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An Improved Thick-Film Piezoelectric Material
by Powder Blending and Enhanced Processing
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Abstract—This paper details improvements of the ds3 co-
efficient for thick-film lead zirconate titanate (PZT) layers.
In particular, the effect of blending ball and attritor milled
powders has been investigated. Mathematical modeling of
the film structure has produced initial experimental values
for powder combination percentages. A range of paste for-
mulations between 8:1 and 2:1 ball to attritor milled PZT
powders by weight have been mixed into a screen-printable
paste. Each paste contains 10% by weight of lead borosili-
cate glass and an appropriate quantity of solvent to formu-
late a screen printable thixotropic paste. A d33 of 63.5 pC/N
was obtained with a combination of 4:1 ball milled to attri-
tor milled powder by weight. The improved paste combines
the high ds3z values of ball and the consistency of attritor
milled powder. The measured dsz coefficient was further
improved to 131 pC/N by increasing the furnace firing pro-
file to 1000°C, increasing the poling temperature to 200°C,
and using gold cermet and polymer electrodes that avoid
silver migration effects and repeated firing of the PZT film.

I. INTRODUCTION

CREEN printable piezoelectric materials were first re-
Sported in 1987 [1] and have since found use in many
applications, including actuators [2] and micromachined
silicon devices [3]. The basic formulation of the paste is
well-known [4] and involves mixing piezoelectric material
in powder form with suitable binders and thick-film vehi-
cles. Both cermet pastes using glass binders [5] and poly-
mer pastes with the active material held within a polymer
matrix [6] have been demonstrated.

The most common piezoelectric material used in
the paste preparation is lead zirconium titanate
(PbZr«Ti;xO3 or PZT). The piezoelectric, mechanical,
and electrical properties of the PZT material will depend
upon the composition of the compound. The base mate-
rial used in this investigation is Morgan Electro Ceram-
ics, Southampton, UK, PZT-5H which exhibits high levels
of piezoelectric activity but has a low Curie temperature
compared to alternative compositions. A summary of the
properties of common bulk PZT materials is given in Ta-
ble I [7].

This paper presents details of a fundamental investi-
gation into the influence of the physical nature of the
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TABLE 1
TYPICAL VALUES FOR LEAD ZIRCONATE TITANATE BULK
MATERIALS [7].

Material type

Characteristic =~ PZT4D PZT5A PZT5H
ds3 (pC/N) 315 374 593
ds1 (pC/N) —135 —171 —274

T. (°C) 320 365 195
kp 0.57 0.6 0.65

kr 0.675 0.71 0.75

N, (Hz-m) 2180 1960 1965
Kgé (x10715) 1300 1700 3400

PZT powder on the piezoelectric properties of the screen-
printed film. The physical nature of the powder (i.e., par-
ticle size, distribution, and shape) is determined by the
processing techniques used in its preparation. Piezoelec-
tric powders are formed by a complex series of processes
and are traditionally used in the fabrication of bulk PZT
piezoceramics. Powders of the constituent elements are
first mixed in the required percentages. This powder mix
is calcinated then milled into the final PZT powder form.
This milling process defines the physical nature of the pow-
der. Several different milling processes have been evalu-
ated: ball, jet, and attritor.

II. MILLING PROCESS

The ball milling process involves the PZT materials be-
ing mixed in a slurry and tumbled or shaken with a suitable
milling media such as sand, steel, zirconia, or alumina in
a horizontally rotating mill. This process is defined as a
soft process due to the nature and speed of the mill. Ball
milling results in a smooth, rounded particle shape.

Jet milling subjects the powder particles to high-
pressure jets of air where they collide and wear against
each other in an abrasive process. The mill is constructed
in such a way that, when the particles have been suffi-
ciently reduced in size, they will drop out of the mill. This
process produces fine particles, exhibiting uneven edges in
comparison to the ball milled powder.

