
Workload-Ahead-Driven Online Energy Minimization Techniques for
Battery-Powered Embedded Systems with Time-Constraints

�

Yuan Cai
�
, Marcus T. Schmitz

�
, Bashir M. Al-Hashimi

�
, Sudhakar M. Reddy

�
�
Department of Electrical and Computer Engineering, University of Iowa

E-mail:
�
yucai, reddy � @engineering.uiowa.edu�

School of Electronics and Computer Science, University of Southampton
Email:

�
ms4, bmah � @ecs.soton.ac.uk

Abstract
This paper proposes a new online voltage scaling (VS) tech-

nique for battery-powered embedded systems with real-time con-
straints. The VS technique takes into account the tasks execu-
tion times and discharge currents to further reduce the battery
charge consumption when compared to the recently reported slack
forwarding technique [13], whilst maintaining low online com-
plexity of ���	��
 . Furthermore, we investigate the impact of on-
line rescheduling and remapping on the battery charge consump-
tion for tasks with data dependency which has not been explic-
itly addressed in the literature and propose a novel reschedul-
ing/remapping technique. We demonstrate and compare the ef-
ficiency of the presented techniques using seven real-life bench-
marks and numerous automatically generated examples.

1 Introduction and Previous Work
Dynamic voltage scaling (DVS) is a powerful technique to re-

duce the energy consumption in embedded computing systems.
DVS algorithms can be broadly classified into offline and online
techniques depending on when the voltage settings are computed.
Offline (e.g. [1, 2, 3]) approaches calculate voltage settings at de-
sign time before actual execution based on worst case execution
times (WCET) to guarantee satisfaction of time constraints. Al-
though offline DVS avoids a run-time overhead due to the voltage
calculation, it fails to exploit online slack arising from tasks ex-
ecuting with less than their WCET (differences � 10 times have
been reported [4]). On the contrary, online DVS techniques (e.g.
[5, 6, 7]) perform the voltage calculation during run-time to uti-
lize such online slack by taking into account the actual execu-
tion times (AET) of tasks. Clearly, online techniques have the
potential to achieve higher energy savings, however, it is neces-
sary to carefully design such online DVS algorithms in order to
avoid high run-time overheads that could jeopardize the achiev-
able energy savings and the timing constraints. An aggressive on-
line voltage adjustment approach has been presented in [5]. Here
only the next task to be executed is considered during the volt-
age calculation. The online approach introduced in [6] calculates
the scaling factor for soft aperiodic tasks and considers run-time
variations. Zhu and Muller [7] utilize a feedback control loop to
facilitate DVS and integrated the controller into an earliest dead-
line first (EDF) scheduler. Task scheduling and online voltage
scaling are combined in [8]. This work, however, is limited to
identical PE systems and a straightforward extension toward het-
erogeneous systems is not apparent. Shin and Kim [9] give a path
based intra-task DVS algorithm. The task is modeled as a con-
ditional flow graph in which there is a worst case execution path
(WCEP) and an average case execution path (ACEP). Their al-
gorithm inserts voltage scaling points at branch or loop nodes to

This work is supported in part by the EPSRC, U.K., under

grant GR/S95770

scale the voltage online based on the ACEP instead of the WCEP.
The work in [9] is orthogonal to the proposed algorithm which
determines the voltage on task-by-task basis (i.e., inter-task volt-
age scaling).

Although the offline and online voltage scaling techniques in-
troduced above are effective in reducing energy dissipation, they
are not efficient in prolonging the battery lifetime of mobile ap-
plications, since the non-linear battery characteristics [10, 11] are
neglected during the optimization. In [12] an offline DVS tech-
nique for battery-powered systems was introduced, and it was
demonstrated that up to 56% longer battery lifetimes could be
achieved by taking into account the non-linear battery behavior
during voltage calculation. More recently the first online and
battery-aware DVS technique has been presented in [13]. This
technique specifically targets periodic, independent tasks and as-
sumes identical discharge currents for each task. According to
this assumption, it is always better to exploit the available slack
by the last task in the schedule [13]. Based on this, the authors in-
troduce a slack forwarding technique that delays the utilization of
online slack as late as possible. However, for many realistic mul-
tiprocessor systems executing heterogeneous tasks, this assump-
tion limits the achievable savings in battery charge consumption.
This paper makes the following contributions: (a) We introduce
a workload-ahead-driven online DVS technique which explicitly
takes into account the workload-ahead (the sum over all products
of discharge current and WCET of remaining tasks) to overcome
the limitation of [13] discussed above. The proposed algorithm
achieves longer battery lifetimes compared to slack forwarding
algorithm without sacrificing the online time complexity, which
remains constant, i.e. ���	��
 , since the workload used in the al-
gorithm is computed in the offline phase. (b) In addition to the
online voltage scaling, we address for the first time the problem
of online task rescheduling and remapping for tasks with depen-
dencies to further reduce the battery charge consumption. The
proposed online rescheduling/remapping algorithm facilitates the
usage of the workload-ahead-driven DVS technique and also has
a complexity of ���	��
 . The rest of the paper is organized as fol-
lows. Section 2 outlines the system and battery models. Section 3
presents the problem formulation. The proposed workload-ahead-
driven online DVS technique is introduced in Section 4. Section
5 describes the proposed online rescheduling and remapping ap-
proach. Experimental results and conclusions are given in Sec-
tions 6 and Section 7, respectively.

