
Comparing two approaches
to compensable flow composition

Roberto Bruni1, Michael Butler2, Carla Ferreira3, Tony Hoare4, Herńan Melgratti1,
and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 School of Electronics and Computer Science, University of Southamptom, UK

3 Department of Computer Science, Technical University of Lisbon, Portugal
4 Microsoft Research Cambridge, UK

Abstract. Web services composition is an emerging paradigm for the integra-
tion of long running business processes, attracting the interest of both Industry,
in terms of XML-based standards for business description, and Academy, ex-
ploiting process description languages. The key challenging aspects to model are
orchestration workflows, choreography of exchanged messages, fault handling,
and transactional integrity with compensation mechanisms. Few recent proposals
attempted to mitigate the explosion of XML-constructs in ad hoc standards by
a careful selection of a small set of primitives related to the above aspects. This
papers clarifies analogies and differences between two such recent process de-
scription languages: one based on interleaving trace semantics and the other on
concurrent traces. We take advantage of their comparison to characterise and re-
late four different coordination policies for compensating parallel processes. Such
policies differ on the way in which the abort of a process influences the execution
of sibling processes, and whether compensation is distributed or centralised.

1 Introduction

Orchestration and choreography languages are tailored to the definition of web service
composition. Typically, these languages provide, among others, programming primi-
tives for the definition of business transactions, i.e., transactions that may require long
periods of time to complete, also calledLong-Running Transactions(LRTs). Moreover,
they may be interactive and hence not able to be check-pointed. Consequently,LRTs
cannot be based on locking (as usual for database transactions), but instead they rely on
a weaker notion of atomicity based oncompensations[8]. Compensations are activities
programmed ad hoc to recover partial executions of transactional processes.

The existing babel of approaches developed along the years for orchestration and
choreography building onWSDL [15] (WSCL [14], WSCI [13], BPML [3], WSFL [10],
XLANG [16], BPEL4WS [2]) witnesses the need of languages for service integration with
solid theoretical foundations. Several proposals have recently appeared in the literature
focused on the formalisation of compensable processes using process calculi. They can
be roughly divided into two types: (i) compensable flow composition [6,5,7] closer to
the spirit of orchestration languages likeBPEL4WS, where suitable process algebras are
designed from the scratch to describe the possible flow of control among services; and

2 R. Bruniet al.

(ii) interaction based compensations [1,4,9,11], as suitable extensions of well-known
name passing calculi, like theπ-calculus and join-calculus, for describing transactional
choreographies, where each service describes its possible interactions, and the actual
composition takes place dynamically, i.e. when services interact.

In this paper we pursue the first approach, i.e., to study the abstract composition
of services according to basic workflow shapes (sequential and parallel) and compens-
able transaction mechanisms (compensable activities, compensation scope, transaction
scope, nesting). Nevertheless, we are not aimed at designing a new language but at
comparing two main proposals, namelycompensatingCSP (cCSP) [7] andSagas cal-
culi [5]. Apart from stylistic differences (e.g., the trace semantics ofcCSP and the big
step SOS semantics ofSagas calculi), this comparison highlights the fact that such pro-
posals account for different compensation policies when handling concurrent processes.
First of all, we characterise such policies as the combination of two orthogonal strate-
gies: (i) whether parallel flows are forced to interrupt their executions when a sibling
process aborts; and (ii) whether compensation handling is centralised or distributed.
The combination of such strategies gives rise to the following four policies:

1. No interruption and centralised compensation.All concurrent processes execute
until completion, and only then they are compensated for if some abort.

2. No interruption and distributed compensation.All parallel flows execute until com-
pletion but, if needed, they compensate without waiting the completion of siblings.

3. Coordinated interruption.Parallel branches may be stopped when one flow aborts,
but the activation of the compensation procedure is handled in a centralised way,
i.e., all component flows have to be stopped, and only then the corresponding com-
pensations are executed.

4. Distributed interruption.Flows, if needed, are interrupted and then their compen-
sation procedures can be activated independently from the rest of the flows.

We show that all these policies can be defined by following either thecCSP ap-
proach or theSagas style. Moreover, we note that the semantics of originalcCSP cor-
responds to policy (3), while the two original semantics ofSagas Calculi, calledNaı̈ve
andRevised, follow respectively policies (2) and (4). Finally, we compare the four alter-
natives (and hence the original semantics of both proposals) by relating the set of traces
that each policy associates to a process. In particular, we show that these policies form
a partial order of traces, where originalcCSP andNaı̈ve Sagas are more restrictive than
Revised Sagas, but originalcCSP is unrelated toNaı̈ve Sagas.

Structure of the paper.We start by recalling in§ 2 the syntax and semantics ofcCSP
andSagas from [5,7]. Then, we outline the conceptual and stylistic similarities and dif-
ferences between the two approaches in§ 3. The more technical contribution starts in
§ 4, where we focus on the key aspects for the sequential case, by taking the correspond-
ing fragments of the calculi associated with sequential processes, for which we prove
the correspondence of both semantics by means of two straightforward encodings. The
different policies implemented by the two approaches emerge in§ 5, where we analyse
the case of parallel processes in transactions. The formal comparison of compensation
policies is summarised in§ 6. Finally, in § 7 we draw some conclusions and discuss
future work. Due to space limitation most proofs are omitted and some just sketched.

Comparing two approaches to compensable flow composition 3

2 Background

In this section we summarise the basics ofCompensatingCSP (cCSP) proposed in [7]
and ofSagas calculi from [5]. We focus on simplified versions by leaving out several
features present in both proposals, like exception handling and nesting.