Attritor milling is similar to ball milling, except instead
of the mill itself rotating, a vertical shaft rotates inside
the drum. This process is typically used to further reduce
the size of existing powder particles and to obtain a more

0885-3010/$20.00 (© 2005 IEEE
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Fig. 1. Particle size distributions for ball, jet, attritorl, and attritor3 milled powders.

uniform size distribution. It is standard practice to feed
the powder through the mill a number of times to achieve
a tighter distribution. This paper presents details of pow-
ders that have been attritor milled once and three times,
henceforth denoted attritorl and attritor3.

The particle size and distribution of powders from each
of the above processes were measured using a Malvern
Mastersizer X (Malvern Instruments Ltd., Malvern, UK)
[8] at Morgan Electro-Ceramics Thornhill plant. The re-
sults are shown in Fig. 1. The ball milled particles average
2 pm in diameter, jet 4.3 pm, attritorl 1.2 ym and attri-
tord 1 pm.

Previous work by Torah et al. [9] has shown that the
ball milled powder produces the largest ds3 values with the
attritor3 milled powder producing the most consistent ds;3
values. The jet milled powder was considered to be poor
in comparison, producing low and inconsistent dss results
due to the rough and uneven nature of the milling process.
Therefore, it has not been considered in this investigation.

III. POWDER BLENDING

Following the results from previous work [9], the next
stage in improving the piezoelectric properties of the thick-
film devices considered the combination of ball milled and
attritor3 milled powders. The larger particle size associ-
ated with the ball milled powder results in increased piezo-
electric responses. Therefore, it was important to maintain
the ball milled particle as the dominant particle within any
powder combination. The attritor3 particles can be used
to fill any voids between the ball milled particles, thus
resulting in an increased film density and improving its
mechanical coupling and piezoelectric properties. Hence,

Ball milled
particle

Attritor milled
particle

Fig. 2. Ideal 2-D particle distribution for ball and attritor milled
PZT.

it was anticipated that, by combining these two powders,
we would obtain the high ds3 values associated with ball
milled powder and the consistency achieved with attritor3
powders.

Therefore, the paste consists of a combination of ball
milled, attritor3 milled, and Ferro CF7575 (Ferro Corpo-
ration, Cleveland, OH) lead borosilicate glass used as a
binding matrix. The analysis of such particle sizes is espe-
cially important as the films are fired at about 900°C. This
is sufficient to melt the glass; however, minimal sintering
occurs between the actual PZT particles.

IV. INITIAL POWDER PERCENTAGES

To determine initial values for the ratios of ball and
attritor3 milled powders, an ideal analysis of the particle
distribution was conducted. It was first necessary to sim-
plify the mathematical model for the PZT layer structure
to a two-dimensional (2-D) representation of the particle
distribution. A ball milled particle is the central particle in
the lattice and the interstice between these are filled with
smaller attritor milled PZT particles, shown in Fig. 2. This
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TABLE II
EXPERIMENTAL POWDER COMBINATION WEIGHT PERCENTAGES.

Attritor3 Ball CF7575
percentage  percentage  percentage
Paste weight weight weight
8:1 10% 80% 10%
4:1 18% 2% 10%
2.6:1 25% 65% 10%
2:1 30% 60% 10%

model assumes all the glass will melt in the processing and
form a perfect bonding matrix surrounding the particles.
In this study it was decided to use a fixed percentage of
glass, 10% by weight, because this was previously found to
optimize the measured piezoelectric properties of the film
[9]. The particle sizes available had an average diameter of
2 pm and 1 pm for the ball and attritor milled PZT, re-
spectively. Using this basic model and the average particle
size, four powder ratios were calculated to provide initial
experimental results. The experimental values are shown
in Table II.

V. PROCESSING

Using the values in Table II, the batches were mixed in
the University of Southampton Class 100 clean room using
a triple roll mill, then printed using a DEK 1200 printer
(DEK International Ltd., Poole, Dorset, UK) on an alu-
mina substrate with ESL9633B (ESL Europe, Reading,
UK) silver/palladium electrodes. The PZT layer consisted
of two prints on an underlying AgPd electrode. The first
layer is dried using a DEK 1209 IR drier, then a second
layer is printed directly on top and dried. Both PZT layers
were then co-fired on a thick-film belt furnace with a peak
temperature of 890°C. Once the PZT layer was fired, a
single silver/palladium top electrode layer was added us-
ing the same process. This printing and firing sequence
helps to reduce the effects of silver migration and reduces
the risk of a short circuit between the electrodes. Two sub-
strates per batch were printed, with one column from each
substrate removed in the clean room for observation using
a scanning electron microscope (SEM).