2 Preliminaries

2.1 System Model and Task Graph

We consider battery-powered embedded computing systems,
which consist of multiple processing elements (PEs) connected by
communication links (CLs), illustrated in Fig. 1(a). A dc/dc con-
verter adapts the battery voltage to the system supply voltage. The

 (c)

CL
CI CI

 PE1PE0

PE0

CL

 PE1

CI: communication interface

 (a)

0τ 3τ

1τ 2τ

γ01 γ02
γ13

γ23

0.8ms

1.2ms0.6ms

1ms

τ

τ 0

1 2τ

τ 3

γ13
0.2ms

γ23
0.2ms

γ02
0.3ms

γ01
0.2ms

0.6 1 3.2 4 4.2

(ms)

online
slack

AET

31.81.20.8

offline
slack

WCETAETdeadline: 4.2ms

B: Battery
C: Converter

CB

(b)

Figure 1. Task graph and system model
system functionality is captured by a task graph model � �������
 ,
Fig. 1(b). Nodes (�	��
��) in this directed acyclic graph (DAG)
represent computational tasks. Edges (
���
��) denote data com-
munications between tasks. As shown in Fig. 1(b), tasks/edges
are associated with worst case execution times (WCETs). The
WCETs depend on the worst case number of cycles (���) re-
quired for execution and the circuit frequency � , which in turn
depends on the supply voltage ����� and threshold voltage ��� [1]:��� ���� � ������� �! �"�����$#%���	
'& (1)

where
!

and (are technology related constants. The power dissi-
pation of a task can be expressed as [2]:) � �+*-,	�/.��� (2)

where * , is the effective switched capacitance of the circuit.
Eqs. (1) and (2) provide the well-known energy/delay tradeoff ex-
ploited by all DVS approaches. Since the discharge current drawn
from the batteries follows 0 �)21 �"�+354�6
 (where ��3 and 6 are
the average battery voltage and the converter efficiency respec-
tively), DVS can be used to influence the battery discharge current
and, as a results, it can be used to achieve savings in the battery
charge consumption [10, 11]. We assume that tasks and edges
have been initially (offline) mapped and scheduled onto the target
architecture, such that resource and time constraints are satisfied
under WCETs, Fig. 1(c). At run-time, however, tasks might fin-
ish before their WCET, resulting in online slack. For instance, in
Fig. 1(c) �	7 has an actual execution time (AET) of 0.6ms, leaving
an online slack of 0.4 8:9 .
2.2 Battery Model

Rao et al. give a comprehensive survey on battery modeling in
[14]. In this work we use an analytical high-level battery model
proposed in [10] whose accuracy has been demonstrated to be
within 3% of the physical battery. The battery charge consump-
tion (reflecting the battery lifetimes) is:;2<>=? @

A 7 0
@
4	B���CD��9 �

@
��9 �

@-EGF�@
�IH
 (3)

where J is the total number of steps used to approximate the
load current profile (LCP), and 0

@
,

FK@
and 9 �

@
denote the current,

the duration and the start time of 9 �ILIM
@

in the LCP, respectively.
Further, C is the time duration that the battery has been charged
for and H is a constant related to the non-linear property modelled
by function B :

B��ONP�IQ+�IRS��H
 � R�#TQ
EGU = 7?

V A =
L <�W�X V XZY\[�<+] ^ # L <�W_X V XZY\[�<+`a^

H . 8 .
(4)

As smaller charge consumption (Eq. 3) will lead to longer battery
lifetime [10], our optimization objective is the minimization of
the charge consumption.
3 Problem Formulation

We assume that the tasks � �cb � �'d and precedence con-
straints � �eb
 � d of task graph � �������
 have been initially
mapped and scheduled onto a distributed architecture containing
voltage scalable processors, which can vary their supply voltage����� within a continuous range f � V �hg ��� Vji [lk . The worst case

clock cycles (� �) that each task needs to be executed as well
as its discharge current are known. In addition, some tasks may
be associated by a deadline mon . The problem addressed by the
proposed online technique is twofold. Firstly, each time when
a task � g�, [� is to be executed on a voltage scalable processor,
an appropriate voltage �+gl, [� for its execution has to be selected
such that the battery charge consumption is minimized (taking
into account the workload-ahead) and all imposed deadlines can
be guaranteed. This step is essential to exploit online slack that
arises from variations in the execution time of tasks. Secondly,
for the initially (statically) given mapping and scheduling, some
online slack could be potentially wasted, as demonstrated in the
motivational example of Section 5. To avoid this waste, the ini-
tial mapping and scheduling should be adapted in accordance to
the available online slack, i.e. online rescheduling and remapping
should be performed. The online voltage scaling problem is ad-
dressed in the next section, while rescheduling and remapping are
the subjects of Section 5.
4 Battery-Aware Online Voltage Scaling
4.1 Motivational Example