2.1 CompensatingCSP

The set ofcCSP processes is defined by the following grammar:

(STANDARD PROCESSES)

P,Q ::= A | P;Q | P|Q | SKIP | THROW | YIELD | [PP]

(COMPENSABLE PROCESSES)

PP,QQ ::= P÷Q | PP;QQ | PP|QQ | SKIPP | THROWW| YIELDD

A standard process is either a basic activityA from an alphabetΣ, the sequential
compositionP;Q of processes, the parallel compositionP|Q, the empty processSKIP,
the raise of an interruptionTHROW, the yield to an interruptionYIELD, or a transac-
tion block [PP]. A basic compensable process is a compensation pairP÷Q whereP
is an atomic process andQ is its compensation. Compensable processes can be com-
posed either in sequencePP;QQor in parallelPP|QQ. The remaining processes are the
compensable counterpart of the standard ones.

Figure 1 summarises the trace semantics ofcCSP. A trace for a standard process
is a strings〈ω〉, wheres∈ Σ∗ is said theobservable flowandω ∈ Ω is thefinal event,
with Ω = {X, !,?}, with Σ∩Ω = /0 (X stands for success,! for fail, and?for yield). The
sequential compositionp;q concatenates the observable flows ofp andq only whenp
terminates with success, otherwise it isp. The composition of two concurrent traces
p〈ω〉||q〈ω′〉 corresponds to the setp|||q of all possible interleavings of the observable
flows, with final eventω&ω′, where& is associative and commutative.

The definition for the traces of standard processes is straightforward. The most in-
teresting one is that of a transaction block[PP]. Note that any trace of a compensable
processPP is a pair(p〈ω〉, p′), wherep〈ω〉 is the forward trace andp′ is a compensa-
tion trace forp. Then,[PP] selects all successful tracesp〈X〉 of PP, and the tracespp′,
corresponding to failed forward flowsp〈!〉 followed by their compensationsp′.

When composing compensable traces in series, the forward trace corresponds to
the sequential composition of the original forward traces, while the compensation trace
starts by the second compensation followed by the first one. The parallel composition is
defined as all possible interleavings of the forward and the backward flows, separately.

2.2 Sagas Calculi

We report here the two alternative semantics proposed in [5] for parallelSagas, namely
thenäıveandrevisedversions. The main difference between the two semantics is that
the latter allows the interruption of flow executions when a transaction fails. The set of
parallelSagas is given by the following grammar:

4 R. Bruniet al.

COMPOSITION OF STANDARD TRACES

Sequential
{

p〈X〉;q = pq
p〈ω〉;q = p〈ω〉 whenω 6= X

Parallel p〈ω〉||q〈ω′〉= {r〈ω&ω′〉|r ∈ (p|||q)}, where
ω ! ! ! ? ? X
ω′ ! ? X ? X X

ω&ω′ ! ! ! ? ? X

and





p|||〈〉= {p}
〈〉|||q = {q}

〈x〉p|||〈y〉q = {〈x〉r|r ∈ (p|||〈y〉q)}∪{〈y〉r|r ∈ (〈x〉p|||q)}

TRACES OF STANDARD PROCESSES

A =traces {〈A,X〉} for A∈ Σ SKIP=traces {〈X〉}
P;Q =traces {p;q|p∈ P∧q∈Q} THROW=traces {〈!〉}
P|Q =traces {r|r ∈ (p||q)∧ p∈ P∧q∈Q} YIELD=traces {〈?〉}
[PP] =traces {pp′|(p〈!〉, p′) ∈ PP} ∪ {p〈X〉|(p〈X〉, p′) ∈ PP}

COMPOSITION OF COMPENSABLE TRACES

Sequential
{

(p〈X〉, p′);(q,q′) = (pq,q′; p′)
(p〈ω〉, p′);(q,q′) = (p〈ω〉, p′) whenω 6= X

Parallel (p, p′)||(q,q′) = {(r, r ′)|r ∈ (p||q)∧ r ′ ∈ (p′||q′)}
Compensation pair

{
p〈X〉÷q = (p〈X〉,q)
p〈ω〉÷q = (p〈ω〉,〈X〉) whenω 6= X

TRACES OF COMPENSABLE PROCESSES

P÷Q =traces {(〈?〉,〈X〉)}∪{p÷q|p∈ P∧q∈Q}
PP;QQ=traces {pp;qq|pp∈ PP∧qq∈QQ}
PP|QQ=traces {rr |rr ∈ (pp||qq)∧ pp∈ PP∧qq∈QQ}
SKIPP=traces SKIP÷SKIP =traces {(〈?〉,〈X〉),(〈X〉,〈X〉)}

THROWW=traces THROW÷SKIP =traces {(〈?〉,〈X〉),(〈!〉,〈X〉)}
YIELDD=traces YIELD÷SKIP =traces {(〈?〉,〈X〉)}

Fig. 1. Trace semantics ofcCSP

(STEP) X ::= 0 | A | A÷B
(PROCESS) P ::= X | P;P | P|P
(SAGA) S ::= {[P]}

A sagaS encloses a processP in a transaction scope. Each step inP corresponds
either to an activityA or a compensated activityA÷B, whereA is the activity of the
normal flow andB its compensation. The term0 represents the inert process,P;P stands
for the sequential composition of processes, andP|P for the parallel composition.