Once fired, it is necessary to induce piezoelectric prop-
erties into the devices using the poling process. The sub-
strates were placed on a hot plate at 150°C with an electric
field applied for 30 minutes, the substrate then was cooled
to room temperature before the field was removed. Due
to an increased thickness of the 4:1 samples, the maxi-
mum achievable electric poling field with our equipment
was 3 MV/m. To maintain consistency, the electric field
applied to the other samples was reduced to this value.

In addition to this, one substrate from each of the 4:1
and 8:1 pastes was printed and fired as normal but then an
ESL-110S (ESL Europe) silver polymer top electrode was
printed instead of the silver/palladium. This silver poly-
mer layer was cured for an hour at 200°C using the DEK
1209 IR drier. The polymer curing cycle negates the re-
quirement for an additional high-temperature firing cycle,
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Fig. 4. Percentage standard deviation for each paste formulation.

which can lead to additional lead loss from the PZT and
an associated drop in piezoelectric performance.

VI. EXPERIMENTAL RESULTS

After poling, the d33 coefficient of each device was mea-
sured using a Take-Control PM35 (Take Control, Birming-
ham, UK) piezometer. Five readings were taken on each
device and an average recorded, shown in Fig. 3.

The films with a polymer top electrode are denoted
8:1poly and 4:1poly. Also included for comparative pur-
poses are the average ds3 results obtained for the 10% ball
milled and 5% attritor3 milled films from previous work.

In addition to the ds3 results, Fig. 4 shows the percent-
age standard deviation associated with each paste batch
to demonstrate the consistency of each batch. Again, the
results from previous work for 10% ball and 5% attritor3
films have been included.

Fig. 5 shows an SEM micrograph of the 4:1 ball to at-
tritor PZT layer. It appears that the level of sintering be-
tween the PZT particles is low, but that the glass bonding
matrix and the combination of powders has produced a
relatively dense film with reduced interstices.

VII. PROCESS OPTIMIZATION

Following the results of the powder combination study,
the thick-film process parameters were investigated to fur-
ther improve piezoelectric behavior of the optimum blend.
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Fig. 6. Poling time study, 250 V applied at 150°C.

Two main process areas were investigated, the poling pa-
rameters and the furnace-firing profile.

A. Poling Process Study

The three main parameters of the poling process are
the electric poling field, temperature, and time. Maxi-
mum piezoelectric properties are obtained with the highest
possible poling voltage, temperature, and the longest pol-
ing time. Practical considerations such as dielectric break-
down, temperature damage of electrical connections, and
throughput place limitations on what can be achieved.
This investigation aimed to identify the important param-
eters and maximize their influence on the piezoelectric be-
havior.

The parameters used in our initial investigation were
4 MV/m at 150°C for 30 minutes [9]. The first stage in-
vestigated poling times. A poling field of 4 MV /m was ap-
plied to the substrate at 150°C for poling times between
3 minutes and 24 hours. The results in Fig. 6 show that
the poling time increases the dss coefficient linearly in the
range investigated. If this poling process was continued
for longer time periods, the increase would prove to be
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Fig. 8. Optimum combination of poling time and temperature.

exponential as a maximum polarization is achieved [10].
In addition, between 5 and 30 minutes there is only ~6%
increase in ds3. A typical industrial process uses a poling
time of 3 minutes. A poling time of 5 minutes maintains
sufficient piezoelectric properties while achieving a real-
istic throughput suitable for industrial applications. This
poling time was used in the remainder of the investigation.

