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Abstract. System availability is improved by replication of data objects
in a distributed database system. It is advantageous to replicate data
objects when transaction workload is predominantly read only. However,
during updates, the complexity of keeping replica identical arises due to
failures. A number of approaches has been proposed to make systems
fault tolerant through exchange of messages. Logical clocks provide the
framework to realize global causal ordering on messages. The algorithms
ensuring globally ordered delivery of messages may be coupled with the
provisions to provide fault tolerance in event of failures. The B Method
provides state based formal notations for writing specification of soft-
ware systems. Event B provides a formal approach to development of
such complex system. In this paper we present a part of ongoing work
in this area. The specification for global ordering of messages is pre-
sented as B Machine. The global ordering of messages may be achieved
by implementing Vector Clocks. The same approach may be extended to
the formal development of a fault tolerant distributed data replication
system.

1 Introduction

A distributed system is a collection of autonomous computer system that coop-
erate with each other for successful completion of a distributed computation. A
distributed computation may require access to resources located at participating
sites. A typical database transaction contains a sequence of database operations.
This sequence of database operations is considered as an atomic action. In order
to maintain the consistency of the database either all of the operations need be
done or none at all. A distributed transaction may spawn several sites reading
or updating data objects. The purpose of replication of data objects at different
sites is to increase the availability of systems which in turn speeds up query pro-
cessing. Replication of data is advantageous when the transaction work load is
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predominantly read only. However in the case of updates, it is necessary to keep
the replicas identical, failing to do that may lead the database in to an incon-
sistent state. A distributed transaction consists of communicating transaction
components at participating sites. A commit or abort decision of a distributed
transaction is based on the decision of components of the transaction running
at participating sites. A commit is an unconditional guarantee that update to a
database are permanent. To maintain consistency of a database it is necessary
that a transaction commit at each participating site or at none of sites.

There exist several approaches to ensure global atomicity. Gray addressed the
issue of ensuring global atomicity despite failures in [10]. The two phase com-
mit protocol provides fault tolerance to distributed transactions despite failures.
Transaction failure, site failure and network partition are causes of failures. An
increasing number of components in a distributed system imply a higher prob-
ability of component failure during execution of distributed transactions. The
two phase commit protocol ensures global atomicity through exchange of mes-
sages among the participating sites and coordinating site. The drawback of this
protocol is that it is blocking because in case of failure of the coordinator site,
participants wait for its recovery. The variants of this protocol were proposed
to improve the performance of this protocol in [14]. The presumed commit pro-
tocol is optimized to handle general update transactions while presumed abort
optimizes partial read-only transactions. Levi and others presented an optimistic
two phase nonblocking commit protocol [12] in which locks acquired on data ob-
ject at a site are released when the site is ready to commit. In case of abort of
distributed transactions, a compensating transaction is executed at that site to
undo the updates. A three phase commit protocol [18] is a nonblocking commit
protocol where failures are restricted to site failures only. All of these protocols
assume that mechanisms such as maintaining the database log and local recovery
are present locally at each site. There are a number of communication paradigm
in which commit protocols are implemented. In centralized two phase commit
protocol no messages are exchanged among participating sites and messages are
exchanged only between between the coordinator site and cohorts. In the nested
two phase commit protocol cohorts may exchange messages among themselves.
A distributed two phase commit eliminates the second phase as the coordinator
and cohorts exchange messages through broadcasting. Every site may reach the
decision to abort/commit by means of vote-abort or vote-commit message.

In a distributed system neither a global common clock nor shared memory
exist. In the absence of a global clock and shared memory, an up to date knowl-
edge of a system is not known to any process. In these systems the processes
communicate through exchange of messages. These messages are delivered after
arbitrary time delays. This asynchronous distributed system model may span
large geographical areas. A system may be designed as a fault tolerant system
either by masking failures or by following a defined sequence of steps in the
process of recovery after failure. The transaction updates are visible to concur-
rent transactions only if it successfully commits. The update caused by a failed
transaction are not made visible to other concurrent transactions. This may be