To reduce the number of rules, the semantics ofSagas is defined up-to structural
congruence over processes given by the following axioms:

A÷0 ≡ A 0;P ≡ P;0 ≡ P (P;Q);R ≡ P;(Q;R)
P|Q ≡ Q|P P|0 ≡ P P|(Q|R) ≡ (P|Q)|R

Comparing two approaches to compensable flow composition 5

Moreover, activities are assumed to be named differently. The set of possible results
for the execution of a saga isR = {�,£,�}, where� stands forcommit, £ for (com-
pensated)abort, and� for abnormal termination(when the compensation procedure
fails). We let¤ to range overR . The execution of a sequential saga is described in
terms of a contextΓ, i.e., a partial functionΓ : A → {£,�} that maps any activity to
the result obtained with its execution. Activities can only commit or abort (they do not
terminate abnormally). A particular functionΓ is writtenA1 7→¤1, . . . ,An 7→¤n, where
Ai 6= A j for all i 6= j. (Note that ’,’ stands for the disjoint union of partial functions).

The semantics of a sagaS is given by a relationΓ ` S
α−→¤, which denotes that the

execution ofS produces¤ when the atomic activities behave likeΓ. The observation
α describes the actual flow of control occurring when executingSunder the contextΓ.
The flowα is a process whose activities have no compensations. The auxiliary relation
Γ ` 〈P,β〉 α−→ 〈¤,β′〉 describes the behaviour of a processP within a saga that already
installed the compensationβ (but β itself contains no compensation). WhenP is exe-
cuted inside a saga, it can either commit, abort, or fail, but additionally, it can change
the compensations toβ′, for instance by installing new activities.

Näıve semantics. The näıve semantics for a parallel saga is shown in Figure 2(a).
Rule (S-ACT) stands for the successful execution of the compensated activityA÷B that
installsB in front of β. Rules (S-CMP) and (F-CMP) describe the execution ofA÷Bwhen
A fails. Both rules activate the compensationβ (premises of the rules). In particular, (S-
CMP) stands for the successful compensation, while rule (F-CMP) handles the failure of
the compensation procedure. Rule (S-STEP) describes the behaviour of a processP;Q
when the stepP commits. In such case,Q is executed with the compensation installed
by P. Rule (A-STEP) handles the case in whichP;Q is stopped becauseP aborts or ends
abnormally. Rule (SAGA) states that the execution of a saga{[P]} runsP in a thread
that initially has no compensations. The rules described above give the semantics for
the sequential case, while the remaining rules define the naı̈ve semantics of parallel
composition. Rule(S-PAR) deals with the successful execution of both branches, while
the remaining rules handle the cases in which at least one branch fails.

Revised semantics.The revised semantics avoids the unnecessary execution of activ-
ities in the foward flow when the saga fails. This is achieved by stopping the execution
of the forward flow when some activity fails. For this reason, the execution of a process
may also finish with: (i)£, i.e. the execution is forced to compensate and the com-
pensation is successful, and (ii)�, i.e., the execution is forced to compensate and the
compensation procedure fails. The associative and commutative operator∧ expresses
the result obtained by combining the execution of two parallel branches (see Figure 3).
Note that∧ is not defined when one operand is� and the other is not. In fact, it is
not possible for a branch to commit when the other aborts or fails: inP|Q whenP can
commit butQ aborts, thenP is forced to compensate.

For the revised semantics, all rules for the sequential case are as in Figure 2(b),
but considering for rule (A-STEP) the side conditionσ ∈ {£,�,£,�}), and for rule
(SAGA) the side condition¤ ∈ {�,£,�}. In addition, rules in Figure 2(b) describe
the behaviour of concurrent processes. Rule(FORCED-ABT) forces the activation of the

6 R. Bruniet al.

(ZERO)

Γ ` 〈0,β〉 0−→ 〈�,β〉
(S-ACT)

A 7→�,Γ ` 〈A÷B,β〉 A−→ 〈�,B;β〉
(S-CMP)

Γ ` 〈β,0〉 α−→ 〈�,0〉
A 7→£,Γ ` 〈A÷B,β〉 α−→ 〈£,0〉

(F-CMP)

Γ ` 〈β,0〉 α−→ 〈£,0〉
A 7→£,Γ ` 〈A÷B,β〉 α−→ 〈�,0〉

(S-STEP)

Γ ` 〈P,β〉 α−→ 〈�,β′′〉 Γ ` 〈Q,β′′〉 α′−→ 〈¤,β′〉
Γ ` 〈P;Q,β〉 α;α′−→ 〈¤,β′〉

(A-STEP)

Γ ` 〈P,β〉 α−→ 〈σ,0〉
Γ ` 〈P;Q,β〉 α−→ 〈σ,0〉

σ ∈ {£,�}

(SAGA)

Γ ` 〈P,0〉 α−→ 〈¤,β〉
Γ ` {[P]} α−→¤

(S-PAR)

Γ ` 〈P,0〉 α−→ 〈�,β′〉 Γ ` 〈Q,0〉 α′−→ 〈�,β′′〉
Γ ` 〈P|Q,β〉 α|α′−→ 〈�,(β′|β′′);β〉

(F-PAR-NAÏVE-1)

Γ ` 〈P,0〉 α−→ 〈£,0〉 Γ ` 〈Q,0〉 α′−→ 〈£,0〉 Γ ` 〈β,0〉 α′′−→ 〈¤1,0〉
Γ ` 〈P|Q,β〉 (α|α′);α′′−→ 〈¤2,0〉

¤2 =
{

£ if ¤1 =�
� otherwise

(F-PAR-NAÏVE-2)

Γ ` 〈P,0〉 α−→ 〈�,0〉 Γ ` 〈Q,0〉 α′−→ 〈�,β′〉 Γ ` 〈β′,0〉 α′′−→ 〈¤,0〉
Γ ` 〈P|Q,β〉 α|(α′;α′′)−→ 〈�,0〉

(F-PAR-NAÏVE-3)