Next, a study of the poling temperature was conducted.
The poling field was maintained at 4 MV /m for 5 minutes,
and temperatures from 50°C to 250°C were evaluated.
Fig. 7 shows the increase in temperature provides an expo-
nential increase in dssz. A poling temperature of 200°C was
found to yield a ds3 of 74 pC/N. This represents a ~6%
improvement over the 70 pC/N obtained at 150°C and
negates the ~6% drop that occurs when reducing poling
time from 30 minutes to 5 minutes. Beyond 200°C, diffi-
culties were encountered with the electrical connections as
the solder melted and the polymer deteriorated. A tem-
perature of 200°C was identified as the optimum poling
temperature to be used with our current process.

The investigation of poling time was repeated with a
temperature of 200°C. Poling times from 3 minutes to a
practical limit of 1 hour were evaluated. This produced
the results shown in Fig. 8. Fig. 8 further confirms the
benefit of increasing the poling temperature. Increasing
the poling time produces a higher measured dss value, but
this is not always practical with an industrial process. It
was found that reducing the poling time to 5 minutes to
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Fig. 9. Poling field study, field applied at 200°C for 5 minutes.

accelerate the poling process while maintaining the higher
poling temperature produces a ds3 of 78 pC/N. However,
if sufficient time is available, a poling time of 30 minutes
produces a dss of 88 pC/N.

To complete the study, the effects of increasing the pol-
ing field was investigated. Previous studies by Dargie et
al. [11] showed that improved piezoelectric behavior was
achieved when the poling voltages were increased. How-
ever, the maximum achievable poling field is limited by
the electrical breakdown of the dielectric material. Due to
variations in device thickness for different processes, it was
important to show that any increase in ds3 was a result of
the formulation and process parameters rather than in-
creased poling field strength. Voltages between 50 V and
250 V were applied for 5 minutes at 200°C to two devices.
One device was from the original 4:1 batch with an AgPd
bottom electrode and one from the latest 4:1 batch with
ESL 8836 gold bottom electrodes, both devices had poly-
mer top electrodes. Fig. 9 shows that an increased poling
field produces an exponential rise in dz3. This exponential
increase is a result of improved alignment of the electric
dipoles in the material. The polarization level increases un-
til a maximum polarization is reached, and all the dipoles
are aligned with the applied field. These results show that
the increase in dz3 between the different devices is not due
to a change in applied field and show that 250 V is a suf-
ficient poling voltage in this case. The poling voltage of
250 V equates to an applied poling field of 4 MV /m.

B. Furnace Firing Profile Study

The furnace firing profile affects the piezoelectric prop-
erties because of the change in the stoichiometry of the
film material and the degree of particle sintering that oc-
curs during the firing process. The change in stoichiometry
is a result of the increased lead evaporation with rising fir-
ing temperature.

Bulk PZT-5H piezoceramics are typically fired between
1000°C and 1700°C, and the stoichiometry of the powder
is balanced to reflect this. A firing profile with a peak of
1000°C (denoted rnt1000), with the same stage increments
as the current Dupont60 furnace profile (both shown in
Table IIT) was investigated.

TABLE III
FURNACE FIRING PROFILES FOR DUPONT60 AND RNT1000.

Furnace  Furnace firing profile name
Stage Dupont60 rnt1000
1 350°C 393°C
2 600°C 674°C
3 885°C 994°C
4 883°C 992°C
5 890°C 1000°C
6 870°C 978°C

Average d33 (pC/N)

Dupont60

rmt1000
Furnace firing profile

rnt1000 with gold

Fig. 10. Piezoelectric responses for alternative furnace profiles.

To ensure any change in ds3 was due to the firing profile,
an ESL 1110-S silver polymer top electrode again was used.
This removed the requirement for the PZT layer to endure
further firing cycles. In addition to these, one substrate
was printed with ESL 8836 gold cermet bottom electrode
to observe the effects of removing any silver migration into
the film during firing; this was only fired using the rnt1000
profile. These devices were poled at 4 MV /m for 5 minutes
at 200°C.

