
Object-based Control/Data-flow
Analysis

Berndt Farwer1 and Mauricio Varea2

1farwer@informatik.uni-hamburg.de
2mv@ecs.soton.ac.uk

Declarative Systems and Software Engineering Group
Technical Report DSSE-TR-2005-1

March 2005

www.dsse.ecs.soton.ac.uk/techreports/

Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton SO17 1BJ, United Kingdom

Object-based Control/Data-flow Analysis

Berndt Farwer Mauricio Varea
Fachbereich Informatik, School of Electronics and Computer Science,
Universität Hamburg, University of Southampton,

D-22527 Hamburg, Germany. SO17 1BJ, Southampton, UK.
farwer@informatik.uni-hamburg.de m.varea@ecs.soton.ac.uk

(22nd March, 2005)

Abstract

Not only does a clear distinction between control and data flow en-
hance the readability of models, but it also allows different tools to operate
on the two distinct parts of the model. This paper shows how the model-
ling based on control/data-flow analysis can benefit from an object-based
approach. We have developed a translation mechanism that is faithful
and gives an extra dimension (hierarchy) to the existing paradigm of con-
trol and data flow interacting in a model. Our methodology provides a
comprehensible separation of these two parts, which can be used to feed
another analysis or synthesis tools, while still being able to reason about
both parts through formal methods of verification.

1 Introduction
The analysis of systems with a combined control- and data-flow is not trivial.
The interaction between these two unique parts usually obfuscates the analysis
of such systems. Recently, an approach for modelling with a clear distinction
between data and control has been proposed using Scade and Mode-Automata
[11]. P/T nets are graphically more intuitive than the Scade models and have
precise mathematical semantics. They have a tradition of successful applications
in systems modelling [14], but they are not in their basic form capable of man-
aging the additional complexity of analysing the interaction between control-
and data-flow. Several extensions to P/T nets have been proposed [9, 8, 15, 1],
in order to cope with expressibility and complexity of P/T nets, but they do not
explicitly target the control/data-flow interaction problem. The DFN model [19]
preserves the structure of a flat P/T net for the control domain, while using a
modified semantics for the data domain. In recent research [7, 3, 4], the bene-
fits of object-based modelling has been shown. In particular, object Petri nets
(OPN) incorporate the notion of hierarchy by using standard nets as tokens
of another net. This paper shows how the idea of control/data separation can

1

be modelled by an object-based paradigm, such as OPN, and summarises a
translation from DFNs to OPNs.

2 Dual Flow Nets
The DFN model [19] assumes a structure where three type of elements (rather
than two, as in standard P/T nets) comprise the entire system: storage, reactive,
and transformational units. Given a weighted, directed, tripartite graph, its
vertices V = P ∪ T ∪Q can be used to map each of these elements as follows1:
Storage elements (p ∈ P) relate to memory components in the system (e.g.,
registers, memory cells, latches, variables, etc.), reactive elements (t ∈ T) allude
to components in the control part and transformational elements (q ∈ Q) refer
to arithmetic operations performed among storage elements (i.e., components
in the data path).

Definition 2.1 A Dual Flow Structure is a seven-tuple
S =〈P, T,Q, F,W, G,H〉,

where: P = {p1, p2, · · · , pn} is a finite, non-empty set of places;
T = {t1, t2, · · · , tm} is a finite set of transitions, with m > 0;
Q = {q1, q2, · · · , qh} is a finite set of hulls, with h > 0 and m + h > 0;
F ⊆ (P × T) ∪ (T × P) ∪ (P ×Q) ∪ (Q× P) ∪ (T ×Q) ∪ (Q× T)

is a binary relation, called the flow relation;
W : F 7→ Z+ ∪ Z− is a weight function;
G :T 7→] ∪ {>} is a guard function,

where] = {=, 6=, >, <, >,6}, and > ∈ IB;
H : Q 7→ Z is an offset function.

