
Using Semantic Web Technology to Automate Data Integration in Grid and Web
Service Architectures

Martin Szomszor, Terry R. Payne and Luc Moreau
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK

{mns03r, trp, L.Moreau}@ecs.soton.ac.uk

Abstract

While the Grid and Web Services have helped us support
heterogeneous resource access through the use of service
oriented architectures, they have not addressed the issue of
heterogeneous data representation. Since service providers
often describe their service interfaces using different data
models than those assumed by the client, it is common for
additional processing to be required to compensate for the
mismatch in data formats. By utilising technology from
the Semantic Web, we are able to augment existing Web
Service systems with middleware to automatically perform
data harmonisation when a syntactic mismatch occurs. To
achieve this, we have developed a mapping language which
can be used to annotate XML data structures with OWL con-
cepts and properties, a Mapping Language Engine to imple-
ment this language, and a Dynamic Web Service Invocation
component to execute Web Services.

1 Introduction

Web Services are software components designed to sup-
port interoperable machine to machine interaction over a
network. By defining standard languages to present soft-
ware interfaces, such as WSDL [6], and protocols that de-
scribe interaction mechanisms, it is possible for comput-
ers to communicate across organisational boundaries from
a range of heterogeneous platforms. This benefit has been
noted by both the Grid computing and eBusiness commu-
nities who have adopted Web Services as a fundamental
building block for the development of large scale service-
oriented architectures [8]. In these systems, it is often desir-
able to integrate disparate resources, for example, through
the creation of a Virtual Organisation on a Grid, or through
Enterprise Application Integration in eBusiness. During
such a collaboration of resources, it is necessary for partic-

ipants to exchange information in a format that is mutually
intelligible. Given the wide range of heterogeneous data
models used by service providers and service consumers, it
cannot be assumed that data formats are compatible. There-
fore, additional processing is required to integrate compo-
nents using different syntactic structures, a term we refer
as syntactic mediation. While this process can be specified
manually, either through the definition of data transforma-
tions or the creation of bespoke mediator components, it is
desirable to automate it because it will save users effort and
allow them to compose services without concern for data
incompatibilities. To achieve this, we propose to utilise Se-
mantic Web technology.

The Semantic Web [3] is an extension of the existing Web
that aims to support the description of Web resources in
formats that are machine understandable. On the Seman-
tic Web, resources are given well defined meaning by an-
notating them with concepts and terminology that correlate
with those used by humans. This can be achieved through
the use of ontologies [9], providing a conceptual model that
is common to all but independent of concrete representa-
tion. Therefore, to provide a framework that supports the
automated mediation of syntactic structures, ontologies can
be created that describe information models at a conceptual
level, and used as a common vocabulary of terms for the
exchange of data.

To focus our work, we examine a common service inter-
action from a bioinformatics Grid application. We identify
where syntactic incompatibility occurs and why automated
mediation is desirable. We then show the benefits of us-
ing ontologies to describe XML data structures and how this
link can be specified using a mapping language. There fol-
lows a description of our mapping language and examples
of how it can be used to annotate XML data structures. We
then present our Mapping Language Engine which imple-
ments the mapping language and performs translations be-
tween XML data and OWL concepts. Finally, we show how

our Mapping Language Engine can be incorporated with
our Dynamic Web Service Invocation component to create
a system that performs syntactic mediation between Web
Services using different data representations.

This paper is organised as follows: Section 2 introduces
our bioinformatics use case, Section 3 presents the theory
behind using semantic annotations, and Section 4 describes
our mapping language, the Mapping Language Engine and
how it is combined with the Dynamic Web Service Invoker.
Section 5 reviews related work before we conclude and
show further work in Section 6.

2 Motivation - Bioinformatics Use Case

Bioinformatics is the application of computational tech-
niques to the management and analysis of biological infor-
mation. With the collection and storage of large quanti-
ties of genomic and proteomic data, coupled with advanced
computational analysis tools, a bioinformatician is able to
perform experiments and test hypothesis without using con-
ventional ‘wet bench’ equipment - a technique commonly
referred to as in silico experimentation. To support this kind
of science, a large collection of databases and tools has been
developed to provide bioinformaticians with access to mas-
sive amounts of biological data and powerful computational
software.