achieved if the system follows well defined steps on recovery from failures. The
distributed two phase commit protocol requires broadcasting of messages among
the sites. Global causal ordering of messages is used to achieve error recovery
using vector clocks. A global ordering on messages may be defined by employ-
ing logical clocks. The algorithms ensuring globally ordered delivery of messages
may be coupled with provisions of recovery from failures and fault tolerance in
the event of process failures or network partitions. This also helps debugging
distributed computations since they provides the mechanism to identify the or-
der in which they occurred despite process failures or network partition. A good
description of work on logical clocks and its application in solving varying prob-
lems of distributed computation may be found in [20], [9], [15]. There has been
lot of work in development of fault tolerant protocols for distributed system,
very few have been subjected to formal verification. It is desirable that model of
distributed system be precise, reasonably compact and one expects that all the
aspects of system must be considered in proofs because it leads to better design.

The B Method is proof based method for the rigorous development of sys-
tems. In this paper we outline the formal development of a system for global
causal ordering of messages using vector clocks. This is a part of on-going work
on the formal development of a fault tolerant distributed data replication system.

2 The B Method and Event B

Formal methods provides a systematic approach to the development of complex
systems. Formal methods use mathematical notations to describe and reason
about systems. B Method [1] a model oriented formal notation developed by
Abrial. The B Method provides a state based formal notation based on set theory
for writing abstract models of systems. A system may be defined as an abstract
machine . Abstract machine contains sets,variables,invariants, initialization and
a set of operations defined on variables. The set clause contains user defined sets
that can be used in rest of machine. The variables describe the state of machine.
The invariants are first order predicates and these invariants are to be preserved
while updating the variables through the operations. The operations can have
input and output parameters. Operation of machines are defined through gen-
eralized substitution. The B method allows specifications of abstract model to
be written and support the stepwise refinement. At each refinement step we get
more concrete specification of system. The B Method requires the discharge of
proof obligations for consistency checking and refinement checking. Consistency
checking involves showing that a machine preserves invariants when operations
are invoked. Refinement checking involves showing that specifications at each
refinement step are valid. The B Tools (Atelier B, Click’n’Prove,B-Toolkit) also
provides an automatic and interactive prover. Typically the majority of proof
obligations are proved by automatic prover, however some of the complex proof
obligations needs to be proved interactively.

Though a significant work has been done in the area of message passing sys-
tems, logical clocks, recovery, checkpointing and fault tolerance yet application of



proof based formal method to this work is rare to our knowledge. B can be used
to provide formalization of protocols and algorithms of distributed system. Event
B was introduced for modeling of distributed system. In Event B [2] operations
are referred to as events which occurs spontaneously rather then being invoked.
These events are guarded by predicates and these guards may be strengthened
at each refinement steps. Applications of the B method to distributed system
may be found in [6], [7], [17].

3 Global Ordering of Messages

A distributed program is composed of finite set of processes. The processes com-
municate with each other through exchange of messages. A class of problems
relating such message passing system may be solved by defining global ordering
on the messages. The messages are delivered to recipient process following their
global order. The logical clocks such as Lamport Clock [11], Vector Clock [8]
provides the mechanism to ensure globally ordered delivery of messages. A crit-
ical review of logical clocks can be found in [3], [16].

The execution of a process is characterized by sequences of events. These
events can be either internal events or message events. An internal event rep-
resents a computation milestone achieved in a process, whereas message events
signifies exchange of messages among the processes. Message Sent and Message
Receive are message events respectively occurring at a process sending a message
and receiving a message. The causal ordering of messages was proposed in [4].
Protocols proposed in [5], [19] use logical clocks to maintain the causal order
of messages. A happened before relation defines the causal relationships between
the events [11]. The happened before relation (—) is defined as a — b where
event ¢ happened before b. The events a and b are either of following,

— a,b are internal events of a same process such that a , b € P; and o happened
before b.

— a,b are message events at different processes such that a € P;, b € P; , where
o is Message Send event occurring at process P; and b is Message Receive
event occurred at P; while sending a message m from process P; to P;.