The essence of the online voltage scaling problem is the online
slack distribution, in order to efficiently exploit slack resulting
from tasks that execute faster than their WCETs. In this motiva-
tional example we outline two different slack distribution meth-
ods using a realistic task graph from the E3S suite [17], namely
the office-auto benchmark consisting of 5 tasks, Fig. 2(a). For
simplicity we consider here that all tasks have been mapped to a
single processing element and the execution order corresponds to
Fig. 2(b). We assume that the PE can vary its supply voltage be-
tween � V �pg and � Vji [, with � V �hg �rqts u 4v� Vji [. In accordance,
the task execution times follow Eq. (1). Table 1 gives the worst-
case execution time (WCET) and discharge current (0) of each
task (in execution order of Fig. 2(b)), when executing at � Vji [.
Furthermore, the table shows the actual execution time (AET) of
tasks at run-time (we assume here 80% of WCET), as well as the
resulting online slack (WCET-AET). The deadline is assumed to
correspond to the finishing time of the last task (�Zw), when all
tasks execute with their WCET. Table 2 shows the outcome of
two different techniques that distribute the available online slack.
Note that not all the available online slack might be exploited due
to the limited voltage range of the PE. The first technique is based
on the slack forwarding idea presented in [13], in which all avail-
able online slack is forwarded to the last task. Accordingly, task�	w accumulates an online slack of 7.84ms (0.16+2.16+0.96+4.56)
before it starts execution. Nevertheless, due to the limited voltage
range of the PE, it is only possible to make use of 1.18ms of the
total slack, i.e., 6.66ms of slack remain unexploited. As a result,
a battery charge of 0.189mAs can be calculated from Eqs. (1)–
(4) and the task properties given in Table 1. A second approach
(the approach we propose in this paper) distributes the available
online slack by explicitly considering the discharge currents and
WCETs of tasks. That is, each time a task finishes execution,
the workload-ahead (sum over products of discharge current and
WCET of remaining tasks) is evaluated to make a slack distribu-

τ 4

τ 1 τ 2 τ 3

τ 5

τ 3τ 1 τ 2 τ 4 τ 5

t

(a) (b)

Figure 2. Office-auto task graph [17] and execution or-
der

tion decision. The method is outlined in Section 4.2, however, the
resulting slack distribution is given in Table 2. As we can observe
from the table, using this method all tasks are assigned some of
the available slack. For instance, after task � = has finished exe-
cution the available online slack that is exploitable by task � . is
0.16ms. However, it exploits only 0.04ms of this slack via volt-
age scaling, while the remaining 0.12ms are accumulated for the
workload ahead. Therefore, after � . finishes the available slack is
2.28ms (2.16+0.12). As shown in Table 2, task ��� exploits 0.38ms
of this slack. Similarly, the slack is forwarded and distributed to
the tasks ��� and � w . When � w is to be executed, the available
online slack (4.57ms) is still sufficient to scale its voltage to the
lowest level, i.e. �	w obtains the same amount of slack then with
the slack forwarding approach. According to the second distri-
bution, the consumed battery charge is reduced to 0.154mAs, an
improvement of 18.5% when compared to the slack forwarding
method [13].

Table 1. WCETs, discharge currents, AETs and online
slacks of auto-office tasks� = � . � � � � � w

WCET (ms) 0.79 10.80 4.80 22.81 0.79�
(mA) 0.256 4.066 3.990 2.243 0.256

AET (ms) 0.63 8.64 3.84 18.25 0.63
online slack (ms) 0.16 2.16 0.96 4.56 0.16

4.2 Workload-Ahead-Driven Online DVS Technique
As we have seen in the motivational example of Section 4.1,

slack forwarding is not particularly effective for heterogeneous
tasks which draw different currents from the battery and require
different WCETs. An effective online DVS algorithm must take
these aspects into consideration to achieve a “globally” fair distri-
bution of online slack. To cope with this problem, we define two
metrics that capture the effects of tasks on the battery charge con-
sumption. Assume that the next task to be scaled and the set of
unscaled (ahead) tasks are denoted as �Zgl, [� and ��� , respectively,
with �	gl, [�j
 ��� .
Definition 1: We define the workload (� �) of a task � � as the
product of its discharge current 0	� and WCET � , i.e. �T� �
0a� 4�� *
	�� � .
Definition 2: We define the workload-ahead (��
 �) of a task� � as the sum of the workloads of all remaining tasks in � � , i.e.
��
 � ������������� � � . The workload-ahead-driven slack distri-

bution gives the slack to the next task based on the ratio of its �
and ��
 : 9	n���� ! g�, [� � � g�, [�

��
$g�, [� 4��_9 (5)

where �_9 is the available online slack. It should be noted that
both � and ��
 for each task are computed in the offline phase,
so this computation does not contribute to the online complexity
of the algorithm. It is also important to note that it is our aim
to develop an effective yet fast online DVS technique, hence we
intentionally avoiding a complex online algorithm. The work-
load as given in Definition 1 is the main source of battery charge
consumption, i.e. larger workloads will consume more battery
charge [10]. Hence, by using Eq. (5), tasks with heavy workload
are scaled more aggressively than light weight tasks. Although
we use here the WCETs to compute the workloads, it is possi-
ble to leverage information regarding expected execution times
(EETs), if such information is available. In the case that EETs
are known in advance, these values should be used rather than
WCET in order to compute the workload-ahead more accurately.
Another important factor affecting the battery charge consump-
tion is the position of a task in the schedule (the later a task is in
the schedule, the smaller should be the current it draws [11]). It
is apparent that this factor is also taken into account by Eq. (5):