The MYGRID 1 project provides an open-source Grid
middleware that supports in silico biology. Using a service-
oriented architecture based on Web Service standards such
as WSDL and UDDI [1], a complex infrastructure has been
created to provide bioinformaticians with a virtual work-
bench with which they can perform biological experi-
ments. Access to data and computational resources is pro-
vided through Web Services which can be composed using
the workflow language XSCUFL 2 and executed using the
FREEFLUO 3 enactment engine. The biologist is provided
with a user interface (Taverna4) which presents the services
available, enables them to create and view workflows graph-
ically, execute them, and view the results.

For our use case, we examine a common bioinformat-
ics task: retrieve sequence data from a database and pass
it to an alignment tool to check for similarities with other
known sequences. According to the service-oriented view
of resource access adhered to by MYGRID, this interaction
can be modelled as a simple workflow with each stage in
the task being fulfilled by a Web Service.

Many Web Services are available to retrieve se-
quence data. For our example, we use one available
at XEMBL http://www.ebi.ac.uk/xembl/

1http://www.mygrid.org.uk
2http://taverna.sourceforge.net/docs/xscuflspecification.html
3http://sourceforge.net/projects/freefluo/
4http://taverna.sourceforge.net/

DDBJ-XML

Accession
Number

XEMBL

Sequence
Data

NCBI-Blast

Blast
Results

Get Sequence Data

Sequence Alignment

Figure 1. A simple bioinformatics task: get
sequence data from a database and perform
a sequence alignment on it.

and another at DDBJ-XML
http://xml.ddbj.nig.ac.jp/index.html.
To obtain a record, an accession number is passed as
input and an XML document is returned. These documents
essentially contain the same data, namely the sequence
data as a string (e.g. atgagtga...), references to
publications, and features of the sequence (such as the
protein translation). However, the format returned by each
provider is different - XEMBL returns a BSML formatted
document5 and DDBJ returns a document using to their
own custom format6.

The next stage in the workflow is to pass the sequence
data to an alignment service such as the BLAST service at
NCBI7. This service can take a string of sequence data as
input and return the result set in XML. We show this simple
workflow in Figure 1.

Intuitively, a bioinformatician will view the two se-
quence retrieval tasks as the same type of operation, ex-
pecting both of them to be compatible with the NCBI Blast
service. However, when plugging the two components to-
gether, additional information must be provided to specify
how data is extracted from one data structure and passed
into the next. This could be achieved using a data trans-
formation language such as XSLT [7] or XQUERY [4], but
it would require the manual specification of all possible
transformations. For n compatible data formats, (n − 1)n
transformations are required for maximum interoperability.
Also, when a new data type is introduced, mappings to and

5http://www.ebi.ac.uk/xembl/dtd/BSML2 2.DTD
6http://getentry.ddbj.nig.ac.jp/xml/DDBJXML.dtd
7http://www.ncbi.nlm.nih.gov/BLAST/

Sequence_Data

has_feature
sequence
has_reference
description
accession_id

BSML_Sequence_Data

database_cross_reference
date_last_updated
date_created

DDBJ_Sequence_Data

molecular_Form
locus

Sequence_Feature

location

Feature_CDS

translation
product
protein_id

Feature_Source

lab_host
isolate
mol_type
organism

Reference

authors
journal
title

Sequence_Location

start
end

has-reference

has-feature

location

Key:
= Subconcept

= Object Property

Figure 2. An ontology to describe sequence
data. See http://www.ecs.soton.ac.uk/
˜mns03r/ont/Sequence for full OWL descrip-
tion.

from all other compatible types would have to be specified.
Finally, users are not interested in the details of the service
interaction; they prefer them to be hidden so they can focus
on the scientific problem.

We propose an architecture in Section 4 that utilises Se-
mantic Web technology to enable the automated mediation
of syntactic structure between Web Services. By annotating
XML structures with ontology concepts and properties, de-
scribed in Section 3, we are able to automatically integrate
syntactically incompatible services.

