
STATE-BASED SEQUENCING: DIRECTING THE EVOLUTION OF
MUSIC

Michael O. Jewell, Mark S. Nixon and Adam Prügel-Bennett
School of Electronics and Computer Science

University of Southampton, Highfield, Southampton, SO17 1BJ, UK

ABSTRACT

Traditional approaches to automatic music composition
do not take into account the guided nature of music, in-
stead augmenting existing material or generating scores
based on provided seed parameters. Furthermore, these
approaches often use a single algorithm to create a piece,
where it is more natural to split the composition process
into separate musical elements. Our new State-Based Se-
quencer counters both of these limitations, using an agent-
based collection of algorithms combined with a technique
to provide motivation to the resultant music. In this paper,
we describe the methodology behind this system, and pro-
vide early results from an application of the framework.

1. INTRODUCTION

Algorithmic techniques have been used to create indepen-
dent pieces of music using rule-based methods even with-
out the need for computers. They were used as far back
as 1026 when Guido d’Arezzo assigned pitches to vowel
sounds[5] and, more recently, when Ron Pellegrino cre-
ated music using light hitting wall-mounted photoresis-
tors. However, as computers are now sufficiently power-
ful, algorithms are often carried out in software.

The burst of computational composing algorithms be-
gan with Arnold Schönberg at the start of the 20th century,
with Webern and his successors forming serialism from
these roots. Iannis Xenakis was a pioneer who, from his
‘succès du scandale’ Metastaseis in 1955, produced mul-
timedia creations based on probability, sonic phenomena,
texture, and random generation, and this work contributed
to the stochastic approach of composition[3]. Further ap-
proaches, such as Voss and Clarke’s fractal techniques[6],
McAlpine’s cellular automata method[5], and Burton’s ge-
netic algorithm systems[1] followed, and these make up a
collection of ‘stock’ composition methodologies.

However, these existing techniques have typically only
been applied to individual elements of musical composi-
tion. For example, given a melody and rhythm, an al-
gorithm might be used to create suitable chord patterns.
Without this a priori knowledge, it is difficult to provide
a structure or direction to the resultant music. All human-
composed music has an inherent sense of motivation, whe-
ther it be how a composer feels about a subject, or the pur-
pose for which a piece is written, and this can be explored
using new approaches.

Our new distributed approach treats the existing algo-
rithmic techniques as building blocks for the creation of a
music composition system, where different algorithms can
be plugged in for evaluation, while constraining the gen-
eration through the use of a directing media. Rather than
generating music with no prior information, a composer
model[4] is used to provide a priori information for the
algorithms, and a rich media ontology allows for the alter-
ation of these parameters at pertinent points in the bound
medium.

This paper is split into three key parts, which follow the
process of composing under the State-Based Sequencer.
The first describes the two representations that are required
before composition can occur, namely the composer rep-
resentation and the ‘OntoMedia’ ontological representa-
tion. The OntoMedia representation details the compos-
ing process itself and the agent framework that is used to
provide the middleware for the distribution of composi-
tion tasks. We then discuss the individual agents, showing
how each is tailored towards a certain aspect of the mu-
sic composition, and finally give some preliminary results
from some of the implemented agents and discuss how the
system will be developed further.

2. PREPARING FOR COMPOSITION

The State-Based Sequencer requires two elements before
it can proceed with composition: a marked up version of
the directing media, and a set of composer mappings (see
Figure 1). For the former, a representation conforming to
the OntoMedia ontology is used, while the latter specifies
the modifications that should be applied to the resultant
music when certain conditions arise.

