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Abstract

We present a kernel-based algorithm for hi-
erarchical text classification where the docu-
ments are allowed to belong to more than one
category at a time. The classification model
is a variant of the Maximum Margin Markov
Network framework, where the classification
hierarchy is represented as a Markov tree
equipped with an exponential family defined
on the edges. We present an efficient op-
timization algorithm based on incremental
conditional gradient ascent in single-example
subspaces spanned by the marginal dual vari-
ables. Experiments show that the algorithm
can feasibly optimize training sets of thou-
sands of examples and classification hierar-
chies consisting of hundreds of nodes. The
algorithm’s predictive accuracy is competi-
tive with other recently introduced hierarchi-
cal multi-category or multilabel classification
learning algorithms.

1. Introduction

In many application fields, taxonomies and hierarchies
are natural ways to organize and classify objects, hence
they are widely used for tasks such as text classifi-
cation. In contrast, machine learning research has
largely been focused on flat target prediction, where
the output is a single binary or multivalued scalar vari-
able. Naively encoding a large hierarchy either into a
series of binary problems or a single multiclass problem
with many possible class values suffers from the fact
that dependencies between the classes cannot be rep-
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resented well. For example, if a news article belongs
to category music, it is very likely that the article
belongs to category entertainment. The failure to
represent these relationships leads to a steep decline of
the predictive accuracy in the number of possible cat-
egories. In recent years, methods that utilize the hier-
archy in learning the classification have been proposed
by several authors (Koller & Sahami, 1997; McCallum
et al., 1998; Dumais & Chen, 2000). Very recently,
new hierarchical classification approaches utilizing ker-
nel methods have been introduced (Hofmann et al.,
2003; Cai & Hofmann, 2004; Dekel et al., 2004). The
main idea behind these methods is to map the docu-
ments (or document–labeling pairs) into a potentially
high-dimensional feature space where linear maximum
margin separation of the documents becomes possible.

Most of the above mentioned methods assume that the
object to be classified is assumed to belong to exactly
one (leaf) node in the hierarchy. In this paper we con-
sider the more general case where a single object can
be classified into several categories in the hierarchy, to
be specific, the multilabel is a union of partial paths
in the hierarchy. For example, a news article about
David and Victoria Beckham could belong to partial
paths sport, football and entertainment, mu-
sic but might not belong to any leaf categories such
as champions league. The problem of multiple par-
tial paths was also considered in Cesa-Bianchi et al.
(2004).

Recently Taskar et al. (2003) introduced a max-
imum margin technique which optimised an SVM-
style objective function over structured outputs. This
technique used a marginalisation trick to obtain a
polynomial sized quadratic program using marginal
dual variables. This was an improvement over the
exponentially-sized problem resulting from the du-
alization of the primal margin maximization prob-
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lem, which only can be approximated with polynomial
number of support vectors using a working set method
(Altun et al., 2003; Tsochantaridis et al., 2004).

Even using marginal variables, however, the prob-
lem becomes infeasible for even medium sized data
sets. Therefore, efficient optimization algorithms are
needed. In this paper we present an algorithm for
working with the marginal variables that is in the spirit
of Taskar et al. (2003), however a reformulation of the
objective allows a conditional-gradient method to be
used which gains efficiency and also enables us to work
with a richer class of loss functions.

The structure of this article is the following. In Section
2 we present the classification framework, review loss
functions and derive a quadratic optimization prob-
lem for finding the maximum margin model param-
eters. In Section 3 we present an efficient learning
algorithm relying a decomposition of the problem into
single training example subproblems and conducting
iterative conditional gradient ascent in marginal dual
variable subspaces corresponding to single training ex-
amples. We compare the new algorithm in Section 4
to flat and hierarchical SVM learning approaches and
the hierarchical regularized least squares algorithm re-
cently proposed by Cesa-Bianchi et al. (2004). We
conclude the article with discussion in Section 5.