3 Semantic Annotations

In this section we show how an ontological definition of
a data format can be used to integrate data structures passed
between Web Services. We continue using the bioinformat-
ics services presented in Section 2. This example is centred
around the concept of some ‘sequence data’. We have de-
vised a simple ontology to express this information, which
is shown in Figure 2. The main concept, Sequence_Data

, has the datatype property sequence (denoting the string
of sequence data), description (a text annotation) and
accession_id (unique id). Each sequence has a number
of references which is represented by the has-reference

object property type and a number of features, represented
by the has-feature object property. There are a num-
ber of sequence features, we show two common ones in
this example; feature_source (where and how the se-
quence was gathered), and feature_CDS (which shows
the protein sequence translation and id). Since BSML
format and DDBJ format also contain additional infor-
mation on the sequence, we introduce subconcepts called
BSML_Sequence_Data and DDBJ_Sequence_Data.

When examining the two services presented by XEMBL
and DDBJ, we can consider their input and output to
be similar; each take a sequence data accession id as
input and both return some sequence data. To be
more specific, the XEMBL service returns the concept
BSML_Sequence_Data and the DDBJ service returns the
concept DDBJ_Sequence_Data . The next service in the
workflow, NCBI Blast, takes some sequence data as in-
put, namely an individual of type Sequence_Data with
the sequence property type specified. Given that the
BSML_Sequence_Data and DDBJ_Sequence_Data con-
cepts are both subsumed by the Sequence_Data concept,
i.e. the Sequence_Data concept is considered more gen-
eral, we say that the output from both of the sequence data
retrieval services is semantically compatible with the input
to the BLAST service. However, the services are not syntac-
tically compatible since the output dataset cannot be passed
directly as input to the BLAST service. Therefore, a stage
of syntactic mediation is required to extract data from one
dataset and transform it to create a new dataset.

To automate the process of syntactic mediation, we re-
quire mappings from concrete XML structures to conceptual
ontology structures. To enable this specification, we have
developed a mapping language, presented in Section 4.1,
which can be used to specify mappings between XML and
OWL [12]. Partial mappings for the two sequence retrieval
services is shown in Figure 3. These statements show how
the sequence data and accession id can be retrieved from the
XML data structure and used to create new OWL concepts.
A full mapping for each can be found online8. Due to their
complexity, they cannot be listed in full within this paper.

When using OWL concepts and properties to annotate an
XML data structures, we do not require mappings between
all compatible formats. Instead, each data format requires
only one mapping to the ontological specification. With this
approach, the number of mappings required for each com-
patible data format has a complexity of O(n) instead of the
quadratic complexity discussed in Section 2. It is also more
convenient when adding new formats to an existing system
since only one mapping is required to achieve maximum
interoperability.

8http://www.ecs.soton.ac.uk/˜mns03r/mapping/bsml mapping.mp and
http://www.ecs.soton.ac.uk/˜mns03r/mapping/ddbj mapping.mp

{xml}
bsml:Bsml(
 bsml:Definitions(
 bsml:Sequences(
 bsml:Sequence[ic-acckey = $accession](
 bsml:Seq-data($sequence)
))))
<->
{owl}
ont:BSML_Sequence_Data(
 ont:accession_id($accession),
 ont:sequence($sequence),
)
USING
ont for <http://www.ecs.soton.ac.uk/~mns03r/ont/Sequence#>,

bsml for <http://www.ecs.soton.ac.uk/~mns03r/schema/BSML>

(a) BSML to Sequence Data mapping

{xml}
ddbj:ddbjxml(
 ddbj:accession($accession),
 ddbj:sequence($sequence)
)
<->
{owl}
seq:DDBJ_Sequence_Data(
 seq:accession_id($accession),
 seq:sequence($sequence),
)
USING
seq for <http://www.ecs.soton.ac.uk/~mns03r/ont/Sequence#>,
ddbj for <http://www.ecs.soton.ac.uk/~mns03r/schema/DDBJ#>

(b) DDBJ to Sequence Data mapping

Figure 3. Partial mappings from XML to OWL

for Sequence Data.