Later we lift the happened before relation (—) to define a global ordering on
messages. The happened before relation is transitive i.e. if event a happened
before b and b happened before ¢ then q is said to happened before c.
a>bAb>c=>a—c

We can further define the causally related and concurrent events using this re-
lation. The two events a and b are causally related if either ¢« — bor b — a.
Event a causally affects bif a — b. The two events a and b are concurrent (a
|| b) if a - band b -» a. Therefore for any two events a and b there exist
three possibilities i.e. either a = bor b — aor a || b. The global ordering of
messages deals with the notion of maintaining the same causal relationship that
holds on Message Send and Message Receive relationship in their processes. In
a broadcast network it is required that any recipient of a message must receive
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Fig. 1. Message Ordering

all the messages which are ordered before this message. As shown in figure 1,
process P1 first broadcasts message M1, then P! broadcasts the message M2.
Process P2 broadcasts message M3 after receiving message M1 and M2 from
process P1. Process PI again broadcasts message M/ after receiving M3 from
P2. The global ordering among the messages may be defined on set of messages.
The message M1 is said to be ordered before M2 as their exists causal rela-
tionship among the corresponding Message Send events: Message Send event of
message M1 happened before Message Send event of message M2 in process P1.
Therefore all recipients of message M1 and M2 must receive these messages in
the order they were sent i.e. process P38 must receive M1 before receiving M2
as shown in figure. If the message M1 is delayed (shown as dotted lines) and
delivered after delivery of message M2, it represents a violation of the global
ordering. For any two messages M; and M;, message M; is ordered before M;
(M; — M;) if the Message Send event of M; happened before the Message Send
event of M; and the sender of both messages is the same. If the sender process
of these messages is different then message M; will be ordered before M; if the
Message Receive event of M; happened before the Message Sent event of M; in
the process sending message M;. The global order of messages may be defined
as follows. Suppose messages M1 and M2 are sent by processes P! and P2 re-
spectively. Message M1 is ordered before M2 ( M1 — M2) iff either of following
holds.

— Send(M1) — Send(M2), where sender(M1)=sender(M2) and M1 is sent be-
fore M2.

— Receive(M1) — Send(M2), where sender(M1) # sender(M2) and M1 is re-
ceived by sender of M2 before M2 is sent.

Send(M) and Receive(M) are events representing sending and receipt of message
M respectively. The two messages M1 and M2 are defined as parallel messages
(M1 || M2) when no partial ordering exist among them i.e. = (MI — M2) A —
(M2 — M1) holds. These messages may be delivered to a recipient process in any
order. As shown in figure 1, (M1 — M2) holds as E11 — E12 , (M2 — M3) holds
as F22— E23, (M8 — M4) holds as F13 — E14. Due to transitivity condition



MACHINE Causal Order

SETS PROCESS ; MESSAGE
VARIABLES sender, receive, order
INVARIANT

/* Inv-1*/ sendere MESSAGE - PROCESS
[* Inv-2*] A receive e PROCESS <> MESSAGE A order e MESSAGE <> MESSAGE
/* Inv-3*/ A dom(order) c dom(sender) A ran(order) c dom(sender)
A ran(receive) ¢ dom(sender)

/*Inv-4*/ A Vp,m-(pePROCESS A me MESSAGE A (p—m) e receive = p # sender(m))
/*Inv-5*/ A Vm1,m2,m3.(mleMESSAGE A m2 eMESSAGE A m3 e MESSAGE

A (Ml m2) € order A (M2 —»m3) € order = (M1~ m3) € order)
/*Inv-6*/  AVMLm2,p-(ml e MESSAGE A m2 e MESSAGE A pe PROCESS

A (Ml-m2)eorder A (p—m2)ereceive A p=sender(ml) = (p+—ml) e receive)

INITIALISATION

sender ;==& || receive := & || order :=2
OPERATIONS

Send(pp,mm) 2 PRE pp e PROCESS A mm e MESSAGE
THEN
SELECT mm & dom(sender)
THEN
order := order U( (sender~[{pp}] * {mm}) U (receive[{pp}] * {mm}))
|| sender := sender u {mm — pp}
END
END;
Receive(pp,mm) 2 PRE pp € PROCESS A mm e MESSAGE
THEN
SELECT mm e dom(sender) A (pp+— mm) & receive
A pp #sender(mm)
AVm.(me MESSAGE A (m—mm) e order
A pp # sender(m) = (pp+— M) € receive)
THEN
receive := receive U { pp » mm}
END
END

END

Fig. 2. Abstract Model of Causal Order in B

(M1 — M3) ,(M1 — M4) and (M2 — M4) also holds. The abstract model of
causal order of messages is presented in figure 2 as a B Model. Knowledge of B
syntax is assumed. The brief description of this machine is given below.