2.1. The OntoMedia Representation

OntoMedia is being developed parallel to SBS, and pro-
vides the capability to mark up any media, including film,
radio, and books. The ontology supports the idea of time-
lines within a medium, as well as events that occur dur-
ing these timelines. Entities participate in these events,
and thus interactions between characters and objects can
be labeled (see Figure 2 for a graphical representation of
this). All events and entities are arranged hierarchically,
with a set of core events (gain, lose, introduce, and trans-
form) and a set of core entities (abstract item, physical
item, character, and location) describing the base level of

! " #$%&’(
) * +, " #

- $. / *

) * 0 , * #/ + 1%+$, 2

) * 0 , * #$34(
54/ 32#

1* " 3. 2+&%6 1%* +/

Figure 1. A high-level view of the State-Based Se-
quencer, showing the core elements of the framework.

information. For example, a character being threatened
would be represented by a gain of a physical or a mental
obstacle. This provides a significant amount of abstraction
- it may be effective to move into a minor key whenever
an obstacle is encountered.

Additionally, entities can have sets of actions that make
up their ‘motivations’. These specify, as is expected, the
actions that they wish to occur. These could range from
the gaining of an item (a subject finds a key) to a more
complex combination (a subject escapes from a room and
delivers an item). By examining the marked up medium,
it is then possible to determine if, and when, a character’s
motivations are satisfied. This is a fundamental event, and
often triggers a musical change.

Finally, the representation provides for detailed infor-
mation regarding locations. By way of an example, the
OntoMedia associated with a scene from the film The Ma-
trix concerns Room 303 of the Heart’s Hotel. The repre-
sentation makes it possible to specify that the events occur
in this room. Often the location is significant to the musi-
cal style that is selected, and this hierarchy allows a rich
description of this information.

2.2. The Composer Representation

While the OntoMedia representation provides a formal-
ised version of a directing medium, the composer repre-
sentation establishes the link between the medium and the
resultant music. A composer is defined as a set of pairs:
the first element specifying a situation within the directing
medium, and the second specifying what modifications
should be made to the soundtrack.

As an example, it may be the case that a certain com-
poser wishes to use saxophones whenever an event occurs
within a room with blue walls. The situation would be
defined in SeRQL (Sesame RDF Query Language), and
would produce all events in which a room with blue walls
occurs. The modification would specify that the probabil-
ity of a saxophone being chosen as instrumentation should

Figure 2. An illustrated markup of a scene from
Casablanca. Note the timeline containing important
events, which are then subdivided into actions with par-
ticipating entities.

be increased. The other parameters available for modifi-
cation are described in the agent discussion in section 3.

The hierarchy inherent in the OntoMedia representa-
tion can be used to powerful effect in the composer rep-
resentation. As stated earlier, a composer could introduce
a minor key when obstacles are encountered, or an en-
tire universe could have its own modifications. Having
individual composer representations provides the ability
to retain the character of human composers, and opens up
possible future research into automatic representation cre-
ation from prior works.

The combination of the two representations allows for
a translation of any media into a set of constraints that can
be manipulated by a composition system, while ensuring
that continuity is felt throughout the final piece.

3. THE AGENT FRAMEWORK

The composition system in SBS is built on top of the Light
Agent Framework (LAF) middleware, with individual ag-
ents handling seperate composing tasks. The framework
was created specifically to allow for simple agent imple-
mentations that can operate on a heterogeneous set of ma-
chines. At the centre of the framework is a router and,
when an agent is created, it connects to this and is there-
after accessible by other connected agents or applications.
Several agents can be available for a specific task and the
router will lock the next unlocked agent of the type re-
quested by the client. The selection process can also be
customised, so it is possible to pick the next available
agent on the node with the most resources.

In our system, every agent has a similar structure, shown
in Figure 3. This consists of two input ports, two output
ports, a parameter decoder, a result encoder, and the com-
posing algorithm itself. All of the ports contain XML,
with one input and one output corresponding to the land-
mark representation mentioned previously, and one input
and one output corresponding to a MusicXML[2] repre-
sentation of the music at that stage. MusicXML was cho-
sen for two reasons, namely its ability to describe the con-
tent of music in high detail (including accents, clefs, and
dynamic markings) and the availability of applications to
convert from MusicXML to other formats, both audio and
visual. MIDI, MuseData, and Humdrum were also consid-
ered, but are either less suitable for notation (in the case
of MIDI) or harder to parse (in the case of MuseData and
Humdrum).

