown in Figure 3. The proposed method was
also applied to 2D in vivo MR velocity data acquired with sequential examina-
tion following myocardial infarction using a Marconi whole body MR scanner
operating at 1.5T. Cine phase contrast velocity mapping was performed using
a FEER sequence with a TE of 14ms. The slice thickness was 10mm and the
field of view was 30-40cm. The dataset has a temporal resolution of 45ms and
the diastolic phase is covered in about 5-10 frames, five of which are shown here.
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Fig. 2. Effect of interactively changing the maximum total correlation thresh-
old. (a) No threshold - all streamlines selected. (b) Tcluster(e)MAX = 20;
(c) Tcluster(e)MAX = 10; (d) Tcluster(e)MAX = 5, the smaller vortex is now invisi-
ble.

Fig. 3. Simplified streamline rendering of 3D simulated flow inside the human cardiac
left ventricle. Time samples 9 to 16 of a set of 33.

The dataset was denoised using the restoration scheme described in [14]. Fig-
ure 4 shows a comparison between our automatically selected streamlines and
arrow plots overlayed on the corresponding conventional MR images. In order
to quantify the error introduced by the clustering process we measured the root-
mean-square difference between the original velocity field and that reconstructed
by the cluster gradients using equation (2). The results are plotted in Figure 5
for clustering of the 12th frame (540ms) of the 2D in vivo dataset and time
sample 12 of the 3D simulated dataset. The number of clusters used to produce
all streamline plots in this paper was 10 for both datasets. The size of the re-
gion of interest was 3536 pixels and 47250 voxels for the 2D and 3D datasets,
respectively.
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Fig. 4. Flow pattern within the left ventricle of a patient following myocardial infarc-
tion, from 450ms to 630ms after onset of ECG R wave, depicting vortical flow rendered
by streamlines selected by clustering (top row) and 2D arrows where arrow size is pro-
portional to velocity magnitude (bottom row). A 3-spaced grid was used to select the
arrow data.

Fig. 5. Root mean square error between original and cluster velocity predicted from
gradients (see text) for the 2D frames of Figure 4 (left) and 3D simulated time samples
of Figure 3 (right).

4 Conclusion

We have presented a novel method for velocity MR flow simplification and dis-
play. Flow simplification is achieved by clustering, where each cluster contains
points with similar local linear approximation gradients. This ensures that each
cluster encloses points sharing relevant flow features. Streamlines are then gen-
erated over the flow field and selected using a measure of inter-streamline cluster
overlap, interactively thresholded. The rendered streamlines depict the impor-
tant features of the flow and present the observer with an overview of the general
flow topology of the field.
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