— PROCESS and MESSAGE are defined as sets. The sender is a partial func-
tion from MESSAGE to PROCESS. The receive is a relation between PRO-
CESS and MESSAGE ( (p—m) € receive indicates that process p has re-
ceived message m ). The order is a relation between MESSAGE and MES-
SAGE. ( Shown as Inv-1 and Inv-2 in the invariant clause of the model)

— A sent message is not received by its sender and all received message must
be messages whose Message Send event is recorded. Similarly, ordering of
messages can be defined only on those messages whose Message Send event
is recorded. (Shown as Inv-3,Inv-4)

— The invariant contains a predicate which requires that transitivity property
on messages should be maintained.( Shown as Inv-5)



— For any message whose Message Receive event happened at a process, that
process must have received all the messages ordered before that message. (
Shown as Inv-6)

— Send and Receive are events of messages defined as operations. These events
are guarded by predicates. In the event of sending a message mm by pro-
cess pp, all messages sent and received by process pp are ordered before the
message mm.

— In the event of receipt of a message mm by a process pp, it must ensured that
all messages ordered before mm has been received by process pp. This con-
dition is satisfied by a predicate in the guard of operation Receive(pp,mm,).

4 Vector Clocks

Logical clocks are viable solution to causally order various events and to ensure
globally ordered delivery of messages to processes [5], [19]. Scalar and Vector
Clocks are widely referred to as logical clocks. Scalar clocks, introduced by Lam-
port in [11], uses an integer value to timestamp an event whereas vector clocks,
introduced in [8], [13], uses a vector of integers to timestamp an event. A vector
clock may be defined as a function which assign a vector of integer to an event
called timestamp. For every process P;, there exist a clock VTp; which maps
an event to a vector of integer. Suppose set Ep; defines the sequence of events
produced by process P;. The clock function may be defined as VIp; : Ep; = V
, where V is a set of vectors. The clock VTp; assigns a time stamp VTp; (e;;)
to event e;; where e;; € Ep;.

In a system of vector clocks, every process maintains a vector of size N where
N is the total number of processes in the system. Process P; maintains a vector
clock VTp; where VTp;(i) is the local logical time at P; while VTp;(j) repre-
sents the process P;’s latest knowledge of the time at process P;. More precisely
VTpi(j) (i#]j) represents the time of occurrence of an event at process P; when
the most recent message was sent from P; to P; directly or indirectly. In this
model, vector clocks are used to timestamp message send and message receive
events only. The following rules are used to update the vector clock of process
and timestamping a message in the event of message sent and message receive.

— While sending a message M from process P; to P;, sender process P;
updates its own time( i** entry of vector) by updating VTp;(i) as VTp;(i)
:= VTp;(i) + 1. The message time stamp VT of message M is generated as
VTum(k) := VTpi(k), Vk € (1..N), where N is number of processes in system.
Since a process P; increments its own value only at the time of sending a
message, VTp;(i) indicates number of messages sent out by process P;.

— The recipient process P; delays the delivery of message M until following
conditions are satisfied.

o VTpj(k)> VTu(k), Yk € (1.N) A (k # i).
The first condition ensures that process P; has received all but one mes-
sage sent by process P;. The second condition ensures that process P; has



received all messages received by sender P; before sending the message M.
These conditions ensures global ordering on messages.

— The recipient process Pj updates its vector clock VI'p; at message receive
event of message M as VTpj(k) := max (VIp;(k),VTy (k)). Therefore
in vector clock of process Pj;, VTp;(i) indicates the number of messages
delivered to process P; sent by process P;.

Part of the B refinement of the abstract model of causal order of messages
through vector clocks is shown in the figure 3 and figure 4. Figure 3 contains
invariants, variables and initialization clause. The operations are shown in figure
4. A brief description of refinement steps are given below.