The SBS composition system currently consists of seven
agents: tempo, pulse, instrumentation, key, chord, rhythm,
and melody. Of these seven, five use genetic algorithms
to produce the final results. The two which do not are
tempo and instrumentation, with tempo only using a ge-
netic approach when no tempo is provided or when one
cannot be easily calculated from event information, and
instrumentation using a mean-based technique. The ge-
netic approach to composing is recent, but is ideal for this
situation as there is never a single ‘perfect’ piece of mu-
sic. As such, having a population of scores represented as

! "#$%&’()

* +%+) , ’, %-. , / $0, %

1 , 23"’-45/ $0, %

6+50) +%72 8 32&/ 98 6

6+50) +%72 8 32&/ 98 6

Figure 3. The standard structure used to represent a mu-
sical agent

chromosomes allows for greater flexibility, with a fitness
value providing the results that are ‘most suitable’. The
seven composing agents, as well as the remaining agents
that are under development, are connected to one another
in the arrangement shown in Figure 4 using an agent graph
system. This monitors the input ports for required param-
eters and triggers the composing tasks automatically.

Providing the landmark and MusicXML ports at both
the input and output stages allows for incremental adap-
tation of both the music and the parameters that are re-
quired. As is evident in Figure 4, it is possible to add de-
tail to the music as the process progresses. Initially only
tempo markings are available (via the Tempo Agent), but
this is then built up by barlines (Pulse), staves for each part
(Instrumentation), key signatures (Key), chord markings
(Chord), and finally rhythmic information (Rhythm) and
pitch information (Melody). Some of these are also eas-
ily parallelised, especially the earlier agents such as pulse,
and the agent framework allows for several agents, each
working on one part of the final score.

It is also necessary to alter the landmark information as
the composition progresses, although only in a few cases.
At the tempo generation stage all information (such as
event locations) is in milliseconds, which is not an ef-
ficient measure for the successive agents. As such, the
tempo agent converts the landmark information from mil-
liseconds to beats, and passes this to the pulse agent. The
landmark port also allows for the future addition of mo-
tific information in a motif agent.

3.1. Histogram-Based Agents

Four agents in the SBS framework make use of a his-
togram approach to fitness evaluation, namely tempo, pulse,
instrumentation, and rhythm. In these cases the landmark
representation contains a set of possible choices, each with
a probability of occurring. To calculate the fitness of the
chromosome, a value is determined which ensures that the
options with the higher probabilities occur most often.

! " # $%

&’ () "

*+) ,-’ # " +,. ,/%+

0" 1

2 3%-4

5 31,3# 5 31,3#

6 " (%41 6 " (%41 6 " (%41 6 " (%41

7. (/4. ,/%+

5 " +4" -/+8

Figure 4. A structure for the distributed composition of
music. Future agents have dashed borders.

3.2. Tempo Agent

3.2.1. Outline

The first agent in the composition process is responsible
for specifying where tempo changes should be, and what
beats per minute values should be used. This stage has
less initial data than the others, as tempo is considerably
more likely to rely on the source medium than on prior
compositions for the material.

3.2.2. Implementation

The tempo agent makes use of the segmented structure
of the landmark file. Each segment can be handled in-
dividually, and hence easier cases can be optimized for
speed. First, segments that have exact tempos with no ex-
tra beats are processed. As it is not necessary to calculate
the BPM, they can be immediately converted into separate
landmarks (one per beat). Next, the agent handles seg-
ments that have no single tempo specified, but have beats
in place. In this case, a set of non-unary factors is calcu-
lated where the members coincide with the beat locations
on as many occasions as possible. For example, if beats
occurred at frame 30, 40, and 55, this set would contain 5
as the best factor, followed by 10. If any of these values
are present in the histogram, these are preferred, This is
then converted into a beats per minute value.