4 Architecture

In this section we present the grammar and semantics
of our mapping language before showing the design of our
Mapping Language Engine and its integration with out Dy-
namic Web Service Invocation component.

4.1 Mapping Language

Our mapping language can be used to specify two types
of mapping: ontology concept instances to XML and XML

to ontology concept instances. The grammar for the lan-
guage is given in Figure 4 using standard BNF notation.
A mapping is composed of a source type ({type}), source
expression, a mapping symbol (<->), a destination type, a
destination expression and set of using statements that map
URLs to prefixes. An expression can be one of five kinds:
〈elem〉, 〈constant〉, 〈var〉, 〈split〉 or 〈concat〉. An ele-
ment expression corresponds to a concept or property type
name for an ontology concept instance or the element name
within XML document. The contents of an element, con-
tained within parenthesis, is a sequence of further expres-
sions delimited by a comma. These sub-expressions cor-

‚mappingÚ ::= {‚typeÚ} ‚expÚ ‚mapsymÚ {‚typeÚ} ‚expÚ ‚usingÚ |

 {‚typeÚ} ‚expÚ ‚mapsymÚ {‚typeÚ} ‚expÚ |

‚typeÚ ::= xml | owl

 ‚expÚ ::= ‚elemÚ [‚attr*Ú](‚exp*Ú) |

 ‚elemÚ (‚exp*Ú) |

 ‚elemÚ [‚attr*Ú](‚exp*Ú)‚elliÚ |

 ‚elemÚ (‚exp*Ú)‚elliÚ |

 ‚concatÚ (‚atom*Ú)|

 ‚concatÚ (‚atom*Ú)‚elliÚ|
 ‚splitÚ (‚atom*Ú)|

 ‚splitÚ (‚atom*Ú)‚elliÚ|
 ‚constantÚ |

 ‚varÚ

‚exp*Ú ::= ‚expÚ |

 ‚exp*Ú , ‚expÚ

‚attrÚ ::= ‚qnameÚ = ‚varÚ |

 ‚qnameÚ = "‚constantÚ"
‚attr*Ú ::= ‚attrÚ |
 ‚attr*Ú , ‚attrÚ

‚prefixÚ ::= ‚charsÚ

 ‚constantÚ ::= "‚charsÚ"

 ‚atomÚ ::= ‚constantÚ |
 ‚variableÚ

 ‚atom*Ú ::= ‚atomÚ |

 ‚atom*Ú , ‚atomÚ

 ‚elemÚ ::= ‚qnameÚ
 ‚qnameÚ ::= ‚charsÚ : ‚charsÚ |

 ‚charsÚ

 ‚varÚ ::= $‚charsÚ

‚mapsymÚ ::= <->
 ‚elliÚ ::= ...
 ‚concatÚ ::= concat
 ‚splitÚ ::= split

 ‚usingÚ ::= USING ‚binding*Ú

 ‚bindingÚ ::= ‚prefixÚ for < ‚urlÚ >
‚binding*Ú ::= ‚bindingÚ |

 ‚binding*Ú , ‚bindingÚ

Figure 4. The mapping language grammar in
BNF notation.

respond to child nodes of the parent element (for XML) or
property types of the parent concept (for OWL). If the sub-
expression is a variable, this denotes that the text child of
the parent is bound to the the variable (prefixed by a $ sym-
bol). Hence, the value of a variable within the source ex-
pression is mapped to the corresponding variable value in
the destination expression. Constants may be specified for
elements in the destination expression to define element or
concept constructions that are created independently of the
inputs. A list of attributes may also be specified for an XML

mapping by enclosing them within square brackets after the
element name. An attribute expression may either assign a
variable to an attribute value or specify the condition that
an element must have an attribute with a specific value to
be valid. An example of the variable assignment attribute
construct can be found in Figure 3(a) where the accession
id is extracted from an attribute named ic-acckey in the
<bsml:Sequence> element.