Γ ` 〈P,0〉 α−→ 〈�,0〉 Γ ` 〈Q,0〉 α′−→ 〈σ,0〉
Γ ` 〈P|Q,β〉 (α|α′)−→ 〈�,0〉

with σ ∈ {£,�}

(F-PAR-NAÏVE-4A)

Γ ` 〈P,0〉 α−→ 〈�,β′〉 Γ ` 〈Q,0〉 α′−→ 〈£,0〉 Γ ` 〈β′,0〉 α′′−→ 〈£,0〉
Γ ` 〈P|Q,β〉 (α;α′′)|α′−→ 〈�,0〉

(F-PAR-NAÏVE-4B)

Γ ` 〈P,0〉 α−→ 〈�,β′〉 Γ ` 〈Q,0〉 α′−→ 〈£,0〉 Γ ` 〈β′,0〉 α′′−→ 〈�,0〉 Γ ` 〈β,0〉 α′′′−→ 〈¤1,0〉
Γ ` 〈P|Q,β〉 ((α;α′′)|α′);α′′′−→ 〈¤2,0〉 ¤2 =

{
£ if ¤1 =�
� otherwise

(a) Näıve semantics of parallelSagas.

(FORCED-ABT)

Γ ` 〈β,0〉 α−→ 〈¤1,0〉
Γ ` 〈P,β〉 α−→ 〈¤2,0〉

¤2 =
{

£ if ¤1 =�
� otherwise

(S-PAR)

Γ ` 〈P,0〉 α−→ 〈�,β′〉 Γ ` 〈Q,0〉 α′−→ 〈�,β′′〉
Γ ` 〈P|Q,β〉 α|α′−→ 〈�,(β′|β′′);β〉

(F-PAR)

Γ ` 〈P,0〉 α−→ 〈σ1,0〉 Γ ` 〈Q,0〉 α−→ 〈σ2,0〉
Γ ` 〈P|Q,β〉 α|α′−→ 〈σ1∧σ2,0〉

{
σ1 ∈ {�,�}
σ2 ∈ {£,�,£,�}

(C-PAR)

Γ ` 〈P,0〉 α−→ 〈σ1,0〉 Γ ` 〈Q,0〉 α′−→ 〈σ2,0〉 Γ ` 〈β,0〉 γ−→ 〈¤1,0〉
Γ ` 〈P|Q,β〉 (α|α′);γ−→ 〈σ1∧σ2∧¤2,0〉

σ1,σ2 ∈ {£,£} and

¤2 =
{

£ if ¤1 =�
� otherwise

(b) Revised semantics of parallelSagas.

Fig. 2. Concurrent semantics ofSagas.

Comparing two approaches to compensable flow composition 7

∧ � £ � £ �
� � − − − −
£ − £ � £ �
� − � � � �
£ − £ � £ �
� − � � � �

Fig. 3. The operator∧.

compensation before executingP, which will produce a forced termination£ or�. Rule
(S-PAR) is the same as in the naı̈ve semantics, while the rollback of a branch is handled
by (F-PAR) and (C-PAR). Rule (C-PAR) handles the case in which bothP andQ are
successfully compensated for, while(F-PAR) handles the failure of the compensation
procedure.

An interesting aspect on the revised semantics is that rule (SAGA) requiresP to end
with �, £ or�, but not with forced termination. This implies that a saga aborts if and
only if (at least) one activity aborts.

3 cCSP vs Sagas Calculi

In this section we try to enucleate the main conceptual differences between the two
approaches and to give an informal account of the underlying different policies for
business process design and execution.

Executions of activities. An activity A is always successful incCSP. Instead, the ex-
ecution of activities inSagas depends on a particular execution contextΓ, which
allows to evaluate the semantics of a process according to different scenarios.

Aborted activities vs Programmable abort. In cCSP the special primitiveTHROW
introduces programmable aborts. Instead, the abort of a saga is caused by the abort
of an activity in the scenarioΓ. Thus, the primitiveTHROWroughly corresponds
to aSagas activity that always fails in anyΓ.

Yielding to interrupt. In cCSP the yielding to interrupt is explicitly programmed by
using the special primitiveYIELD. Instead, inSagas the yielding to interrupt is
wired in the semantics rules and cannot be programmed.

Failed compensations.Different from Sagas calculi, the abort of and the successful
compensation of a transaction block incCSP is silent to the parent process, i.e.,
there is no possibility to distinguish this case from the situation in which the for-
ward flow complete successfully. Although not reported in§ 2, Sagas calculi pro-
vide the primitivetry Sor P in [5], which allows to activatesP whenSaborts and
it is compensated successfully.

Interleaving vs concurrent traces. The semantics of acCSP process is given by list-
ing all possible executions that differ on the interleaving of their concurrent activ-
ities. Instead, in theSagas calculi computations are described up-to interleavings.
Note that any labelα in a reduction denotes a set of possible executions.

Compensation of parallel processes.As described in§ 1, the most important distinc-
tion of both proposal is when defining the compensation forP|Q, since they use
different compensation policies. This distinction is formalised in§ 5

8 R. Bruniet al.

Nesting. The primitiveP÷Q of cCSP allow for the nesting of transactions. TheSagas
counterpart is called nestedSagas and it is presented in [5], which provides two
different kinds of compensations calleddefault compensationsand programmed
compensation. The latter is equivalent to thecCSP primitive. The common frag-
ment tocCSP andSagas we shall discuss does not allow nesting, and therefore
only compensable activitiesA÷B will be considered.

Adequacy of the semantics.Although not described here, correctness ofcCSP se-
mantics is stated in terms of self-cancelling properties. That is, when assuming
compensations to be perfect, it is shown that the execution of a transaction is equiv-
alent to its forward flow or toSKIP. In Sagas, the meaning of the execution of a
transaction is shown by suitable adequacy theorems, which are more precise but
less intuitive and more complex to express than the self-cancelling properties.