Each transition t ∈ T is either labelled with a symbol from the set] or >,
according to the guard function G(t). Hulls q ∈ Q are labelled with integers,
corresponding to the offset function H(q). The guard function G(t) provides a
mechanism for data flow to interfere in the control flow, i.e., to have conditional
points in the control flow, where the condition is taken from the data flow.
The offset function H(q), on the other hand, enhances the functionality of the
hull. The basic operation of a hull is to sum over the data domain, so the
H(q) function is provided in order to cover those situations where a constant is
needed. In order to reduce notational clutter, symbols ’>’ and numbers ’0’ (from
G(t) and H(q) respectively) are not explicit across the net. Both control and
data domains are formalised in Definitions 2.2, where the well known concepts
of presets and postsets are extended to support a tripartite structure.

Definition 2.2 For every p ∈ P , t ∈ T , and q ∈ Q, the following presets and
1where P ∩ T = ∅, P ∩Q = ∅, T ∩Q = ∅, P 6= ∅, and T ∪Q 6= ∅.

2

postsets are defined:

•p =
{
t ∈ T

∣∣ (t, p) ∈ F
} •t =

{
p ∈ P

∣∣ (p, t) ∈ F
} •q =

{
t ∈ T

∣∣ (t, q) ∈ F
}

p• =
{
t ∈ T

∣∣ (p, t) ∈ F
}

t• =
{
p ∈ P

∣∣ (t, p) ∈ F
}

q• =
{
t ∈ T

∣∣ (q, t) ∈ F
}

◦p =
{
q ∈ Q

∣∣ (q, p) ∈ F
} ◦t =

{
q ∈ Q

∣∣ (q, t) ∈ F
} ◦q =

{
p ∈ P

∣∣ (p, q) ∈ F
}

p◦ =
{
q ∈ Q

∣∣ (p, q) ∈ F
}

t◦ =
{
q ∈ Q

∣∣ (t, q) ∈ F
}

q◦ =
{
p ∈ P

∣∣ (q, p) ∈ F
}

where:

•P =
⋃
∀p∈P

•p; •T =
⋃
∀t∈T

•t; •Q =
⋃
∀q∈Q

•q;
P • =

⋃
∀p∈P p•; T • =

⋃
∀t∈T t•; Q• =

⋃
∀q∈Q q•;

◦P =
⋃
∀p∈P

◦p; ◦T =
⋃
∀t∈T

◦t; ◦Q =
⋃
∀q∈Q

◦q;
P ◦ =

⋃
∀p∈P p◦; T ◦ =

⋃
∀t∈T t◦; Q◦ =

⋃
∀q∈Q q◦;

In classic Petri nets tokens are dynamically assigned to places using a mark-
ing function. Thus, they work out as indivisible quanta from the control flow.
As the DFN model aims at a more complex analysis, where not only control
but data information as well is taken into account, its marking function scheme
incorporates an indivisible quantum for the data flow in addition to the classic
quantum for the control flow. This means that the marking function of a DFN
is defined in terms of a tuple, as it can be seen in Definition 2.3.

Definition 2.3 The DFN marking function is defined as follows

µ : P 7→ IN × Zn

where the first element in the tuple (γ ∈ IN) is the number of control quanta
that reside inside a place p, while the second element (α ∈ Zn) is the number
of data quanta2. The following notation is used, in order to obtain each part in
the tuple 〈γ, α〉:

γ = |µ(p)| α = ∠µ(p)

The behaviour of a DFN model is described in terms of enabling and firing
transitions, as in classic Petri nets, in addition to a synchronised data-flow
operation scheme. The following two definitions introduce the rules that ensue
from modifying the classic enabling and firing rules.

Definition 2.4 A transition t is said to be enabled, for a given marking µ, if
the following two conditions are met:

i. all places in preset pi ∈ •t contain at least W (pi, t) tokens, that is:∧
pi∈•t

(|µ(pi)| > W (pi, t))

2Zn stands for “integer modulo ‘n’ ”

3

ii. all hulls in the preset qj ∈ ◦t give a result that is comparable to 0, according
to the Guard function. This is:

G(t) ∈] =⇒
∧

qj∈◦t

 ∑
p`∈◦qj

∠µ(p`) ·W (p`, qj) + H(qj)

]g 0

where]g ∈] is bound to the result of G(t).