The 〈split〉 and 〈concat〉 expressions may be used in
source and destination expressions respectively. The 〈split〉
function takes three arguments; a variable, a constant and
another variable. When applied to the text of an XML ele-
ment or the value of an OWL datatype property, the string
is split into two according to the delimiter specified in the
second argument and assigned to the two variables speci-
fied. If more than one match is found, the string is broken
at the first instance of the delimiter. The 〈concat〉 expres-
sion can be used in destination expressions to indicate the
concatenation of constants or variables.

We include the 〈elli〉 (ellipsis) construct to enable the
processing of lists. This can be utilised when many in-
stances of the same element within XML are to be mapped to
many concept relations in the ontology (or vice versa). It is
also possible to use the 〈elli〉 suffix with the 〈concat〉 oper-

Jena

DOM4J

Mapping Language Engine

Parser

Executor

owl

xml

Mapping Input Data

Output Data

Data Model

Figure 5. The mapping language engine de-
sign.

ator to indicate multiple element values that map to a single
element. In both cases, the ellipsis construct preserves the
order of list elements. The inspiration for the ellipsis con-
struct came from the Scheme [10] macro language where it
is used for list processing in a similar way.

4.2 Mapping Language Engine

Our Mapping Language Engine (MLE), pictured in Fig-
ure 5, is a JAVA component built on the Jena Framework9

and Dom4J10. To carry out a transformation, the MLE can
be passed a mapping statement and a source data structure.
A source data structure may be an XML document (using
OWL serialisations for ontology concepts) or a reference
to an individual within a Jena Ontology Model. The MLE

parses the mapping expression and builds a list of variable
bindings from the source expression. The destination ex-
pression is then evaluated and a new data structure is cre-
ated. The result can be returned in either XML (again using
OWL syntax for the serialisation of ontology concepts) or
as a reference to a newly created individual within the Jena
Ontology Model.

Because we use Jena to store our OWL models, we can
take advantage of the in-built reasoning it provides, the most
useful of which is subsumption. Subsumption, usually de-
noted as C � D, is the reasoning process through which
the concept denoted by D (the subsumer) is checked to see
if it is more general that the concept denoted by C (the
subsumee). With Jena, this task is performed automatically
when new concepts and individuals are introduced into the
current Jena model. In our example, we see that the re-
sults from the first stage of the workflow (i.e. the sequence
retreival services) can be BSML_Sequence_Data or
DDBJ_Sequence_Data concepts. When the MLE cre-
ates a new individual to represent the service output from
either of these services, it uses the approriate concept (ie.

9http://jena.sourceforge.net/
10http://www.dom4j.org/

BSML or DDBJ sequence data). When inserted into the cur-
rent model, Jena will automatically classify an individual of
either concept as Sequence_Data too since it subsumes
both concepts. Therefore, when creating the XML data set
for input into the NCBI Blast service, either concept type is
valid and the sequence data can be extracted. With this ap-
proach, users have the freedom to extend existing ontology
definitions with their own more specific concepts without
breaking compatibility with other more general data mod-
els.

4.3 Service Invocation

To enable the execution of Web Services, we have cre-
ated a Dynamic Web Service Invoker (DWSI). The DWSI

takes an XML representation of the WSDL input and the ser-
vice endpoint and invokes the service. The results of the
service are returned in XML. In Figure 6, we show how the
DWSI can be combined with the MLE to create a system that
automatically mediates between different representations of
the same data. This diagram shows one possible execution
of our bioinformatics use case. In this instance, the XEMBL
service is used to retrieve the sequence data after which it
is passed to the NCBI Blast service for analysis. The first
step is shown in the bottom left of the diagram where the ac-
cession id is passed to the XEMBL service. The result is a
BSML formatted representation of the sequence data. This
is then passed to the MLE, along with Mapping 1, where it
is translated into a BSML_Sequence_Data concept and
inserted into the Jena model. The uppermost box in Fig-
ure 6 shows a snapshot of the Jena model with the datatype
properties holding example data. To enable the invocation
of the NCBI Blast service, the MLE takes Mapping 2 and
creates an XML representation of the sequence data that is
compatible with the blast service. This XML is then passed
to a new instance of the DWSI which invokes the service.
Finally, the results of the blast service are returned by the
DWSI.