Fig. 10 shows the average ds3 coefficients measured from
the six devices fired with each profile. The results show
that the higher firing temperature produces an increase
from 65 pC/n to 103 pC/N. In addition, the introduction of
a gold bottom electrode, thus removing all silver from the
firing process, provides a further increase to ~121 pC/N.
Poling a gold device with an applied field of 4 MV /m for
30 minutes produces a ds3 of 131 pC/N.

VIII. DISCUSSION OF RESULTS

The results presented in this paper show that blending
the ball milled powder with the attritor3 milled powder
does produce an increase in the piezoelectric activity of
the film. Fig. 3 suggests that the number of smaller parti-
cles added to the paste has a saturating effect beyond the
peak ratio of 4:1. This saturation is believed to be a result
of the interstice gaps within the matrix already being filled
and a reduced dominance of the ball milled particle. The
original 10% ball milled PZT paste demonstrated a d33 of
52 pC/N. The highest measured ds3 value, 63.5 pC/N, was
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obtained with the 4:1 by weight combination ball to attri-
tor3 milled powder. This was further increased to 77 pC/N
when a polymer top electrode was used. The polymer top
electrode removes the requirement of additional firing of
the piezoelectric film. The additional firing cycles increase
the volume of lead lost due to evaporation, and hence a
change in the stoichiometric balance of the PZT film and a
change in the piezoelectric behavior. A previous study by
Torah et al. [12] has shown the substrate has a significant
effect on reducing the measured dsz value of a thick-film
piezoelectric layer. It is believed that the reduced Poisson’s
ratio of the polymer electrode reduces the clamping effect
on the piezoelectric properties of the film. In addition, it
is proposed that the reduced clamping of the polymer al-
lows for a reduced amount of dipole realignment when the
poling field is removed, thus allowing an increased level of
polarization in the film for the same poling field.

These developments represent an increase of approxi-
mately 20% and 30%, respectively. The percentage stan-
dard deviation of the 4:1 devices was 4%. The attritor3
devices from the previous study exhibited a 1% deviation.
However, this is still an improvement compared to the orig-
inal ball milled devices that exhibited a standard deviation
of 6% in measured ds3 value between devices.

Having identified the optimum paste formulation, the
investigation of poling time, temperature, and firing pro-
file yielded further improvements in piezoelectric behav-
ior. Combining the poling time of 5 minutes and poling
temperature of 200°C generates an increase in dss of 10%
to 78 pC/N compared with the original poling process.
Increasing poling time to 30 minutes produces a dss of
88 pC/N, an improvement of 20%. The increased poling
temperature produces an increase in piezoelectric activ-
ity because the additional softening of the PZT material
facilitates the permanent dimensional change that occurs
with polarization. Hence, improved dipole alignment in the
direction of the poling field is possible. The increase in
poling time allows alignment of a greater proportion of
dipoles [10].

Increasing the peak firing temperature produces an in-
crease in measured ds3 value from 65 pC/N to 103 pC/N
obtained using the Dupont60 and rnt1000 firing profiles,
respectively. This increase in measured dss is because the
rnt1000 profile is closer to the industrial process used for
bulk PZT-5H powder. Therefore, the final stoichiometric
balance of the powder and the level of sintering in the film
is closer to that of the optimal bulk equivalent. The raised
firing temperature increases both the sintering between the
PZT particles themselves and the binding matrix of the
lead borosilicate. This improves the density and mechan-
ical quality of the film that provides an increase in the
measured dss. This increase could be attributed, in part,
to an improved electromechanical coupling coeflicient. The
use of a higher firing temperature is well suited for alumina
substrates but will reduce compatibility with silicon sub-
strates. The higher temperature will exacerbate the reac-
tion that occurs between the PZT and silicon first reported
by Beeby et al. [4]. This problem could be reduced with
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the use of a suitable barrier layer on the silicon or the use
of an additional sintering stage on the PZT powder before
it is mixed into a screen-printable paste.