Definition 2.4 states whether a transition of a DFN model is enabled or
not. The influence of both control and data flow aspects in this evaluation
can be observed from the combined form of the enabling condition. Thus,
from the control flow point of view, the enabling of a transition depends on
the token distribution throughout the DFN model, i.e., subpart (i.) of the
definition. From the data flow point of view, the dependence is established by
the conjunction in subpart (ii.), where the data quanta in ◦q,∀q ∈ ◦t is used
as an argument of the condition stated by G(t). The summation (over `) is
further explained in Definition 2.6. An enabled transition may fire, following
the traditional firing rule approach as described in Definition 2.5.

Definition 2.5 The firing of an enabled transition tj changes a marking µk

into µk+1 by means of the following rules:

i. |µk+1(pi)| = |µk(pi)| −W (pi, tj), ∀pi ∈ •tj

ii. |µk+1(pi)| = |µk(pi)|+ W (tj , pi), ∀pi ∈ tj
•

iii. Each hull q ∈ tj
◦ is executed (cf. Definition 2.6).

Definition 2.6 shows, in simple terms, that the hull performs a summation
of data quanta over the data domain. From the behavioural point of view, the
execution of hulls q ∈ Q are synchronised with transitions t ∈ T in the net, i.e.,
no hull q can fire nondeterministically.

Definition 2.6 The firing of any transition t ∈ •q produces the execution of
the hull q, which changes a marking µk into µk+1 as follows:

∠µk+1(pj) = W (q, pj) ·

(∑
pi∈◦q

∠µk(pi) ·W (pi, q) + H(q)

)
∀pj ∈ q◦

3 Object Petri Nets
Object Petri nets are a hierarchical approach to Petri nets. When using nets as
tokens of another net, the nets in the lower level of hierarchy are called object
nets and the net in the higher level is referred to as system net. To describe
the dynamic behaviour of object Petri nets, a distinction is needed between two
fundamentally different kinds of transitions. Autonomous transitions can occur
in the system net or in an object net and locally change the marking of the

4

place¡ place™ place¡ place™

(a) Autonomous transition firing

place¡ place™ place¡ place™

<1>
<1>

<1>
<1>

(b) Synchronised transition firing

Figure 1: Firing modes in object Petri nets

respective net only. Synchronous transitions have synchronisation requirements
preventing them from occurring autonomously.

A simple example of an autonomous system net transition firing is shown
in Figure 1(a). Here the object net is simply moved to a different place of
the system net. In contrast, a synchronous firing of the system net transition
and the object net transition is shown in Figure 1(b). The synchronisation
requirement is shown in the Figure 1(b) by the use of the label <1> for the
respective transitions. These transitions cannot fire autonomously, and the pair
of them are in the synchronisation relation % (which we define formally below).

Another important attribute of object Petri nets is the existence of various
semantics that differ mainly in the treatment of the token nets (e.g.,in [2, 17]).
Reference semantics treat a token net (name) in a place of the system net as
a reference to a net instance. Hence, if the same token net (name) appears
in different places of the net, they point to the same object net instance. In
particular, the marking of each object net instance is applicable for all tokens
referring to it. When using value semantics, each token net is treated as an
individual copy with its own marking.

Object Petri net formalisms have been studied in [12, 16, 13, 2, 6]. Our
generic approach in this paper is adequate for all of these formalisms. We use
*X+ to denote the set of multisets over the set X. An object Petri net consists
of a system net (Def. 3.1), a set of object nets (Def. 3.2), and a synchronisation
relation (Def. 3.3). For simplicity of the presentation, we only give a formal
definition of 2-level OPNs. Allowing arbitrary OPNs as object net tokens leads
to multi-level nesting, which our translation to Prolog and toolset can cope with.

Definition 3.1 (system net) A system net is a tuple SN =〈Σ, P, T, F,C, V,E〉
where the following hold:

(i) Σ is a set of types (colours) with reflexive and transitive subtype relation
v.