The third case is where a fuzzy tempo has been sug-
gested, i.e. ‘faster’ or ‘slower’. If any beats are present,
these are first converted into a list of factors, as stated pre-
viously. If there is a factor that provides a BPM corre-
sponding to the requirements, this is chosen. If no beats
are present, a genetic approach is used. A chromosome is
created with enough genes for the number of frames in the
segment, with each gene containing a Boolean value spec-
ifying whether a beat is present in that location. A popu-
lation is then created of random chromosomes, and this is
evolved until the tempo stabilizes into a value present in
the histogram.

Finally, segments with no tempo indications are han-
dled. This case is handled with a straightforward approach:

1. If there is a preceding tempo indication, this is car-
ried forward.

2. If there is no preceding tempo, but there is a suc-
ceeding tempo, this is brought backward.

3. If there is neither a preceding nor succeeding tempo,
the most probable BPM in the histogram is used.

3.3. Pulse Agent

3.3.1. Outline

Once a tempo is available, the pulse agent makes use of
the beat output combined with the pulse mappings for
each segment to generate suitable strengths for each beat.
The first beat of the bar (the downbeat) is where phrases
usually begin, so it provides anchors for the succeeding

agents. As the tempo agent reduces the landmarks from
frames to beats, this agent is much more suited to a ge-
netic algorithm, and so a form of pattern matching is used
to provide fitness measures.

3.3.2. Implementation

The chromosome of the pulse agent genetic algorithm con-
sists of a string of numbers, with each representing the
strength of the beat at that position. Hence, [1, 0, 1, 0] sug-
gests the first two bars of a standard 2/4 beat. There are
enough genes in each chromosome to accommodate the
whole of the section, which can be quite large for higher
tempos. As an estimate of the maximum, a 5 minute seg-
ment at 240bpm would have 1200 beats. However, the
tempo is usually closer to 120bpm and shorter note lengths
are used to suggest the faster speed.

Three operators are used in this agent, namely crossover,
mutation and sequence. Crossover operates in the tradi-
tional style, with a range of genes being swapped between
two chromosomes. Mutation is also based on the standard
mutation operator, with a random gene being changed to a
random value. The sequence operator, however, is unique
to this system, and is used to provide repetition. A range
is selected within the chromosome, from which a random
non-unary factor is chosen. A string of genes of this length
is then repeated throughout the section, with the genes se-
lected from the start of the range. Repetition is fundamen-
tal to the pulse, so an operator to promote it is ideal in this
situation.

The fitness function of the pulse agent is customized to
guide the GA towards a suitable solution. Working from
left to right, the beat options suggested by the composer
representation are compared to a substring that is as long
as the segment. For every gene that matches, 1/l is added
to that option’s score (where l is the length of the substring
- so 1 is a perfect match). If one or more matches are
exactly correct, the match that is most highly weighted is
chosen, and the weight added to the score. Otherwise, the
closest match is returned, and the score multiplied by the
weight is added. Hence, if only half the string is matched,
the score is halved accordingly.

3.3.3. Example

In this simple example, two options were available to the
genetic algorithm: [1, 0, 0.25, 0.75] and [1, 0, 1, 0], both
with equal weightings of 1. Applied to a chromosome of
length 16, the pulse in Figure 5 was produced with fitness
60.

�� ����
�

��
�

��
�

��
�

��
�

��
�

��
�

� �
Figure 5. A basic pulse produced by the pulse agent. The
accented beats indicate where the value of the pulse gene
is 1, while the crescendo contains two beats with pulse
values of 0.25 and 0.75.

Instrument Weighting
Piano 6
Violin 5
Flute 5
Oboe 4
Guitar 2
Trumpet 1

Table 1. A simple instrument/weighting mapping for a
segment.

3.4. Instrumentation Agent

3.4.1. Outline

The simplest agent in the framework, the instrumentation
agent selects the number of parts in the score and which
instruments should be assigned to each part. Each instru-
ment in the system can be weighted, and this mapping is
passed as a parameter to the agent.

3.4.2. Implementation

The implementation of the instrumentation agent is very
simple. The landmark representation provides a set of in-
strument weightings, and these are accumulated. From
this value the mean is found, and the instruments with
weightings greater than this are chosen for the score. For
example, given the instrument mapping in Table 1, x =
3.833, piano, violin, flute, and oboe would be selected for
the segment.