— Vector time of a process is represented by a variable VTP. The timestamp
of a message is represented by a variable VTM. VTP and VTM are de-
fined as functions as shown in invariant Inv-7, and Inv-8. Other conditions
required for vector clock implementations are shown in invariants Inv-10.
Vector timestamp of each process is initialized with value ’0’. Initialization
of variable VTP and VTM is shown in the initialization clause.

— A new variable buffer is introduced in refinement. The buffer is a relation
between PROCESS and MESSAGE (Inv-9). The messages arriving at a
process are initially buffered. The buffered messages are received by a process
on satisfying the conditions as defined in vector clocks.

— The Send, Arrive and Receive events of a message at a process are shown
as operations in figure-4. At the time of sending a message mm, process
pp increments its own clock value VIP(pp)(pp) by one. The VTP (pp)(pp)
represents the number of messages sent by process pp. The modified vector
timestamp of process is assigned to message mm giving vector timestamp of
message mm.

— The messages may arrive at a process in any order but their Message Receive
event occurs at that process only if it has received all but one message

VARIABLES sender, receive, order, buffer, VTP, VTM

INVARIANT

[*Inv-7%/ VTP e PROCESS — (PROCESS — N)

*1nv-8*/ AVTM e MESSAGE -»( PROCESS — N)

/*Inv-9*/ A buffer e PROCESS > MESSAGE A ran(buffer) < dom (sender)
[*1nv-10*/ A Vm1l,m2,p.(mle MESSAGE A m2e MESSAGE A p e PROCESS

A (Ml m2) e order = VTM (m1)(p) <VTM(m2)(p) )
INITIALISATION

VTP:= PROCESS* { PROCESS* {0}}
[VTM =&
|| sender :=& || buffer := & || receive :=J || order := &

Fig. 3. Refinement using Vector Clocks : Invariants



OPERATIONS

Send(pp,mm) 2 SELECT mm edom(sender)

THEN
LET nVTP
BE nVTP=VTP(pp) <{ pp— VTP(pp)(pp)+1}
IN  VTM(mm) :=nVTP ||VTP(pp) :=nVTP END
|| sender := sender U {mm — pp}
END;

Arrive(ppmm) 2 SELECT  mm e dom(sender) A (pp — mm) & buffer
A (pp— mm) e receive A pp # sender(mm)
THEN
buffer := buffer u { pp — mm}
END ;

Receive(pp,mm) 2 SELECT (pp+— mm) € buffer A (pp— mm) & receive A pp # sender(mm)
AVP.(pe PROCESS A p # sender(mm) = VTP(pp)(p) > VTM(mm)(p))
A VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
THEN
receive := receiveu {pp — mm} || buffer := buffer - { pp —»mm}
Il VTP(pp) := VTP(pp) < ({a] g € PROCESSAVTP(pp)(a) < VTM(mm)(e)} < VTM(mm))

END
END

Fig. 4. Refinement using Vector Clocks : Operations

from the sender of that message. Vector timestamp of recipient process and
message are also compared to ensure that all messages received by sender of
message before sending it, are also received at the recipient process. These
conditions are included as a guard in Receive operation. It can be noticed
that the guard involving the variable order in the abstract model is replaced
by a guard involving comparison of vector timestamp of message and process
in the refinement.!

— The replacement of the guard involving variable order in abstract model with
guards involving comparison of vector timestamp in refinement generates
proof obligations. These proof obligations can be discharged interactively
using a B Prover.

5 Conclusions

The abstract model in figure-2 of causal order provides a clear specification
of causal ordering property on messages. We are currently working on formal
development of fault tolerant distributed data replication system and we are
finding that the abstract model of causal ordering is much easier to work with

! (f < g) represents function foverridden by g. (s < f) represents function f is domain
restricted by s.



than the vector clock model when proving the correctness of recovery mechanism.
In this paper we outlined how the abstract causal order is in turn correctly
implemented by the vector clock system. Our experience shows that abstraction
and refinement are valuable techniques for modeling and verification of complex
systems.
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