(ii) P is a set of system net places and T is the set of system net transitions
such that P ∩ T = ∅.

5

(iii) F ⊆ (P × T) ∪ (T × P) is the flow relation, also called the set of arcs.

(iv) C : P → Σ is a total function, called the typing function or colouring
function of the system places.

(v) V is a set of typed variable symbols with type(v) ∈ Σ for all v ∈ V .

(vi) E : F → *V + is the arc labelling function.

(vii) The set of variables on the incoming arcs of transition t is denoted by Vt

(i.e, Vt = {E((p, t))|(p, t) ∈ F}) and, for every variable v on an outgoing
arc it is required that v ∈ Vt holds. Define V :=

⋃
t∈T Vt.

A transition is enabled if there is a binding, assigning to the variables of the
arc inscriptions nets from the current marking in the respective places.

For the two-level case we define object nets as P/T nets.

Definition 3.2 (object net) An object net ON =〈P, T, F, W 〉 is a P/T net,
where P is a set of places, T with T ∩ P = ∅ is a set of transitions, F ⊆
(P × T) ∪ (T × P) is the flow relation, and W : P → IN is the arc-weight
function.

As with the system net from Definition 3.1 we have omitted the marking
from the net structure. Markings are introduced in the same canonical way for
OPNs as for ordinary Petri nets. The crucial addition to the system net and the
object nets is a synchronisation relation, which is used to allow communication
between the different nets.

Definition 3.3 (synchronisation relation) Let SN =〈Σ, P, T, F,C, V,E〉 be
a system net and let {ONi}i∈I be a set of object nets ONi =〈Pi, Ti, Fi,Wi〉
such that T and all Ti are disjoint. Let T̃ = T ∪

⋃
i∈I Ti denote the set of all

transitions.
Then a synchronisation relation is a tree-like relation % ∈ T̃ × T̃ , such that

its reflexive and transitive closure %∗ is asymmetric and (t′, t) ∈ % ∧ (t′′, t) ∈
% ⇒ t′ = t′′.

The intention of the synchronisation relation is, that a transition t ∈ T̃
in an object Petri net is enabled, if it is enabled in its net (in the sense of
P/T-nets enablement) and the following condition holds: If there is a transition
t′ ∈ T̃ such that (t, t′) ∈ % or (t′, t) ∈ %, then t and t′ can only fire together
synchronously. A transition t that has no partner in % is autonomously enabled
whenever it is enabled in the usual sense of P/T nets, i.e., whenever all places
in •t hold at least the amount of tokens specified by the weight function. 3

A (2-level) OPN is essentially a system net with an associated set of object
net tokens and a synchronisation relation between transitions of the system net
and object nets.

3The synchronisation relation will usually underly some locality constraints. For instance,
in the multi-level case, synchronisations may be restricted to take place only between an ON
transition t and a SN transition t′, if the ON resides in an input place of t′.

6

Definition 3.4 (object Petri net) An object Petri net (“OPN”) is a quad-
ruple 〈SN, {ONi}i∈I , I, %〉 where SN is a system net, the ONi are object nets,
I is a finite indexing set and % is a synchronisation relation.

W.l.o.g. we require that all transition sets (from SN and ONi) are disjoint.
The definitions given above apply to the two level case. Arbitrary levels of
nesting can be introduced into the model by allowing the object nets to be
OPNs.

In this paper we use a slightly extended OPN formalism, in which we allow
the object net to be a simple kind of coloured net. In particular, we use integers
as the only types or colours in our object nets. By introducing colours, we also
need to introduce expressions over variables as arc inscriptions instead of the
arc weights introduced for the P/T nets and we introduce as transition guards
simple relations on integers as used in the DFN.

The treatment of object nets depends to a great extent upon the semantic
paradigm used. This shows particularly in the events of fork and join transitions.
A fork transition in value semantics produces multiple copies of the token nets
removed from its input places. Each of the copies can evolve independently.
Considering reference semantics, on the other hand, would produce multiple
references to the same net, so that any evolution of the object net is reflected
in all ‘copies’. Similar effects apply for join transitions.