3.5. Rhythm Agent

3.5.1. Outline

The rhythm agent is the next logical step in the composi-
tion process. It uses the output from the pulse agent, and
determines the note lengths to use in the segment. This
agent is similar to the pulse agent in operation, again us-
ing a genetic algorithm to generate the final rhythm, but
is applied to each instrument rather than to the score in
general. This is the first case where the process can be
parallelized by part rather than by segment, and is hence
where the agent framework can be used to its full poten-
tial.

3.5.2. Implementation

The chromosome of the rhythm agent is closely tied to tra-
ditional note values. Each note length is assigned a double
value between 0 and 1 (1 for a semibreve, 0.5 for a minim,
and so on). The rhythm gene contains both this value and
a Boolean to denote whether the note should be sounded
or treated as a rest. The length of the chromosome is diffi-
cult to determine, as a rhythm that is entirely semiquavers
would be 8 times longer than a rhythm comprised of min-
ims. As such, a chromosome is reserved that can hold
enough semiquavers to cover the segment. Unfortunately
this can become very large, so a maximum size can be

specified to reduce the overhead of the algorithm. To im-
prove efficiency, only the section of the chromosome that
is of a suitable duration is scored.

The rhythm agent uses a similar set of operators to the
pulse agent, with the mutation altered to handle the ‘rest’
parameter of the rhythm gene. The fitness function is also
based on the same approach of weighted pattern matching,
although there are a few pertinent differences:

1. The duration of the chromosome is checked dur-
ing the evaluation stage, and only the portion that
is within the timescale of the pulse information is
examined. This prevents the need to examine all of
the genes within the chromosome.

2. The pattern weightings are multiplied by the value
of the pulse at the start of the pattern. For example,
if a pulse has a strength of 0.5 and the pattern in that
location is weighted as 1.5, 0.75 is added to the final
score. This guides the algorithm towards preferring
rhythms that begin on strong beats of the bar, while
allowing for some variation.

3.5.3. Example

Using the output from the pulse agent (see Figure 5, a
generated pulse), a rhythm was generated. For this ex-
ample, three options were available, namely [0.25, 0.125,
0.0625, 0.0625] (crotchet, quaver, semiquaver, semiqua-
ver), [0.25, 0.125, 0.125] (crotchet, quaver, quaver), and
[0.25, 0.0625, 0.0625, 0.125] (crotchet, semiquaver, semi-
quaver, quaver). The result of this test can be seen in figure
6.

�� ���������������� �
Figure 6. A rhythm generated using a set of rhythm seeds
and the pulse from the pulse agent.

3.6. Markov-Based Agents

The final 3 ‘core’ agents in the SBS system use a Markov
approach to fitness evaluation. These are agents that are
ideally suited to this technique, namely key, chord, and
melody. Key and chord both have traditional rules for
progression, such as relative major/minor for keys, and
cadences for chords. Melody is less well-defined, but it is
possible to initialise a graph of pitches based on existing
music, or using scale information.

3.7. Key Agent

3.7.1. Outline

The key agent is the first in the framework to use a graph-
based approach. While rhythm and pulse are simpler to
specify as short cases, key changes are easier to represent

as the probability of moving from one key to another. A
scoring approach was created using this graph technique,
which is at the core of the key agent fitness function.

3.7.2. Implementation

The first step in the key agent is to build up the key graph
for the segment that is being evolved. A directed, weighted,
graph is used, with each node being a key and each edge
representing a key change. The key change landmark is
read from the provided landmark parameter, and a graph
is constructed with the correct weights on each edge. The
weights used in this approach are simply double values,
with no maximum or minimum. Even negative values can
be specified, but it is preferable to use 0.