Table 2. Online slack distribution
“slack forwarding” proposed technique

Online slack (ms)
available exploits available exploits� . 0.16 0 0.16 0.04� � 2.32 0 2.28 0.38� � 3.28 0 2.86 2.85� w 7.84 1.18 4.57 1.18

the later a task is in the schedule, the smaller its ��
 , and as a
result, it will receive relatively larger slack and its current will be
smaller as expected. For example, from Tables 1 and 2 we can
observe that task ��� has the largest workload (22.81ms 4 2.243mA)
and its position is close to the end of the schedule and as a re-
sult, it obtains the largest slack portion (2.85ms). Note that we
only calculate the slack distributed to the next task. It is not nec-
essary to distribute slack to tasks beyond the next task because
the total amount of online slack will change with the execution
of the next task, hence, a recomputation of the distribution is re-
quired. Based on above outlined workload-ahead principle, Fig. 3

Algorithm: WAD-DVS

Input: - gl, [� , "! g�, [� , # � , "$&%&' gl, [� , ()' gl, [� , $+*�,-,�'/.1032
Output: - 4 g�, [�
01: 57698;:�29<)2>=?8�8;@BA>CEDF@�<GA>8;@�,-8�.103032�H�.I@�8;2�JLK&M-NPO�Q
02: R�<PJ7.1<P2 A>JS@TDFC = ()'�gl, [� – $+*�,-,�'/.1032 ;
03: AUJ7@TD>C g�, [� = R�<)JL.1<)2 A>JS@TDFCWV (g�, [� / !& g�, [�);
04: X�,�2�YU*�2><)DZK g�, [� = # � /("$&%[' gl, [� + AUJ7@TD>C g�, [�);
05: $&R�0]\?*^8;2_4 g�, [�a`bKcAUR-JLd�.1<Pe+%cYgf�h �Uij .18;:]Cg<)R j <�4 �a@T<PH&X�,�2UY�*^2U<)DZKZgl, [� ;
06: ,�2>8I*^,�<G4ogl, [�Uk
07: O�l7m>O
08: DF@gJ7J RM-RS-DVS k // (Fig. 6)
09: O�Q)n3576
Figure 3. Pseudo code: Workload-ahead-driven online
DVS

gives the pseudo code of our workload-ahead-driven voltage scal-
ing algorithm. Its input consists of the information regarding the
next task. This information includes the task’s workload (� gl, [�)
and workload-ahead (��
 g�, [�), its worst case number of cycles
(� �) and execution time (� *
	�� g�, [�), as well as its offline de-
cided start time (o9� g�, [�). In addition, the algorithm requires the
current time (*qp)rTrT�Es�8 L

) in the schedule. When a busy PE fin-
ishes executing a task or an idle PE receives an incoming data
communication, it calls the online voltage scaling algorithm. If
the next task on the PE can start immediately (line 1), the avail-
able online slack is computed from the current time and the start
time of the next task � gl, [� (line 2). The slack distributed to � gl, [�
is calculated based on Eq. (5) in line 3. According to the amount
of distributed slack, the frequency and voltage at which �Zg�, [� has
to be executed are computed in lines 4 and 5. Then the algorithm
returns � g�, [� and terminates in line 6. On the other hand, if the
next task could not start at this moment due to the lack of needed
input data (e.g. � w in Fig. 1 (c) can not start when �	7 finishes
since
 . w has not arrived yet), the algorithm calls the online task
rescheduling/remapping procedure described in Section V (line
8). It is important to note that each step in the algorithm can be
performed in constant time (���	��
), hence the overall complexity
is ���	��
 . The constant complexity allows the scaling overhead be
incorporated into the WCET of tasks during timg analysis [15].
In the above described online voltage scaling algorithm, no task
will start later than its offline decided start time, so the timing
constraint of each task is guaranteed and all hard deadlines are
satisfied.
5 Online Task Rescheduling and Remapping

Due to the initial static schedule and mapping, it is possible
that some of the online slack is wasted when tasks execute faster

than their WCET. The reason for this is the fact that earlier finish-
ing tasks might result in other tasks becoming ready for execution
earlier, however, the static schedule ”unnecessarily” delays such
tasks. To avoid this waste of online slack, we introduce online
task rescheduling and remapping as supplements of the proposed
online DVS (Section 4.2). Fig. 4 outlines the integration of the
workload-ahead-driven DVS technique with the rescheduling and
remapping strategy. The necessity for online rescheduling and
remapping is illustrated through a motivational example.

5.1 Motivational Example
Fig. 5(a) shows a task graph consisting of 7 nodes. The

WCETs of tasks are indicated, and the tasks are mapped and
scheduled on 3 PEs, in accordance to Fig. 5(b). For simplicity
we neglect communications in this example, however, they are
considered in our algorithm. As we can observe from Fig. 5(b),� = has a longer WCET (4.5ms) than � . (4ms). However, let us
assume that � = requires only 2.5ms for execution at run-time, i.e.
it finishes at 3.5ms. When � = finishes, there is an online slack ap-
pearing on PE2 (indicated as os in Fig. 5(b)), but � � can not start
its execution earlier because its parent task � . has not terminated
at this moment. Clearly, a large portion of the online slack on
PE2 is wasted. To avoid this waste, task �	w on PE2 can be placed
before � � to fill the available online slack. That is, we change
the execution order of the remaining tasks (rescheduling). How-
ever, the WCET of the rescheduled task must be smaller than the
available online slack to avoid the delay of the start time of the
remaining tasks, which could result in potential deadline viola-
tions. For example, to be rescheduled, the WCET of � w must be
smaller than os. If the WCET of �Zw is longer than the slack, then
we can further search the remaining tasks of other PEs to see if
there is suitable task. In the example of Fig. 5(b), �T� on PE1 can
be fetched from PE1 to fill the online slack on PE2, i.e., �T� is
remapped online.
5.2 Online Task Rescheduling and Remapping Technique