For the translation carried out in the next section we use reference semantics
and use the reference (object) Petri net editor/simulator Renew [10] for our
examples. The synchronisation relation translates into synchronous channels
attached to the system an object net transitions as up- and down-links, thus
the inscriptions change from the general representation in the preceding figures
(e.g. < 1 >) to invocations of a channel ch from a system net transition to
an object net transition in the object net referenced by x denoted by x:ch().
Transitions that can accept the invocation carry the corresponding inscription,
for instance :ch().

4 Translation
Our translation takes the idea behind the DFN model one step further by not
only separating data flow from control flow, but making this even better visible
in the model. The visualisation relies solely upon well-known concepts from the
theory of Petri nets and the usual firing rule together with a synchronisation
relation that was introduced for object-based Petri nets. The data are represen-
ted by an object net while the system net represents the control flow. Note that
we use a coloured Petri net as the object net in our translation, as mentioned
in the previous section.

4.1 Procedure
Before giving a formal translation procedure, we sketch the basic idea: Fig. 2
shows the transformation from a DFN to an OPN for pure data transfers (2(a))
and for triggering (2(c)). The latter has to do with the control flow and is
achieved by using synchronisation between the system net of the OPN and the

7

object net that represents the data, i.e. arcs from transitions to hulls in the
DFN are represented by synchronisation requirements in the OPN.

…
a ⇒

a +

∑

i∈{1,...,k}

xi

ON:

…

zx˚

x¡

(a) Data translation

a ⇒ ON:
x+a

x

(b) Place in both preset and
postset

… q
a ⇒

y

y:q()
SN:

x¡

x˚ z

…

:q()
ON:

a +

∑

i∈{1,...,k}

xi

(c) Control/synchronisation with sink

⇒… q
a

y

y:q()
SN:

x¡

x˚ z

…

:q()
ON:

y

a +

∑

i∈{1,...,k}

xi

(d) Control/synchronisation

Figure 2: Transating DFNs into OPNs
Hulls in DFNs require a triggering transition to fire. Thus, the sub-nets from

Figure 2(a) and 2(b) will never be enabled. They would require an (enabled)
trigger such as those of Figures 2(c) and 2(d) to be enabled.

We give a formal translation as Transformation 1 that carries out the trans-
formation in Figure 2. Note that the guards of the DFN’s transitions are trans-
lated to guards in the object net, since they represent conditions related to
values in the data part of the marking.

Transformation 1 Given a dual flow structure S =〈P, T,Q, F, W, G,H〉 with
an initial marking µ we construct an equivalent object Petri net 〈SN, {ON}, {S}, %〉
with system net SN =〈Σ̄, P̄ , T̄ , F̄ , C̄, V̄ , Ē〉, object net ON =〈Σ̂, P̂ , T̂ , F̂ , Ĉ, V̂ , Ŵ 〉,
and synchronisation relation % ∈ T̃ × T̃ defined by:

i. The system net SN is given by:

(a) Σ̄ := {otok, {•}} = {{ON}}, i.e., there is only one type of tokens
apart from the black token.

(b) P̄ := {p̄
∣∣ p ∈ (•T ∪T •)}∪{start} is the set of control places together

with a distinguished start place

(c) T̄ := {t̄
∣∣ t ∈ T}∪{tstart} is the set of control transitions together with

a distinguished start transition

(d) (ā, b̄) ∈ F̄ : ⇐⇒ b ∈ a • specifies the control flow relation, (start, tstart) ∈
F̄ and {(tstart, p)

∣∣ |µ(p)| ≥ 1} ⊂ F̄

(e) ∀p̄ ∈ P̄ . C̄(p̄) := otok, i.e. all places apart from the initial place

(f) V̄ := {x}

8

(g) ∀(a, b) ∈ F . Ē(a, b) :=

{
ε if a or b is tstart

x otherwise
, since apart from the

initialisation where only black tokens are involved, we only move the
object net representing the data within the system net, so the same
reference is involved in any transition (input and output).