The introduction of a gold bottom electrode produced
a dss of 121 pC/N and an increased poling time of 30
minutes further improved this to 131 pC/N. This is the
maximum dz3 we have ever measured on the Take Con-
trol PM35 piezometer. This equipment has been found to
produce consistent and repeatable results compared with
other measurement techniques [5]. From our experience,
the measurement of dszz of a film deposited on a sub-
strate is not straightforward. Any slight bending of the
substrate, for instance, will artificially amplify the mea-
sured dss. Therefore, care was taken to adjust the PM35 to
apply a minimum amount of clamping force on the device
being measured to reduce the possibility of introducing
additional d3; effects. The introduction of a gold bottom
layer negates the effects of silver migration during the PZT
firing cycle. The migration of silver into the PZT layer re-
duces the level of electric field that can be applied before
breakdown occurs. Therefore, the amount of dipole align-
ment, and consequently the piezoelectric properties of the
film, is reduced. The addition of a polymer top electrode
removes subsequent firing cycles, thereby maintaining the
stoichiometry of the film at a preferred level.

It should be noted that all measurements of dz3 were
taken within 24 hours of poling. The piezoelectric behavior
of ball milled samples previously was shown to decay by
approximately 25% over 3 months [13]. The optimum 4:1
PZT sample with the gold bottom electrode, silver poly-
mer top electrode that was poled for 5 minutes deterio-
rated from 121 pC/N to 110 pC/N, 10%, over a 3-month
period.

IX. CONCLUSIONS

This investigation has shown that the combination of
4:1 by weight of ball milled to attritor milled powder (i.e.,
18% attritor3, 72% ball, and 10% CF7575 powders) pro-
duces the highest ds3 coefficient with an average measured
value of 63.5 pC/N. The results indicate that the combi-
nation of small and large particles does increase the ds3 of
the film and justifies the investigation. It also has shown
that the consistency of the results can be increased in com-
parison to the ball milled devices, although they are not
as consistent as the attritor3 devices.

Further improvements in the piezoelectric response of
the material were achieved by increasing the poling time
and temperature. An optimum poling temperature of
200°C and a poling time of 30 minutes produced a ds3
of 88 pC/N. The increased firing temperature of 1000°C
peak gives a further improvement of 131 pC/N when used
in combination with a gold bottom electrode and polymer
top electrode.

The improvement of dss from the original ball milled
device with a dss of 52 pC/N, to a maximum achieved ds3
of 131 pC/N represents a significant improvement of 152%
in the piezoelectric activity of a PZT-5H thick-film device.
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Further work will consider the PZT formulation as
part of a multilayer structure investigation to combine the
piezoelectric effects of a number of thick-film layers to ob-
tain further increases in ds3. The effects of cofiring the
devices with a gold electrode also will be investigated so
that a more robust top electrode material can be used
without the need for the PZT layer to experience further
firing cycles.

ACKNOWLEDGMENT

The authors wish to thank the support and assistance
given to us by Morgan Electro Ceramics Ltd.

REFERENCES

(1] H. Baudry, “Screen-printing piezoelectric devices,” in Proc. 6th
FEur. Microelec. Conf., 1987, pp. 456—463.

[2] J. H. Yoo, J. H. Hong, and W. Cao, “Piezoelectric ceramic bi-
morph coupled to thin metal plate as cooling fan for electronic
devices,” Sens. Actuators A, vol. 79, pp. 8-12, 2000.

[3] S. P. Beeby, J. N. Ross, and N. M. White, “Design and fabri-
cation of a micromachined silicon accelerometer with thick-film
printed PZT sensors,” J. Micromech. Microeng., vol. 10, pp.
322-328, 2000.

[4] S.P. Beeby, A. Blackburn, and N. M. White, “Processing of PZT
piezoelectric thick films on silicon for microelectromechanical
systems,” J. Micromech. Microeng., vol. 9, pp. 218-229, 1999.

[5] P. Glynne-Jones, S. P. Beeby, P. Dargie, T. Papakostas, and
N. M. White, “An investigation into the effect of modified firing
profiles on the piezoelectric properties of thick-film PZT layers
on silicon,” Meas. Sci. Technol., vol. 11, pp. 526-531, 2000.

[6] T. Papakostas, N. R. Harris, S. P. Beeby, and N. M. White,
“Piezoelectric thick-film polymer pastes,” in Eurosensors XII,
pp. 461-464, 1998.