In the rest of the paper we shall focus on the formal comparison of the sequential
and parallel fragments of the two calculi, leaving to future work the treatment of the
last two items from the above list (nesting and adequacy). The yielding modality and
parallel compensations are discussed in detail in§ 5, while all the remaining items are
relevant also for the sequential fragment in§ 4.

4 The sequential case

In this section we focus on the subset of sequential processes and we show that both
semantics coincide by giving two encodings. SequentialcCSP is obtained by restricting
the syntax of compensable processes as follow.

PP,QQ ::= A÷B | PP;QQ | SKIPP | THROWW| YIELDD

Note that instead of havingP÷Q, we only allow basic activities to be compensated
by basic activities. SequentialSagas is obtained by forbidding the parallel composition
of processesP|P. We denote bycCSPseq the set of sequentialcCSP processes, and by
Sagasseq the set of sequentialSagas processes.

4.1 EncodingcCSPseq into Sagasseq

The main idea is that any processPP∈ cCSPseq is associated with both a saga process
P∈ Sagasseq and a particular environmentΓ ∈ ∇ in which all activities ofP commits
(∇ stands for the set of all possible environments). Moreover, theTHROWWprimitive
is represented by a fresh activity that aborts inΓ. The last subtlety is that all activities
in P have to be named differently, for this reason the encoding assures activities inP to
have different names. Formally, the encoding is given by the following function

J K : cCSPseq → Sagasseq×∇

which is defined in terms of the auxiliary function (used to assure activity names to be
different)

J K : cCSPseq×N∗→ Sagasseq×∇

Comparing two approaches to compensable flow composition 9

The encoding is defined by lettingJPPK = JPPK0, with:

JA÷BKσ = Aσ÷Bσ,{Aσ 7→�,Bσ 7→�}
JPP1;PP2Kσ = P1;P2,Γ1]Γ2 s.t. JPPiKσ.i = Pi ,Γi for i = 1,2

JSKIPPKσ = JYIELDDKσ = 0, /0 JTHROWWKσ = Tσ,{Tσ 7→£}
Notation 1 We letxαy be obtained fromα by removing all the subscriptsσ from activ-
ities and by considering0 as SKIP. Given a sagaS, we letA(S) = {A | A occurs inS}
be the set of its activities and|S| be itsforward flow, which is obtained by replacing the
patternA÷B byA everywhere inS(i.e., removing all compensations).

Theorem 4.1. Let JPPK= P,Γ. If Γ ` {[P]} α−→¤, thenxαy =traces [PP].

Proof (Sketch).The proof is by induction on the structure ofPP, showing that one of

the following conditions holds (for anyβ andΓ′ s.t.Γ′ ` 〈β,0〉 β−→ 〈�,0〉):
– Γ,Γ′ ` 〈P,β〉 α−→ 〈�,β′;β〉 andPP = {(p〈X〉, p′)|p〈X〉 ∈ xαy∧ p′ ∈ xβ′y}∪T,

whereT is the set of all yielding traces(q〈?〉,q′〈X〉) s.t. q andq′ have the same
length andq is a prefix of a trace inxαy andq′ is prefix of a trace inxβy.

– Γ,Γ′ ` 〈P,β〉 α;α′;β−→ 〈£,0〉 s.t. A(α) ⊆ A(|P|) ∧ A(α′)∩A(|P|) = /0, and PP =
{(p〈!〉, p′)|p〈X〉 ∈ xαy∧ p′ ∈ xα′y}∪T, whereT is defined as before. ut

4.2 EncodingSagasseq into cCSPseq

Any processP ∈ Sagasseq represents a set of processesPP∈ cCSPseq, one for any
possible environmentΓ ∈ ∇. Hence, the encoding is defined as follow:

J K : Sagasseq×∇→ cCSPseq

J0KΓ = SKIPP JP;QKΓ = JPKΓ;JQKΓ
JAKA7→�,Γ = A JAKA7→£,Γ = THROWW

JA÷BKA7→�,B7→�,Γ = A÷B JA÷BKA7→£,Γ = THROWW

Note that the encoding for a compensation pair is defined only when the compen-
sationB is an activity that commits, because the fragment ofcCSP we are considering
does not allowTHROWin compensation pairs. Hence, we shall account only for con-
textsΓ that never make a saga to terminate abnormally (by adequacy results in [12,5]).

Theorem 4.2. LetΓ be an environment,P∈Sagasseq, andJPKΓ = PP. If Γ`{[P]} α−→¤,
thenxαy =traces [PP].

5 Alternative semantics for parallel compensations

In this section we formally characterise the four compensation policies mentioned in§1.

Notation 2 We writecCSPpari andSagaspari to denote thecCSP andSagas semantics
when considering the strategyi = 1, . . . ,4, as enumerated in§ 1.

10 R. Bruniet al.

In all remaining sections assume the encoding functions extended as follow

JPP1|PP2Kσ = P1|P2,Γ1]Γ2 s.t. JPPiKσ.i = Pi ,Γi for i = 1,2

JP|QKΓ = JPKΓ|JQKΓ

5.1 No interruption and centralised compensation

The desired behaviour for a parallel transaction when assuming no interruption and
centralised compensation can be illustrated with the following law forcCSPpar1:

[A÷A′ | B÷B′ | THROWW] =traces (A|B);(A′|B′)
The forward flowA|B is executed completely before the compensationA′|B′. More-

over, all activities in the forward flow are observed even though their execution could
be avoided in a clever system (since the transaction will fail anyway).