ii. The object net ON with the natural numbers as the only colour (Σ̂ :=
{IN}) is given by:

(a) P̂ := {p̂
∣∣ p ∈ (Q◦ ∪ ◦Q)}, the relevant data places

(b) ∀p̂ ∈ P̂ . Ĉ(p̂) := IN , i.e., the data places can hold natural numbers

(c) T̂ := {t̂
∣∣ t ∈ (P ◦∩ ◦P)}, the relevant data transitions, corresponding

to those hulls that actually do data manipulations and do not only
adjust values for use with guards

(d) V̂ := {xp}p∈P ∪ {zp}p∈P introduces variables named after the places

(e) ∀(p, q) ∈ F ∩ (P ×Q) :

• {(q̂, p̂), (p̂, q̂)} ⊆: F̂ restores the data flow relation from places to
hulls

• Ŵ (q̂, p̂) := Ŵ (p̂, q̂) := xp

supplies individual variables for the different input arcs

(f) ∀(q, p) ∈ F ∩ (Q× P) :

• {(q̂, p̂), (p̂, q̂)} ⊆: F̂ restores the data flow relation from hulls to
places

• Ŵ (p̂, q̂) :=

{
zp if p 6∈ (◦q ∩ q◦)
xp otherwise

ensures that original values are

kept in the input places unless the input place is also an output
place of the same hull

• Ŵ (q̂, p̂) :=

 ∑
r∈ •q∩P

W (r, q) · xr

 + H(q) calculates the result

of the hull operation

(g) Ĝ(t) :=

> if G(t) = >∧
qj∈◦t

 ∑
p`∈◦qj

∠µ(p`) ·W (p`, qj) + H(qj)

]g0 if G(t) =]g ∈]

for all t ∈ T̂ sets up the guards according to the transition guards of
the DFN and the offsets of the hulls

iii. synchronisation relation:

% := {(t̄, t̂′) ∈ T̄ × T̂
∣∣ (t, t′) ∈ F ∩ (T ×Q)}

9

The initial marking of the OPN is determined by the tokens in the initial
marking of the DFN system in such a way that the corresponding object net
places have a reference to the object net with appropriate integers in its corres-
ponding places.

Lemma 4.1 A hull q can be executed iff there is an object net transition that
is enabled together with a system net transition that synchronises with it.

Proof
Hulls in DFNs require a triggering transition to fire. The translation enables
the corresponding object net transition only by a synchronisation introduced
for the arc between a transition and a hull in the DFN. 2

Lemma 4.2 Data quanta across places of the net changes, following the exe-
cution of a hull. This changes are reflected in the marking of the object net of
an OPN.

Proof
The special meaning of the arc-weight function between hulls and places, i.e.
a weighted sum, is reflected in the corresponding operation of the object net.
The translation also reproduces another particularity of DFNs: a value that is
read from a place is never consumed, unless another hull explicitly replaces it
for something else. 2

Theorem 4.3 The translation of DFNs into OPNs from Transformation 1 is
faithful, i.e., the OPN terminates iff the DFN terminates, and in the case of
termination the results are the same.

Proof
Using Lemmas 4.1 and 4.2, it can be shown that for every firing sequence in the
control part and taking into account the data part, there exists a corresponding
firing sequence in the system net and the object net, respectively. Together we
can state that every firing sequence of the DFN leads to an equivalent firing
sequence of the constructed OPN. Furthermore it is clear from the construction
that no firing sequences exist for the OPN, for which there is no corresponding
firing sequence of the DFN. 2

4.2 Example
In this section, we provide an example to clarify the translation methodology.
Figure 3 shows a DFN model of the Fibonacci algorithm, where a token and
the value of “n” are placed in p5, and the Fibonacci result “f(n)” is expected
in p6, after n iterations. The recursive part of the algorithm is reflected in the
cycle containing {p1, p2, p3} and its associated transitions and hulls. Place p4

10

"="

−1

−1

−1

"<"

">"