[7] Morgan Electro Ceramics, Transducer Products Division, Ez-
cellence in piezoelectric technology. Typical Values of Lead Zir-
conate Titanate Materials, Table 3, p. 10, 1999.

[8] Malvern Instruments website, http://www.malvern.co.uk/ Lab-
oratory/laser.htm.

[9] R.N. Torah, S. P. Beeby, and N. M. White, “A study of the effect
of powder preparation and milling process on the piezoelectric
properties of thick-film PZT,” presented at Eurosensors XVI,
Prague, 2002.

[10] B. Jaffe and W. R. Cook, Piezoelectric Ceramics. New York:
Academic, 1971.

[11] P. Dargie, R. Sion, J. Atkinson, and N. M. White, “An investi-
gation of the effect of poling conditions on the characteristics of
screen-printed piezoceramics,” Microelectron. Int., vol. 15, no.
2, pp. 6-10, 1998.

[12] R. N. Torah, S. P. Beeby, and N. M. White, “Experimental inves-
tigation into the effect of substrate clamping on the piezoelectric
behaviour of thick-film PZT elements,” J. Phys. D: Appl. Phys.,
vol. 37, pp. 1074-1078, April 2004.

[13] R. N. Torah, “Optimisation of the piezoelectric properties of
thick-film piezoceramic devices,” Ph.D. Transfer thesis, Univer-
sity of Southampton, 2002, Southampton, UK.

Russel N. Torah obtained the degree of
B.Eng. (Hons) in electronic engineering in
1999 and an M.Sc. degree in instrumenta-
tion and transducers in 2000 at the University
of Southampton, Southampton, Hampshire,
UK. He successfully defended his Ph.D. dis-
sertation entitled “Optimisation of piezoelec-
tric properties of thick-film piezoceramics de-
vices,” in July 2004. His research has yielded
eight publications to date.

Steve P. Beeby graduated from the Uni-
versity of Portsmouth, Portsmouth, UK, in
1992 with a B.Eng. (Hons) in mechanical en-
gineering. He obtained a Ph.D. degree from
the University of Southampton, Southamp-
ton, Hampshire, UK, in 1998 in the subject
of micromechanical resonators, which lead to
a 2-year industrial-funded research project to
develop a resonant differential pressure sen-
SOr.

He has since been awarded a prestigious
Engineering and Physical Sciences Reseach
Council (EPSRC) Advanced Research fellowship to continue his re-
search into combining thick-film printed active materials with micro-
machined devices. His other research interests include energy har-
vesting for remote wireless sensor networks, and he is the principal
investigator at Southampton University on an EU funded Specific
Targeted Research Projects (STREP) project entitled, “Vibration
Energy Scavenging (VIBES).” His other research interests include
smart materials, novel thick-film material development, microma-
chining process development, and human biometric systems.

He has over 85 publications in the field including in learned jour-
nals and presented at conferences and colloquia. He is co-author of a
forthcoming book entitled, MEMS Mechanical Sensors, published by
Artech House and is a Chartered Engineer and Chartered Physicist.

Neil M. White holds a personal chair in
the School of Electronics and Computer Sci-
ence, University of Southampton, Southamp-
ton, Hampshire, UK. He has been active in
sensor development since 1985. In 1988 he was
awarded a Ph.D. degree from the University
of Southampton.

He has considerable experience in the de-
sign and fabrication of a wide variety of sen-
sors, formulation of novel thick-film sensing
materials, and intelligent sensor systems. In
1994 he co-authored a book entitled Intelli-
gent Sensor Systems, and he is the co-author of MEMS Mechanical
Sensors, published by Artech House in 2004.

Dr. White was the Chairman of the Instrument Science and Tech-
nology (ISAT) group of the Institute of Physics from 1997-1999.
He has over 120 publications in the area of instrumentation and
advanced sensor technology. His professional qualifications include
Chartered Engineer, Fellow of the IEE, Fellow of the IOP, Chartered
Physicist, and Senior Member of the IEEE.



	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