Our aim is to facilitate online voltage scaling to avoid online
slack waste. Similar to our online voltage scaling, we want the
online rescheduling and remapping techniques to be independent
of the number of tasks, in order to minimize its computational
overhead. Therefore, we will not take all the remaining tasks
into consideration, instead, an effective yet fast local search strat-
egy is proposed. The pseudo code of our online task reschedul-
ing/remapping is given in Fig. 6. Suppose there are � PEs in the
system and the

M
th (� � M � �) PE is the one with the poten-

tially wasted online slack. Let each PE have an
L N L � p L p L stor-

ing tasks to be executed and let � be a constant integer called
the search window. The search window represents the maximal
number of tasks in

L N L � p L p L that are potentially to be resched-
uled or remapped. The complexity of the algorithm is bounded
by the search window, which is constant. The algorithm first re-
stricts the search window if the number of tasks in

L N L � p L p L
is smaller than � (line 1), then searches

L N L � p L p L of PE[
M

]
within the search window � to fill the online slack on PE[

M
]. To

be a rescheduling candiate, a task should satisfy two conditions
(line 4). First, its WCET (we still only know WCET of remain-

possible?

Re−
scheduling

Re−

possible?
mapping

next task

Information
of the task start

Can next

now?

RemappingRescheduling

Perform
WAD

PE
remains

idle

No NoNo

Yes Yes Yes

Figure 4. Integrated workload-ahead-driven DVS and
rescheduling/remapping

τ 0

τ 1 τ 2

τ 4τ 3 τ 5

τ 6

τ1

τ5

τ6τ3τ4

AET WCET

(a) (b)

PE2

PE1

PE0

remapping
rescheduling

1 3.5 4.5 7 8 10 (ms)

wasted without rescheduling
or remapping

2ms

1ms2ms1ms

4.5ms 4ms

1ms

slack
usable

not
os

τ2

τ0

Figure 5. Online task rescheduling and remapping
ing tasks at this moment) is less than the online slack so that the
next task will start no later than its offline decided start time. For
example, in Fig. 5, the WCET of � w is less than the online slack
and � � is guaranteed to start on time. This condition prevents
any deadline violation. The second condition is that at the time
of the search, all its incoming data communications have arrived
so that it can start at this moment. If these two conditions are
true, the found task is moved to the head of the execution queue
and placed before the next task � g�, [� (line 6). Then the proposed
online DVS procedure is called (line 11) to utilize the otherwise
wasted online slack. As indicated in Fig. 4, if no suitable task for
rescheduling has been found, task remapping will be performed
(line 12-28). Similar to online rescheduling, online remapping

Algorithm: RM-RS-DVS

Input: - gl, [� , "! g�, [� , "$&%[' gl, [� , (a' gl, [� , # � ,$+*^,�,�'/.10 2 , �
Output: - 4 g�, [�
01: 5�Q�M9C�� 03.�< h��	� A>.�
�29R�X
�[%�� \��If 2>=�2 �&*^2U*^2 i ;
02: �����PlBAU2�@�,�DF: ,�2�A>*^JL8�� X?@TJ�A>2 ;
03: 6�������� � M��qC //online rescheduling
04: 576��[%�� \��If 2>=�2 �&*^2U*^2 � �!�TAU@�8I.;A�X�.I2�A,-2-AUDF:�2�H�*^JL.1<Pe/DFR�<)H�.18I.1R�<aA M-NPOBQ
05: A>2�@�,�DF: ,�2-AF*^J78�� 8I,-*^2 ;
06: 03R�dT2_2U=�2 �&*�2>*^2 � �"�-8;R_8;:�29:�2U@gH R�X]2>=�2 �&*^2U*^2 ;
07: `b,�2U@gC ;
08: OBQ)n 5L6
09: O�Q)nG6��#�
10: 576_A>2�@�,�DF: ,�2-AF*^J78��$� 8I,-*^2 M-NPO�Q
11: DF@gJ7J WAD-DVS k // (Fig. 3)
12: O�l7m>O // online remapping
13: 6��#�9.�� � M��]<&%$% .(' ��\
14: C)� 0W.1< h��*� A>.�
T2 R�X+�[%�� .,�If 2>=�2 �&*^2U*^2 i ;
15: 6��#���	� � M-�EC
16: 576.�[%�� .,�If 2>=�2 �&*^2U*^2 � �!�TAU@�8I.;A�X�.I2�A,�2>0 @>\�\�.�<Pe D>RU<)H�.18I.IR�<)A M-NPO�Q
17: A>2�@�,�DF: ,�2�A>*^JL8/� 8I,-*^2 ;
18: X?2>8;D>:c8;@gAUC0�[%�� .,�If 2U=�2 �&*^2U*^21� �"��X�,�RU02�[%�� .3��@T<PH\?*^8^.18^8;R 8;:^2 :^2U@gH R�X+�[%�� \��If 2U=�2 �[*^2>*�2 ;
19: `b,-2�@TC ;
20: O�Q)n 576
21: OBQ)n36��#�
22: OBQ)nW6��#�
23: 576 AU2�@�,�DF: ,�2�A>*^JL8��$� 8I,�*�2 M-NPOBQ
24: DF@TJSJ WAD-DVS k // (Fig. 3)
25: OBlSmFO
26: J72U8��[%�� \���`Z29.IH�JS2 ;
27: OBQ)n 5L6
28: O�Q)n3576
Figure 6. Pseudo code: Online rescheduling/remapping