5
p

8
q

p
4

q
5

t
4

p
2

q
6

q
4

q
3

p
1

6
pq

7

3t
2
q

5t

t6

1t
p
3

9
q

1
q

2t

1

f(n)

n

0

1

Figure 3: DFN model of Fibonacci

start
[] x

xx

xx
x:q2()

x:init()
x x

x:new fib_on

x:q1();
x:dec()

x:out()

x

x

x

x
stop

xx

x:first()

x:q3()

(a) System net

r

x-1x:init()

1

:q2()

x
x

x

x

x+y
z

z

1

8

x
:q3()

:first();
guard x<1

:dec();
guard x>1

z z

input arg
n here

0

0

z

:out();
guard x==1

xx

0

y

r

output f(n) - the n-th Fibonacci number

y

z x

:q1()

x

y

(b) Object net

Figure 4: OPN representation of the Fibonacci example

serves as a decremental counter that governs the loop execution. Some addi-
tional transitions (t5 and t6) and hulls (q6, q7 and q9) take care of both initial
conditions, i.e. when n ∈ {0, 1}.

Applying the methodology described in Section 4.1, the OPN model shown
in Figure 4 is obtained, where the same computation is executed on the input
value in the object net. In both models there are three places (in the centre of
the respective nets) that represent the cached values of the current value and the
previous two values of the Fibonacci function. There are corresponding places
for the control flow in the system net.

The arc inscriptions in the OPN are simplified to x instead of xp whenever
there is just one place in the preset of a transition. When there are two places,
we use x and y as variables. To simplify the notation, we have also omitted the
annotations (̄ ,)̂ that were necessary in the formal construction.

In the OPN model the control flow is visualised separately by the system net
(Fig. 4(a)). This has some advantages which become apparent when commu-

11

nicating the model to a person who is familiar with Petri nets but not DFNs,
since OPNs use mainly the same firing rule as ordinary Petri nets.

Although control and data flows are also separated in the DFN model, they
are still represented on the same level of the net representation. Note that
in this example there is just one control token present at any stage of the
calculation. This is not a restriction that applies to DFN systems in general so
that concurrency is possible in the original model and in its translations into
OPNs. The construction given in this paper takes care of the general case and
is not restricted in this respect.

5 Verification
Both DFN and OPN models have a well established verification methodolo-
gies [18, 5]. In an attempt to corroborate our translation methodology, we have
successfully verified the termination and partial correctness of the the Fibonacci
computations using both approaches.

Model checking of the DFN required the specification of the net in the SMV
model checker input language. We specified the following LTL formulae for
termination (eq. 1) and correctness (eq. 2):

3|µ(p6)| = 1 (1)

2 (◦◦∠µ(p3) = ◦∠µ(p3) + ∠µ(p3)) (2)

By application of the translation methodology introduced in Section 4.1, we
have obtained the OPN representation detailed in Section 4.2. This lead to
an automatically generatable Prolog program which, used in conjunction with
the xtl model checker, uses a xsb-based tabled Prolog system to infer the
correctness of the above formulae.

6 Conclusions
We have developed a translation from dual flow nets to object Petri nets that
retains the separation of control flow and data flow. The object net represent-
ation has proved to be more accessible to those familiar with Petri nets, even
though DFNs are also based on Petri nets. The principle of locality is adhered
to in OPNs, while the locality has to be somewhat extended for DFNs.

A major benefit of using OPNs is the tool support we find in the Renew
tool [10], which allows graphical editing and animated execution of reference
nets. Renew is a Petri net editor and simulator that is based on a plug-in
architecture allowing easy and flexible addition of functionality. Some basic
structural analysis tools have recently been developed for ordinary Petri nets
and analysis of workflow nets is currently under development. It should be
fairly straightforward to build upon these developments to add functionality for
DFNs. The plug-in architecture makes it easily extensible, such that export
modules, e.g. for model checkers or other analysis tools, are easy to integrate.

There are some interesting open questions and problems, that should be
addressed in further research, some of which we briefly state hereafter:

12

• How can the use of further level(s) of the OPN be exploited to hide irrel-
evant information from the data flow and simplify further the verification?