Trace semantics.The trace semantics for this case is obtained by redefining the traces
of compensation pairs and parallel composition. Since parallel branches do not yield to
an interrupt, the definition for a compensation pair is simplified as follow:

A÷B =traces {p÷q|p∈ A∧q∈ B} =traces {(〈A,X〉,〈B,X〉)}
We remove from the original definition the possibility for a compensation pair to

yield to an interrupt before executing the forward flowA. On the other hand, the traces
for parallel compositionP|Q consider only the traces ofP and Q that have finished
either successfully or with a failure, but not those yielding to an interruption, i.e.,

p〈ω〉||q〈ω′〉= {r〈ω&ω′〉|r ∈ (p|||q)∧ω,ω′ ∈ {X, !}}
Since we do not allow interruption,YIELDD has no effects and, hence, we let

YIELDD=traces SKIPP=traces {(〈X〉,〈X〉)}. Moreover,THROWW=traces {(〈!〉,〈X〉)}.

SOS semantics.The SOS semantics for the case of no interruption and centralised
compensation is in Figure 4. The main differences with the rules in Figure 2(a) is that
the activation of the compensation procedure is left to the rule(SAGA) and not to(F-
ACT). Note also that the result forP|Q is given by& (not by∧ as in§ 2.2), which is
analogous to the trace semantics.

Correspondence. The following results assure the correspondence between the two
semantics.

Theorem 5.1. LetPP∈ cCSPpar1 andJPPK= P,Γ, withP∈Sagaspar1. If Γ`{[P]} α−→¤,
thenxαy =traces [PP].

Theorem 5.2. Let Γ be an environment,P ∈ Sagaspar1, and JPKΓ = PP, with PP∈
cCSPpar1. If Γ ` {[P]} α−→¤, thenxαy =traces [PP].

Comparing two approaches to compensable flow composition 11

(ZERO)

Γ ` 〈0,β〉 0−→ 〈�,β〉
(S-ACT)

A 7→�,Γ ` 〈A÷B,β〉 A−→ 〈�,B;β〉

(F-ACT)

A 7→£,Γ ` 〈A÷B,β〉 0−→ 〈£,β〉

(S-STEP)

Γ ` 〈P,β〉 α−→ 〈�,β′′〉 Γ ` 〈Q,β′′〉 α′−→ 〈¤,β′〉
Γ ` 〈P;Q,β〉 α;α′−→ 〈¤,β′〉

(A-STEP)

Γ ` 〈P,β〉 α−→ 〈£,β′〉
Γ ` 〈P;Q,β〉 α−→ 〈£,β′〉

(PAR)

Γ ` 〈P,0〉 α1−→ 〈¤1,β1〉 Γ ` 〈Q,0〉 α2−→ 〈¤2,β2〉
Γ ` 〈P|Q,β〉 α1|α2−→ 〈¤1&¤2,β1|β2;β〉

where�&�=�,�&£ = £,and£&£ = £

(CMT-SAGA)

Γ ` 〈P,0〉 α−→ 〈�,β〉
Γ ` {[P]} α−→�

(ABORTED-SAGA)

Γ ` 〈P,0〉 α−→ 〈£,β〉 Γ ` 〈β,0〉 β−→ 〈�,0〉
Γ ` {[P]} α;β−→£

(FAILED-SAGA)

Γ ` 〈P,0〉 α−→ 〈£,β〉 Γ ` 〈β,0〉 β′−→ 〈£,0〉
Γ ` {[P]} α;β′−→�

Fig. 4. SOS for no interruption and centralised compensation.

5.2 No interruption and distributed compensation

As aforementioned, a distributed procedure for compensating parallel branches may
allow the execution of activities of the backward flow even when parts of the forward
flow are still in execution. As an example, the following law should hold incCSPpar2

(i.e., by assuming no interruption and distributed compensation):

[A÷A′ | B÷B′ | THROWW] =traces A;A′|B;B′

Note that the forward flowsA andB are executed entirely, but parallel branches are
independently compensated for. For example,A′ can be executed even beforeB.

Trace semantics. As for the previous case, the traces of a compensation pair do not
have yielding behaviours, andSKIPP, YIELDDandTHROWWare defined analogously.
Instead, the parallel composition of traces is as follow

(p〈X〉, p′)||(q〈X〉,q′) = {(r〈X〉, r ′〈X〉)|r ∈ (p|||q)∧ r ′〈X〉 ∈ (p′||q′)}
∪{(r〈?〉,〈X〉)|r〈X〉 ∈ (pp′||qq′)}

(p〈ω〉, p′)||(q〈ω′〉,q′) = {(r〈ω&ω′〉,〈X〉)|r〈X〉 ∈ (pp′||qq′)} if ω&ω′ ∈ {!,?}
Note that the parallel composition of two successful traces contains all the interleav-

ings of the forward flows compensated with the interleavings of the original compensa-
tions, and a set of yielding traces. Yielding traces stand for the behaviours of processes

12 R. Bruniet al.

PP|QQ in case they are composed in parallel with a process that fails, for instance
PP|QQ|THROWW. Finally, the parallel composition when at least one trace ends with
?or ! is defined as the interleavings of the original compensated flows.

SOS semantics.This case corresponds to the naı̈ve semantics described in§ 2.2.

Correspondence.Different from previous cases, for a saga{[P]} and an environment

Γ there can be severalαi s.t.Γ ` {[P]} αi−→¤. For instance, considerP = A1÷B1|A2÷
B2|F1 andΓ = A1 7→ �,A2 7→ �,B1 7→ �,B2 7→ �,F1 7→ £. Then, it is easy to check

that Γ ` {[P]} αi−→ £ for α1 = A1;B1|A2;B2 andα2 = (A1|A2);(B1|B2), depending on
whetherP is considered either as(A1÷B1|A2÷B2)|F1 or asA1÷B1|(A2÷B2|F1).
Nevertheless, note that the result¤ is always unique by results in [5].