We have tested the performance cost of our preliminary
prototype against hard coded XSLT transformations. On av-
erage, an XSLT transformation takes 30ms where our MLE

takes approximately 190ms - six time more processing time
to perform the same translation. We consider this an accept-
able cost considering the high level of interoperability our
system supports. This cost is also a small fraction of the
network time required in a Web Service invocation which is
usually around 5000ms or more.

5 Related Work

OWL-S [2] is a set of ontology definitions designed to
capture the behaviour of services. The top level service on-
tology presents the service profile, a description of what the

BSML_Sequence_Data

accession_id AB000059

sequence atgagtgat...

description Feline panleukopenia

database_cross_ref GOA:Q84372

database_cross_ref UniProt/TrEMBL:Q84372

date_last_updated
date_created

21-JAN-1999

12-JAN-1997

Feature_CDS

translation MSDGAVQPDGG..

product capsid protein 2

protein_id BAA19020.1

Sequence_Location

start
end

1

1755

Reference

authors Horiuchi M.

journal Unpublished Ref

titile Evolutionary pattern..

Jena

XEMBL

Dynamic Web
Service Invoker

Service invoked
using SOAP over HTTP

NCBI_Blast

Dynamic Web
Service Invoker

Mapping
Language

Engine

Mapping 1

BSML{xml}
<->
BSML_Sequence_Data{owl}

Mapping 2

Sequence_Data{owl}
<->
NCBI_Blast_In{xml}

has-featurehas-reference

location

XML from the XEMBL service is
translated by the Mapping Language
Engine into a BSML_Sequence_Data

concept using Mapping 1

AB000059 Blast Result

Service invoked
using SOAP over HTTP

The Mapping Language Engine
extracts the 'sequence'

data property type from the
BSML_Sequence_Data concept

using Mapping 2 and creates the
xml input for the NCBI_Blast Service

Sequence Data accesion id
is passed to the XEMBL service

XML output from the XEMBL
serivce is passed to the Mapping

Language Engine

The BSML_Sequence_Data
concept is added after

execution of the XEMBL service

The Mapping Language Engine
inserts new concepts into the

Jena model

A blast result is obtained
from the NCBI_Blast service

Figure 6. An example of how our Mapping Language Engine and Dynamic Web Service Invoker can
be combined to automatically perform syntactic mediation.

service does (e.g. that a service is used to buy a book).
The service is described by the service model, which tell
us how the service works (e.g. a book buying service re-
quires the customer to select the book, provide credit card
details and shipping information and produces a transaction
receipt). Finally, the service supports the service grounding
which specifies the invocation method for the service. In
the service grounding, XSLT is used to describe how OWL

structures are converted to XML SOAP messages. This es-
sentially performs the same task as our mapping language,
but since it is based on transforming the XML serialisation of
the OWL concepts, it is unable to utilise any reasoning tech-
niques. For example, if we expressed the mapping from an
instance of the Sequence_Data concept to the BLAST
service input using XSLT, it would not be able to transform
an instance of the BSML_Sequence_Data concept be-
cause the tag names used in its XML serialisation would be
different.

The Web Services Modelling Ontology (WSMO) [13],
adopts a different approach to OWL-S. They also intend to
provide a framework to support automated discovery, com-
position, and execution of Web Services based on logical
inference mechanisms, but with a specific focus on En-

terprise Application Integration. Conceptually, WSMO is
based on an event driven architecture so services do not di-
rectly invoke each other, instead goals are created by clients
and submitted to the WSMO infrastructure which automat-
ically manages the discovery and execution of services.
Like OWL-S, WSMO uses ontologies to define formal mod-
els of information that have explicit semantics. However,
the WSMO framework imposes a standardised message for-
mat (WSML) which WSMO participants use to communicate
with each other. Message adapters can then be placed in-
front of existing components (such as WSDL Web Services
and databases) to deal with the translations to and from tra-
ditional syntactic data structures. An example of such an
adapter can be found in Section 5.3 of [11] which performs
translations between WSML and Universal Business Lan-
guage (UBL). With this approach the syntactic interface to
a business service is hidden because its interface is exposed
only through the WSMO framework. As such, explicit map-
pings from conceptual models to syntactic structures are not
required.