• Define a (greatest possible) class of OPNs that can be translated into
DFNs.

• Integration of the DFN formalism into the Renew tool.

– Import of DFNs with translation to OPNs

– Inclusion of a DFN mode

– Export of DFN-like OPNs to SMV for model checking

• Translation to Maude for simulation and model checking

References

[1] L. A. Cortés, P. Eles, and Z. Peng. Verification of Embedded Systems using
a Petri Net based Representation. In Proc. of the 13th International Sym-
posium on System Level Synthesis (ISSS), pages 149–155, Madrid, Spain,
20-22 2000.

[2] B. Farwer. Comparing concepts of object Petri net formalisms. Fundamenta
Informaticae, 47(3–4):247–258, 2001.

[3] B. Farwer, S. Kalvala, and K. Misra. Controller synthesis for object Petri
nets. In Formal Methods and Software Engineering: 5th ICFEM 2003,
pages 432–451. LNCS 2885. Springer-Verlag, 2003.

[4] B. Farwer and M. Köhler. Mobile object-net systems and their processes.
Fundamenta Informaticae, 60(1–4):113–129, 2004.

[5] B. Farwer and M. Leuschel. Model checking object Petri nets in Prolog.
In Proc. of the 6th ACM SIGPLAN international conference on Principles
and practice of declarative programming, pages 20–31. ACM Press, 2004.

[6] B. Farwer and K. Misra. Modelling with hierarchical object Petri nets.
Fundamenta Informaticae, 55(2):129–147, 2003.

[7] B. Farwer, D. Moldt, and F. Garćıa-Vallés. An approach to modelling FMS
with dynamic object Petri nets. In Proc. of the 2002 IEEE International
Conference on Systems, Man and Cybernetics., pages 1–6.

[8] K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods
and Practical Use. EATCS Monographs in Theoretical Computer Science,
3(Practical Use), 1997.

[9] K. Jensen and G. Rozenberg, editors. High-level Petri Nets: Theory and
Application, 1991.

13

[10] O. Kummer, F. Wienberg, and M. Duvigneau. renew – The reference net
workshop http://www.renew.de.

[11] O. Labbani, J.-L. Dekeyser, and P. Boulet. Mode-automata based meth-
odology for scade. Hybrid Systems: Computation and Control: 8th Inter-
national Workshop, HSCC 2005, volume 3414 of LNCS, pages 386–401.
Springer-Verlag, 2005.

[12] C. A. Lakos. Object Petri nets—definition and relationship to coloured
nets. Technical report, TR94-3, Computer Science Department, University
of Tasmania, 1994.

[13] I. A. Lomazova. Nested Petri nets — a formalism for specification of multi-
agent distributed systems. Proc. Concurrency Specification and Program-
ming (CSP), pages 127–140. 1999.

[14] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings
IEEE, 77(4):541–580, 1989.

[15] Z. Peng and K. Kuchcinski. Automated Transformation of Algorithms into
Register-Transfer Level Implementations. IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems, 13(2):150–166, 1994.

[16] R. Valk. Petri nets as token objects. An introduction to elementary object
nets. In J. Desel and M. Silva, editors, Proc. of Applications and Theory
of Petri Nets, volume 1420, pages 1–25. Springer-Verlag, 1998.

[17] R. Valk. Relating different semantics for object Petri nets. Technical report,
FBI-HH-B-266/00, Fachbereich Informatik, Universität Hamburg, 2000.

[18] M. Varea, B. M. Al-Hashimi, L. A. Cortés, P. Eles, and Z. Peng. Sym-
bolic Model Checking of Dual Transitions Petri Nets. In 10th International
Symposium on Hardware/Software Codesign (CODES), pages 43–48, may
2002.

[19] M. Varea, B. M. Al-Hashimi, L. A. Cortés, P. Eles, and Z. Peng. Dual
Flow Nets: Modelling the Control/Data-Flow Relationship in Embedded
Systems. ACM Transactions on Embedded Computing Systems, 2005. (ac-
cepted for publication).

14