checks tasks in the search window of
L N L � p L p L of other PEs

to find a task that can utilize the available online slack (line 12-
22). Nevertheless, the selection is more strict in remapping phase
(line 16). Tasks can only be fetched from another PE if they fulfill
the two conditions mentioned in the rescheduling phase as well as
if their remapping does not introduce new communications. The
reason is that new data communications may delay the transfer of
some other scheduled communications on the CLs. This, in turn,
may cause some tasks not to start on time and result in the risk of
deadlines violation. After a task is remapped it is removed from

the task queue of its originally mapped PE to
L N L � p L p L head

of PE[
M

] (line 18), which then will call the proposed voltage scal-
ing procedure (line 24). If no task can be found remappable, the
idling of PE[

M
] is not avoided and the online slack is wasted (line

26).
The complexity of the rescheduling/remapping algorithm is

constant due to the fixed search window. As we will see in Sec-
tion 6, the search window size is usually a small number, hence
the computational overhead of the rescheduling/remapping algo-
rithm is very low.
6 Experimental Results

In order to validate the effectiveness of the proposed online
voltage scaling and rescheduling/remapping strategies in reduc-
ing battery charge consumption, we conducted several experi-
ments using 30 hypothetical examples as well as 7 real-world
benchmakrs. The hypothetical examples have been automatically
generated using TGFF [18], a pseudo-random task graph gen-
erator. The first 5 realistic examples have been taken from the
E3S benchmark suit [17] (auto-indust, consumer, office-auto, net-
working and telecomm), while the task graphs for GSM decoder
and encoder have been derived from publicly available C code
[19]. All reported results have been obtained using the battery
model of Section 2.2 and the evaluation criterion is the battery
charge consumption. Further, the evaluation is based on the same
normal distribution (mean: 0.6 times the WCET, standard devia-
tion: 0.13 times the WCET) of the actucal execution times of tasks
that has been used in [13]. In the first set of experiments, we eval-
uate the efficiency of our workload-ahead-driven DVS algorithm
(WAD, Fig. 3) by means of a comparison with 4 different online
DVS techniques, summarized for reference in the following: 1.
ASU: This heuristic is based on the slack distribution technique
AlterSlackUtilization presented in [10]. Although this technique
was originally proposed as offline technique, we have extended
it towards online DVS by calculating voltage setting each time
before a task starts execution. The satisfaction of deadlines is
imposed by considering WCET for each executing task. It is im-
portant to note that this approach has a high computational run-
time overhead (for each finishing task ����� .��
 , where � is the
number of the remaining tasks and � reflects the complexity of
the battery model). However, we use this approach due to its so-
lution quality as a baseline for comparison. 2. SF: The slack
forwarding approach is based on the technique presented in [13].
Its time complexity is constant (���	��
). 3. ACD: The average
current-based distribution is a heuristic that leverages informa-
tion regarding the task discharge currents to distribute slack: if
the current of the next task to be executed is less than or equal to
average current of tasks, it gets no slack; else, it gets some slack
such that its current decreases to the average value. When there is
only one task left, all slack is assigned to it. The time complexity
of this method is constant, too. We use this heuristic to under-
line the importance of the workload-driven technique that consid-
ers discharge currents as well as remaining task execution times.
4. WAD: This represents our workload-ahead-driven distribution
technique, as introduced in Section 4.2. It has also a complexity
of ���	�
 . Since the slack forwarding idea [13] is most suitable for
task sets without data communications, we executed the 7 realistic
benchmarks on single PE systems1, in which the inter-PE com-
munications between tasks can be neglected. Table 3 gives the
results in terms of battery charge consumption. In the table, the
first column gives the benchmark name and the number of tasks
in the benchmark. The results of the 4 online DVS techniques

1Note that not all these benchmarks can be executed on a single PE
without violating timing constraints. We therefore adjusted the deadlines
such that no violation occurred under WCETs.

Table 3. Results of online DVS in single PE systems
Bench- battery charge consump. (mAs) Improvem. (%)
mark ASU SF ACD WAD ������	� �����

��
��(# task) �qh�< .�� i �qh �Ui �qh �Ui �qh �Ui
1 (28) 0.248 0.372 0.372 0.247 33.67 33.67
2 (27) 4.687 7.136 7.136 4.690 34.28 34.28
3 (5) 0.104 0.126 0.118 0.104 17.86 11.86
4 (23) 0.873 1.125 1.125 0.863 23.29 23.39
5 (42) 0.289 0.387 0.387 0.287 25.69 25.69
6 (34) 4.394 6.785 6.595 4.365 35.66 33.81
7 (53) 5.877 9.044 8.419 5.755 36.36 31.65

1: Auto-ind.; 2: Consumer; 3: Office-auto; 4: Network;
5: Telecom; 6: GSM decoder; 7: GSM encoder

are given in Columns 2–5. In the last two columns we show
the percentage of improvement in battery charge consumption us-
ing the proposed WAD method over methods SF and ACD. We
can observe that ASU yields consistently the lowest battery con-
sumption when compared to SF and ACD, while the results pro-
duced by our WAD technique are very close to ASU and in some
cases even slightly better. Consider, for instance, the GSM de-
coder benchmark. Here ASU obtains a battery charge consump-
tion of 4.394mAs, while SF and ACD result in 6.785mAs and
6.595mAs, respectively. Nevertheless, WAD achieves the lowest
value with 4.365mAs, resulting in improvements of 35.66% and
33.81% over SF and ACD, respectively. This clearly indicates the
high solution quality of the proposed approach at low computa-
tional complexity.