The SEEK project [5] also address the problem of het-
erogeneous data representation in service oriented architec-
tures. Within their framework, each service has a number

of ports which expose a given functionality. Each port ad-
vertises a structural type which represents the format of the
data the service is capable of processing. If the output of
one service port is used as input to another service port, it
is defined as structurally valid when the two types are the
same. Each service port can also be allocated a semantic
type which is defined by a reference to a concept within an
OWL ontology. If two service ports are plugged together,
they are semantically valid if the output from the first port
is subsumed by the input to the second port. Structural types
are linked to semantic types by a registration mapping using
a custom mapping language based on XPATH. If the con-
catenation of two ports is semantically valid, but not struc-
turally valid, an XQUERY transformation can be generated
to integrate the two ports, making the link structurally fea-
sible.

6 Conclusions and Further Work

In this paper, we have used a bioinformatics Grid ap-
plication to show the problem of data integration in open,
service oriented architectures. We have identified a typi-
cal scenario where different syntactic structures are used by
service providers, and how this effects the workflow pro-
cess. After presenting the motivation behind a framework
to support the automated mediation of syntactic structures,
we describe our solution, which is based on the use of Se-
mantic Web technology. By mapping XML data structures
to OWL concepts and properties, we can describe service in-
puts and outputs according to their conceptual types. When
services are then plugged together, as in our use case where
sequence data is retrieved from a database and passed to
an alignment service, we can automatically transform data
structures between different formats.

In terms of our mapping language, it would be useful to
incorporate regular expression support for string matching.
Our current language only provides a simple split opera-
tor that can be used to break down atomic string values into
separate components. With regular expression support, we
could allow users to specify more complex string manipu-
lation functions.

Our current architecture assumes that mappings are
known, therefore, it would be beneficial to create a mapping
repository which exposes a query interface allowing users to
register new mappings, discovery new mappings and iden-
tify the semantic type of a given XML fragment. Once such a
registry has been implemented, we can integrate it with out
MLE and DWSI so the appropriate mappings are retrieved
automatically.

Finally, our last task is to formalise the link between syn-
tactic type systems and the description logic models that un-
derpin the OWL reasoning methods. We believe that a sound
understanding of the problem will enable us to support a
generic solution that is expressive enough to cope with a
wide range of complex data structures.

7 Acknowledgment

This research is funded in part by EPSRC myGrid
project (reference GR/R67743/01).

References

[1] UDDI technical white paper, September 2000.
[2] OWL-S: Semantic markup for web service. Technical re-

port, The OWL Services Coalition, 2003.
[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic

web. Scientific American, pages 34 – 43, 2001.
[4] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,

J. Robie, and J. Simeon. Xquery 1.0: An XML query lan-
gauge. Technical report, W3C, 2003.

[5] S. Bowers and B. Ludascher. An ontology-driven frame-
work for data transformation in scientific workflows. In
Intl. Workshop on Data Integration in the Life Sciences
(DILS’04), 2004.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (WSDL) 1.1,
March 2001. W3C.

[7] J. Clark. XSL transformations (XSLT) version 1.0. Techni-
cal report, W3C, 1999.

[8] I. Foster, C. Kesslemann, J. M. Nick, and S. Tuecke. The
physiology of the grid, an open grid services architecture
for distributed systems integration, June 2002.

[9] T. R. Gruber. A translation approach to portable ontology
specification. Knowledge Acquisition, (5):199–220, 1993.

[10] R. Kesley, W. Clinger, and J. Rees. Revised (5) report on the
alogrithmic language scheme. Higher-Order and Symbolic
Computation, pages 7 – 105, 1998.

[11] M. Moran. D13.5v0.1 WSMX implementation, July 2004.
WSMO Working Draft.

[12] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web
ontology language semantics and abstract syntax. Technical
report, W3C, 2004.

[13] D. Roman, H. Lausen, and U. Keller. D2v1.0. web ser-
vice modeling ontology (WSMO), September 2004. WSMO
Working Draft.