We noteΓ ` {[P]} κ−→¤, whereκ = {αi |Γ ` {[P]} αi−→¤} and let

xκy =traces ∪αi∈κxαiy

Theorem 5.3. LetPP∈ cCSPpar2 andJPPK= P,Γ, withP∈Sagaspar2. If Γ`{[P]} κ−→¤,
thenxκy =traces [PP].

Theorem 5.4. Let Γ be an environment,P ∈ Sagaspar2, and JPKΓ = PP, with PP∈
cCSPpar2. If Γ ` {[P]} κ−→¤, thenxκy =traces [PP].

5.3 Interruption and centralised compensation

When considering interruption, the main idea is to avoid the execution of steps by stop-
ping the forward flow as soon as an activity fails. Nevertheless, in a distributed setting
we cannot expect processes to be stopped immediately. The law we would like to prove
when using this strategy is the following.

[A÷A′ | B÷B′ | THROWW] =traces SKIP∪ (A;A′) ∪ (B;B′) ∪ (A|B);(A′|B′)
The first three terms show that parallel branches can be aborted even before starting

their execution when one process fails (i.e.,THROWW). Instead, the last term of the
right hand side means that compensation is centralised.

Trace semantics.The case of interruption and centralised compensation corresponds
to the original proposal of the trace semantics summarised in§ 2.1.

SOS semantics.The SOS semantics for this strategy is obtained by adding forced
termination to the rules corresponding to the policy of no interruption and centralised
compensation (shown in Figure 4). In order to achieve that, rules in Figure 4 are ex-
tended with the additional rule

(FORCED-ABT) Γ ` 〈P,β〉 0−→ 〈�,β〉
which introduces forced termination. In this case, it is enough to consider one result,
which we note�. Moreover we extend the definition of& used in rule(PAR), as follow
�&� = �, �&� = �, �&£ = £. (Note that this definition makes the operator&
isomorphic in both the trace and the SOS semantics).

Comparing two approaches to compensable flow composition 13

Correspondence. As for the previous cases, we have the following correspondence
results forcCSPpar3 andSagaspar3

Theorem 5.5. LetPP∈ cCSPpar3 andJPPK= P,Γ, withP∈Sagaspar3. If Γ`{[P]} κ−→¤,
thenxκy =traces [PP].

Theorem 5.6. Let Γ be an environment,P ∈ Sagaspar3, and JPKΓ = PP, with PP∈
cCSPpar3. If Γ ` {[P]} κ−→¤, thenxκy =traces [PP].

5.4 Interruption and distributed compensation

This policy can be illustrated by the following equality incCSPpar4:

[A÷A′|B÷B′|THROWW] =traces SKIP∪ (A;A′) ∪ (B;B′) ∪ (A;A′)|(B;B′)

The difference with the policy reported in§ 5.3 relies in the last term of the sum-
mation in the right hand side of the equality. In fact, the last term of the above equality
shows that the compensation is handled in a distributed way. The remaining terms stand
for the cases in which the forward flow is stopped before completion.

Trace semantics. The trace semantics for this policy is obtained from the original
one (see Figure 1) by changing the definition for the parallel composition of traces as
in § 5.2, i.e.,

(p〈X〉, p′)||(q〈X〉,q′) = {(r〈X〉, r ′〈X〉)|r ∈ (p|||q)∧ r ′〈X〉 ∈ (p′||q′)}
∪{(r〈?〉,〈X〉)|r〈X〉 ∈ (pp′||qq′)}

(p〈ω〉, p′)||(q〈ω′〉,q′) = {(r〈ω&ω′〉,〈X〉)|r〈X〉 ∈ (pp′||qq′)} if ω&ω′ ∈ {!,?}

SOS semantics.This strategy corresponds to the original revised semantics of parallel
Sagas (Figure 2(b)).

Correspondence. The following results state the correspondence between the trace
and SOS semantics for this policy.

Theorem 5.7. LetPP∈ cCSPpar4 andJPPK= P,Γ, withP∈Sagaspar4. If Γ`{[P]} κ−→¤,
thenxκy =traces [PP].

Theorem 5.8. Let Γ be an environment,P ∈ Sagaspar3, and JPKΓ = PP, with PP∈
cCSPpar3. If Γ ` {[P]} κ−→¤, thenxκy =traces [PP].

6 Relation of the proposed semantics

The four strategies presented in§ 5 correspond to alternative implementations for the
compensation mechanism. In this section, we analyse the relation among such policies.
The following result states the relation among the traces of a transaction[PP] accord-
ingly to the four possible semantics for compensating parallel processes.

14 R. Bruniet al.

Theorem 6.1. Let [PP] be a parallelcCSP process, and let[PP]cCSPpari denote the
traces of[PP] when considering the strategyi = 1, ...,4. Then, the four trace seman-
tics satisfy the following diagram

[PP]cCSPpar1

⊆ //

⊆
²²

[PP]cCSPpar2

⊆
²²

Naı̈ve Sagas

[PP]cCSPpar3

⊆ //Original cCSP [PP]cCSPpar4 Revised Sagas

Proof (Sketch).The proof for any inclusion follows by showing (by induction on the
structure ofPP) that any trace inPPcCSPpari corresponds with a trace inPPcCSPpar j . For
instance, that

– (p〈X〉, p′) ∈ PPcCSPpar1 ⇒ (p〈X〉, p′) ∈ PPcCSPpar2

– (p〈!〉, p′p′′) ∈ PPcCSPpar1 ⇒ (pp′〈!〉, p′′) ∈ PPcCSPpar2 . ut
Note that the above diagram does not include[PP]cCSPpar2 ⊆ [PP]cCSPpar3 nor

[PP]cCSPpar3 ⊆ [PP]cCSPpar2 . In fact, it is easy to check that there are processes[PP] for
which none of them holds. For instance, considerP= [A÷A′;B÷B′|C÷C′|THROWW].
Note thatp = 〈A,B,B′,A′,C,C′,X〉 ∈ PcCSPpar2 , but p 6∈ PcCSPpar3 , since compensations
A′ andB′ take place beforeC. On the other hand, note thatq = 〈X〉 ∈ PcCSPpar3 , but
q 6∈ PcCSPpar2 since the forward flow is required to execute until termination.