The chromosome for the key agent is simple, with each
gene representing one of the keys available. For example,
‘Cmaj’ could be presented by 0, ‘Dmaj’ as 1, and so on. It
is not necessary to encode more information into the gene,
as the root and scale can be obtained from the landmark
file when required. The chromosome length is set by the
number of key changes required in the block, so if 10 key
change landmarks are indicated, 10 genes are present in
the chromosome. The traditional two operators (crossover
and mutation) are used for this agent, with mutation set-
ting the gene to a random key.

To make use of the graph data structure, a custom ge-
netic algorithm was written. This moves by step through
the chromosome and progress through the graph from node
to node. If a weight is present on an edge, this score is
added to the final total. One future option could be to
allow for a nodal weighting to influence where the graph
should begin, for example suggesting that C minor is prefer-
able to C major.

3.8. Chord Agent

3.8.1. Outline

As with the key agent, a graph-based technique is used
to develop the underlying chords for the score. These are
essential to the melody evolution later in the process, as
notes in the chord have priority over non-chordal notes.
As with keys, there are some predefined rules for chord
progression, which can be handled by the graph approach.

3.8.2. Implementation

Being similar in operation to the key agent, the chord
agent first builds up a chord graph to represent the pro-
gressions available in the system. In this instance, the
nodes in the graph refer to the unique names defined in
the composer representation, such as ’I’ or ’V7’, and these
are encoded as integers in the chromosome. The nodes are
linked by the defined chord progressions, and an extra flag
is present in the edge definition to specify whether the link
can be a ‘cadence’ (an a edge linking the final two chords
of a segment). The same operators are used as in the key
agent, but in this case the mutation operator selects a ran-
dom chord.

The fitness function uses the same technique as the key
agent, but with one difference. If the edge between two
chords is defined as a cadence, it only receives a score if it
is at the end of the chromosome (or if the edge is defined
twice - once as a cadence, once as a basic progression).
This aims to finish the piece on a suitable ending.

3.9. Melody Agent

3.9.1. Outline

To create a score as efficiently as possible, the melody
agent is also parallelised, with each agent creating the
melodic line for a single instrument. As with the key and
chord agents, a graph-based approach is used, although
the melody agent will eventually also take motif informa-
tion into account.

3.9.2. Implementation

As the pulse provided the ‘skeleton’ of the rhythm agent,
the rhythm provides the framework to the melody agent.
The available notes are further restricted by the pitch mesh
of the segment and the instrument range, ensuring that the
result is both suitable and playable. A chromosome is con-
structed with the same number of genes as there are notes
in the rhythm output, with each gene containing an integer
corresponding to the note value. These are held in MIDI
format, which ranges from 0 to 127 (middle C being rep-
resented as 60). Each adjacent integer is one semitone
higher than the previous, so C# is encoded as 61 and B as
59.

To score each chromosome, the fitness function begins
with the initial note and locates its position in the pitch
mesh. As it moves to the next note, it adds the weighting
on the transition to its score. If no link is present between
two notes, 0 is added. If a motif is required at a location,
the pitch mesh is temporarily swapped out with the motif
mesh, until the end of the motif is reached.

The melody agent makes use of the three operators
defined by the pulse agent (crossover, mutation, and se-
quence), but also makes use of two others: step and inver-
sion. The step operator is similar to the sequence, in that
it repeats a segment of the chromosome over a length, but
it also increases or decreases the pitch of the segment at
each instance. The inversion operator is a simple opera-
tor that literally inverts a segment by subtracting each note
value from 127.

3.9.3. Example

For this example, a mesh was initialised using Mozart’s
Ave Verum. This defined the probability of moving be-
tween pitch states, and hence the constraints for the fit-
ness function. The agent was also passed the rhythm from
Figure 6, and the results of this can be seen in Figure 7.

�� ���� ���������� �� �� �� �
Figure 7. The output from the rhythm agent combined
with a melody generated by the melody agent. Note that
scale information has not been applied to the pitch mesh,
hence producing some chromaticism.

3.10. Future Agents

There is scope for three extra agents to be added to the
system once the core seven have been fully implemented,
namely a validation agent, a rendering agent, and a motif
agent. The first two of these (as seen in Figure 1) follow on
directly from the melody agent, whereas the motif agent
will work in parallel with the initial stages of composition.