The second set of experiments was conducted to vali-
date the workload-ahead-driven DVS as well as the reschedul-
ing/remapping techniques in the context of systems consisting of
multiple processing elements. We used LOPOCOS [16], an aca-
demic system-level synthesis tool, to find suitable multiple PE
implementations and to generate the offline mappings and sched-
ules for all 36 benchmarks (GSM decoder and encoder have been
combined into a single benchmark). In all experiments we set
the search window size (�) of the rescheduling/remapping algo-
rithm to 10, empirically found to be a good value. Nevertheless,
due to the importance of the window size on the solution quality
we have devoted an extra set of experiments on this subject, pre-
sented later in this section. Since the slack forwarding technique
[13] was particularly introduced for independent tasks, we refrain
in these experiments from a direct comparison.

The results of our experiments are summarized in Table 4. Due
to the limited space, we only show 15 of the TGFF benchmarks.
The first, second, and third columns give the benchmark name,
the number of tasks/communication edges, and the number of PEs
in the system, respectively. Columns 4–7 show the battery charge
consumptions in 4 different scenarios. Column 4 (No DVS) repre-
sents the nominal charge consumption, i.e., when no online volt-
age scaling is employed; Column 5 (WAD) shows the results of
the proposed workload-ahead-driven DVS technique; Columns 6
(WAD+RS) and 7 (WAD+RS+RM) give the charge consumption
when integrating WAD with online rescheduling and reschedul-
ing with remapping, respectively. Columns 8–10 summarize the
achieved battery charge savings in percent. Consider, for instance,
benchmark tgff2. Here the nominal and the WAD-based charge
consumptions are 5.941610
 � q < . mAs and 4.4459
 � q < . mAs,
respectively, representing a saving of 25.17%. This can be fur-
ther improved by using rescheduling as well as rescheduling with
remapping to 4.1119
 � q < . mAs and 4.0206
 � q < . mAs, respec-
tively, obtaining further saving of 7.78% and 9.83% when com-
pared to using WAD only.

As mentioned above, the window size used by the reschedul-
ing and remapping technique has an influence on the achievable
savings in battery charge consumption as well as on the online

Table 4. Experimental results in multi-PE systems
Bench- # task/ # Battery charge consumption (10

< . mAs) Percentages (%)
marks edge PE No DVS WAD WAD+RS WAD+RS+RM

;��
�
� �

��� �
�����

��� �
�����

��� �
��� � �����
��� �Auto-ind. 28/25 2 22.134 17.317 17.317 17.317 21.76 0 0

Consum. 27/30 3 851.32 613.38 613.38 613.38 27.94 0 0
Office-au. 5/5 1 15.578 12.768 12.768 12.768 18.03 0 0
Network. 23/19 2 12.295 10.404 10.404 10.404 15.38 0 0
Telecom. 42/40 2 46.181 36.118 36.054 36.031 21.79 0.17 0.24

GSM 87/138 6 10.399 7.581 7.458 7.458 27.09 1.62 1.62
tgff1 84/109 3 1.6536 1.2294 1.2060 1.1407 25.65 1.90 7.21
tgff2 196/236 3 5.9416 4.4459 4.1119 4.0206 25.17 7.78 9.83
tgff3 149/180 3 4.2885 3.2265 3.0185 2.9791 24.76 6.44 7.66
tgff4 81/103 3 2.4865 1.8633 1.7925 1.7306 25.06 3.81 7.12
tgff5 149/167 5 5.3703 4.0737 3.8586 3.8368 24.14 5.28 5.81
tgff6 70/94 2 1.0458 0.7840 0.7249 0.7248 25.02 7.54 7.55
tgff7 102/152 3 3.9872 2.8624 2.6778 2.6188 28.21 6.45 8.50
tgff8 117/170 3 3.9352 2.9009 2.7473 2.7429 26.28 5.29 5.44
tgff9 316/413 4 8.3134 6.0926 5.7592 5.6844 26.71 5.47 6.70
tgff10 269/348 3 5.4967 4.1520 3.8301 3.8114 24.46 7.75 8.20
tgff11 331/408 4 8.1994 6.0464 5.5650 5.4978 26.25 7.96 9.07
tgff12 280/341 4 10.097 7.4264 6.8689 6.7069 26.45 7.50 9.68
tgff13 378/443 4 1.3623 9.9426 9.1701 8.9537 27.01 7.77 9.94
tgff14 252/312 4 6.6971 5.0638 4.7497 4.6449 24.38 6.20 8.27
tgff15 210/234 3 0.3786 0.3183 0.2746 0.2735 15.92 13.71 14.08