The above result makes incomparable the semantics of originalcCSP and näıve
Sagas. On the other hand, it shows that the revised version ofSagas allows more
traces thancCSP, and hence it is less restrictive on which are the acceptable execu-
tions of processes. Nevertheless, the distributed compensation mechanism ofcCSPpar4

includes a “guessing mechanisms” that allows branches on the forward flow to compen-
sate even before an activity aborts. For instance,[A÷A′;THROWW|B÷B′] has the trace
p = 〈B;B′;A;A′〉. SinceA is executed afterB, p stands for an execution in which the
branchB÷B′ starts its compensation beforeTHROWWis reached. Although this is an
acceptable and valid execution of the above transaction, it is hard to imagine a plausible
implementation of such a mechanism, which suggests that a more realistic policy relies
in betweencCSP and revisedSagas.

7 Final Remarks

We have compared two recent formal approaches to the modelling of compensable flow
composition, that have been proposed independently in [5,7]. For the sequential case
we have shown that the two frameworks essentially coincide by providing fully abstract
encodings. For the parallel case we have observed that the two approaches followed
different compensation policies, and that up to four different choices were possible for
activating compensations in parallel branches. We have shown that each alternative can
be formalised by adjusting the semantics of the two calculi. Finally we have related all
different policies by showing that they form a partial order of trace models.

Our more ambitious research programme is to extend the comparison to deal with
more advanced features, like nesting, joint transactions, message passing and action

Comparing two approaches to compensable flow composition 15

refinement. To this end, the research presented here has been valuable in deepening our
understanding of the phenomenon of a compensable parallel transaction and the range
of available design options.

AcknowledgementsResearch supported by the project HPRN-CT-2002-00275SEG-
RAV IS. We thank Microsoft Research (Cambridge) for hosting two workshops at which
the ideas behind the paper were initiated and discussed. We also thank the anonymous
referees for their helpful comments.

References

1. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. In
E. Najm, U. Nestmann, and P. Stevens, editors,Proceedings of FMOODS 2003, 6th IFIP
International Conference on Formal Methods for Open-Object Based Distributed Systems,
volume 2884 ofLect. Notes in Comput. Sci., pages 124–138. Springer Verlag, 2003.

2. BPEL Specification (v.1.1).http://www.ibm.com/developerworks/library/ws-bpel .
3. Business Process Modeling Language (BPML).http://www.bpmi.org/BPML.htm .
4. R. Bruni, H. Melgratti, and U. Montanari. Nested commits for mobile calculi: extending Join.

In J.-J. Ĺevy, E. Mayr, and J. Mitchell, editors,Proceedings of the 3rd IFIP-TCS 2004, 3rd
IFIP Intl. Conference on Theoretical Computer Science, pages 569–582. Kluwer Academic
Publishers, 2004.

5. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. InProceedings of POPL 2005, 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 209–220. ACM Press, 2005.

6. M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling
long-running business transactions. In R. De Nicola, G. Ferrari, and G. Meredith, editors,
Proceedings of Coordination 2004, volume 2949 ofLect. Notes in Comput. Sci., pages 87–
104. Springer Verlag, 2004.

7. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In
A. Abdallah, C.B. Jones, and J. Sanders, editors,Proceedings of 25 Years of CSP, volume
3525 ofLect. Notes in Comput. Sci., pages 133–150. Springer Verlag, 2005.

8. H. Garcia-Molina and K. Salem. Sagas. In U. Dayal and I.L. Traiger, editors,Proceedings
of the ACM Special Interest Group on Management of Data Annual Conference, pages 249–
259. ACM Press, 1987.

9. C. Laneve and G. Zavattaro. Foundations of web transactions. In V. Sassone, editor,Pro-
ceedings of FoSSaCS 2005, 8th International Conference on Foundations of Software Science
and Computational Structures, volume 3441 ofLect. Notes in Comput. Sci., pages 282–298.
Springer Verlag, 2005.

10. F. Leymann. WSFL Specification (v.1.0). http://www-306.ibm.com/software/
solutions/webservices/pdf/WSFL.pdf , May 2001.

11. M. Mazzara and R. Lucchi. A framework for generic error handling in business processes.
In M. Bravetti and G. Zavattaro, editors,Proceedings of WS-FM 2004, 1st International
Workshop on Web Services and Formal Methods, 2004. To appear as ENTCS.

12. H. Melgratti.Models and Languages for Global Computing Transaction. PhD thesis, Com-
puter Science Department, University of Pisa, 2005. Submitted.

13. Web Service Choreography Interface (WSCI) 1.0.http://www.w3.org/TR/wsci .
14. Web Services Conversation Language (WSCL) 1.0.http://www.w3.org/TR/wscl10/ .
15. Web Service Description Language (WSDL).http://www.w3.org/TR/wsdl .
16. Web Services for Business Process Design (XLANG).http://www.gotdotnet.com/

team/xml_wsspecs/xlang-c/default.htm .