3.10.1. Validation Agent

Once the initial composing process is complete, a large
number of possible scores will be produced. The vali-
dation agent will be responsible for reducing the number
of scores, as well as fine-tuning the final selection. The
melody agent does not do any checks between parts, so
the validation agent will check for missing notes, bad har-
mony (such as parallel fifths), and other such inconsisten-
cies.

Where the other agents use a fairly lightweight genetic
algorithm, the validation agent requires a far more inten-
sive approach. The population will not be initially ran-
dom, as is typically the case, with its members consisting
of the results from the melody agents. The fitness func-
tion will then analyse on a score-by-score basis, provid-
ing a value based on the number of inconsistencies found
within the piece. Operators will also be available to the al-
gorithm, but again these will work on a score-wise basis.
For example, the crossover operator must either exchange
vertical slices (i.e. the same portion of every stave) or hor-
izontal slices (two portions within the same stave).

The validation agent is a prime candidate for paralleli-
sation, with seperate agents handling different combina-
tions of scores, so it will be an ideal candidate for distri-
bution under the agent framework.

3.10.2. Rendering Agent

The rendering agent is the final step in the composition
process, and is very simple compared to the other com-
ponents. This agent is responsible for collecting the final
score, and producing a usable result. There is scope for
several rendering agents, such as one for audio rendering
and one for visual. Our use of MusicXML is beneficial
in this stage, as it can be easily transformed to MIDI or
PostScript/PDF.

3.10.3. Motif Agent

While the composition system may be able to produce mu-
sic that is suitable for most media, it does not currently
handle the idea of motific information. The OntoMedia
representation provides the capability to identify major
ideas, so a motif agent will use this to generate themes.
These will be very generic, as they must be easily placed
into different sections of the music, where the key, chords,
rhythm, or tempo may all be different. This also allows for
motific change based on character information—so a ‘bad
guy’ may have a minor motif.

4. CONCLUSIONS

The SBS system of composing investigates a novel tech-
nique in coupling media with music composition, and at
this stage in the project results are very encouraging. The
provision of a media description ensures that the com-
posed music is suitable for the events that occur, with the
composer representation allowing for different interpreta-
tions of events and concepts. Furthermore, by separating
the process into several agents the approach is highly anal-
ogous to the traditional composing style, as well as being
easily distributed over a set of machines to reduce process-
ing time. By moving away from monolithic approaches to
score generation, and instead taking advantage of the in-
herent hierarchy of music, our system is both simple to
test and easily updated.

Two further agents, one for music validation and one
for music rendering, are already at the design stage, so
we hope to obtain complete generated scores for further
testing. The validation stage is particularly suitable for
the agent framework, as we plan to generate a large num-
ber of possible scores and use these as the bootstrap for
a genetic algorithm. This will require tens, if not hun-
dreds, of melodies, and hence will involve many melody
agents communicating with several accumulation agents,
with these communicating with the validation agent.

5. REFERENCES

[1] BURTON, A. R., AND VLADIMIROVA, T. Generation
of musical sequences with genetic techniques. Com-
puter Music Journal 23, 4 (1999), 59–73.

[2] GOOD, M. MusicXML: An internet-friendly format
for sheet music. In XML Conference and Expo (2001).

[3] HARLEY, J. The electroacoustic music of iannis xe-
nakis. Computer Music Journal 26, 1 (2004), 33–57.

[4] JEWELL, M. O., NIXON, M. S., AND PRÜGEL-
BENNETT, A. CBS: A concept-based sequencer for
soundtrack composition. In WEDELMUSIC (2003).

[5] MCALPINE, K., MIRANDA, E., AND HOGGAR, S.
Making music with algorithms: A case-study system.
Computer Music Journal 23, 2 (1999), 19–30.

[6] VOSS, R. F., AND CLARKE, J. 1/f noise in music and
speech. Nature 258 (1975), 23–33.