Ave. percents 24.80 4.36 5.59

−
2

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0 1 2 3 4 5 6 7
search window size (M)

battery charge conumption

ba
tte

ry
 c

ha
rg

e
co

ns
um

pt
io

n
(1

0
 m

A
s)

Figure 7. Influence of search window size on reschedul-
ing/remapping results

complexity. The following experiment is used to clarify this as-
pect and to provide an insight into which window size should be
typically used. Fig. 7 shows the battery charge consumption of
benchmark tgff12 depending on the window size � . As it can be
observed, a window size of zero, i.e. no rescheduling/remapping
is performed, results in a charge consumption of 7.43
 � q < . mAs.
However, with an increasing window size this value decreases to
6.7
 � q < . mAs. In general, we have observed that a window size
of 10 provides a good trade-off between solution quality and com-
plexity for all investigated benchmarks.

7 Conclusion

In this paper, we have presented a workload-ahead-driven volt-
age scaling technique which explicitly takes the discharge current
and execution times into account to make battery-aware scaling
decisions. To further improve the battery charge consumption,
we have presented an online rescheduling/remapping technique
that aims to reduce the waste of online slack when using static
schedules and mappings. To the best of our knowledge, this is
the first online approach that addresses voltage scaling as well as
rescheduling/remapping in conjunction. All presented techniques
are of constant time complexity (���	��
), making them suitable
for applications with hard real-time systems. The efficiency of
the proposed techniques have been experimentally validated us-
ing automatically-generated as well as real-life benchmarks. It
has been demonstrated that significant savings of up to 36% in
the battery charge can be obtained when compared to approaches
that delay the slack utilization as late as possible.

References

[1] J. Luo and N. K. Jha, ”Low Power Distributed Embedded Systems:
Dynamic Voltage Scaling and Synthesis”, Proc. Int. Conf. High Per-
formance Computing, 2002.

[2] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng and B. M. Al-Hashimi,
”Overhead-Conscious Voltage Selection for Dynamic and Leakage
Energy Reduction of Time-Constrained Systems”, Proc. DATE, 518-
523, 2004.

[3] M. T. Schmitz and B. M. Al-Hashimi, ”Considering Power Variations
of DVS Processing Elements for Energy Minimization in Distributed
Systems”, Proc. ISSS, 250-255, 2001.

[4] W. Ye and R. Ernst, ”Embedded program timing analysis based on
path clustering and architecture classification”, Proc. ICCAD, 598-
604, 1997.

[5] H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, ”Dynamic
and Aggressive Scheduling Techniques for Power-aware Real-time
Systems”, Proc. RTSS, 95-105, 2001.

[6] J. Luo and N. K. Jha, ”Static and Dynamic Variable Voltage Schedul-
ing Algorithms for Real-Time Heterogeneous Distributed Embedded
Systems”, Proc. ASP-DAC, 712-719, Jan. 2002.

[7] Y. Zhu and F. Mueller, ”Feedback EDF scheduling exploiting dy-
namic voltage scaling”, Proc. RTAS, 84-89, 2004.

[8] D. Zhu, R. Melhem and B. R. Childers, ”Scheduling with Dy-
namic Voltage/Speed Adjustment Using Slack Reclamation in Multi-
Processor Real-Time Systems”, IEEE Trans. on Parallel and Dis-
tributed Systems, Vol. 14:7, 686-700, 2003.

[9] D. Shin and J. Kim, ”A Profile-Based Energy-Efficient Itra-Task
Voltage Scheduling Algorithm for Hard Real-Time Applications”,
Proc. ISLPED, 271-274, 2001.

[10] D. Rakhmatov, S. Vrudhula, ”Energy Management for Battery-
powered Embedded Systems”, ACM Transactions on Embedded
Computing Systems, Vol. 2:3, 277-324, 2003.

[11] P. Chowdhury and C. Chakrabarti, ”Battery Aware Task Scheduling
for a System-on-a-chip Using Voltage/Clock Scaling”, Proc. SIPS,
201-206, October 16-18, 2002.

[12] J. Luo and N. K. Jha, ”Battery-aware Static Scheduling for Dis-
tributed Real-time Embedded Systems”, Proc. DAC, 444-449, 2001.

[13] J. Ahmed and C. Chakrabarti, ”A dynamic task scheduling algo-
rithm for battery powered DVS systems”, Proc. ISCAS, 813-816,
2004.

[14] R. Rao, S. Vrudhula and D. Rakhmatov, ”Battery modeling for
energy-aware system design”, IEEE Computer, Vol. 36:12, 77-87,
2003.

[15] C. Shen, K. Ramamritham and J. A. Stankovic, ”Resource Reclaim-
ing in Multiprocessor Real-time Systems”, IEEE Trans. on Parallel
and Distributed Systems, Volume. 4:4, 382-397, 1993.

[16] M. T. Schmitz, B. M. Al-Hashimi and P. Eles, ”Synthesizing
Energy-Efficient Embedded Systems with LOPOCOS”, Design Au-
tomation for Embedded Systems, Vol. 6, 401-424, 2002.

[17] http://www.ece.northwestern.edu/ dickrp/e3s/
[18] http://ziyang.ece.northwestern.edu/tgff/
[19] http://kbs.cs.tu-berlin.de/ jutta/toast.html