2. Maximum Margin Hierarchical
Multilabel Classification

When dealing with structured outputs, it is common
to assume an exponential family over the labelings.
Our setting therefore is as follows. The training data
((xi,yi))

m
i=1 consists of pairs (x,y) of document x and

a multilabel y ∈ {+1,−1}k consisting of k microlabels.
As the model class we use the exponential family

P (y|x) ∝
∏

e∈E

exp
(
wT

e φφφe(x,ye)
)

= exp
(
wTφφφ(x,y)

)

(1)
defined on the edges of a Markov tree T = (V, E),
where node j ∈ V corresponds to the j’th component
of the multilabel and the edges e = (j, j′) ∈ E cor-
respond to the classification hierarchy given as input.
By ye = (yj , yj′) we denote the restriction of the mul-
tilabel y = (y1, . . . , yk) to the edge e = (j, j′).

We use a similar feature vector structure to Altun et al.
(2003). The edge-feature vector φφφe is a concatenation
of ’class-sensitive’ feature vectors φφφu

e (x,ye) = Jye =
ueKφφφ(x), where J·K denotes an indicator function. The
vector φφφ(x) could be a bag of words—as in the experi-
ments reported here—or any other feature representa-
tion of the document x. Note that although the same

feature vector φφφ(x) is duplicated for each edge and
edge-labeling, in the weight vector w = (wue

e )e∈E,ue

we still have separate weights to represent differences
in the importance of a given feature in different con-
texts.

2.1. Loss Functions for Hierarchical Multilabel
Classification

There are many ways to define loss functions for mul-
tilabel classification setting, and it depends on the ap-
plication which loss function is the most suitable. A
few general guidelines can be set, though. The loss
function should obviously fulfil some basic conditions:
`(ŷ,y) = 0 if and only if ŷ = y, `(ŷ,y) is maximum
when ŷj 6= yj for every 1 ≤ j ≤ k, and ` should be
monotonically non-decreasing with respect to the sets
of incorrect microlabels. These conditions are satisfied
by, for example, zero-one loss `0/1(y,u) = Jy 6= uK.
However, it gives loss of 1 if the complete hierarchy
is not labelled correctly, even if only a single micro-
label was predicted incorrectly. In multilabel classifi-
cation, we would like the loss to increase smoothly so
that we can make a difference between ’nearly correct’
and ’clearly incorrect’ multilabel predictions. Sym-
metric difference loss `∆(y,u) =

∑
jJyj 6= ujK, has

this property and is an obvious first choice as the loss
function in structured classification tasks. However,
the classification hierarchy is not reflected in any way
in the loss. For uni-category hierarchical classifica-
tion (Hofmann et al., 2003; Cai & Hofmann, 2004;
Dekel et al., 2004), where exactly one of the micro-
labels has value 1, Dekel et al. (2004) use as a loss
function the length of the path (i1, · · · , ik) between
the the true and predicted nodes with positive micro-
labels `PATH(y,u) = |path(i : yi = 1, j : uj = 1)|.
Cai and Hofmann (2004) defined a weighted version
of the loss that can take into account factors such as
subscription loads of nodes.

In the union of partial paths model, where essentially
we need to compare a predicted tree to the true one
the concept of a path distance is not very natural.
We would like to account for the incorrectly predicted
subtrees—in the spirit of `∆—but taking the hierar-
chy into account. Predicting the parent microlabel
correctly is more important than predicting the child
correctly, as the child may deal with some detailed
concept that the user may not be interested in; for
example whether a document was about champions
league football or not may not relevant to a person
that is interested in football in general. Also, for
the learners point of view, if the parent class was al-
ready predicted incorrectly, we don’t want to penalize
the mistake in the child. A loss function that has these
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properties was given by Cesa-Bianchi et al. (2004). It
penalizes the first mistake along a path from root to a
node

`H(y,u) =
∑

j

cjJyj 6= uj & yh = uh∀h ∈ anc(j)K,

where anc(j) denotes the set of ancestors of node j.
The coefficients 0 ≤ cj ≤ 1 are used for down-scaling
the loss when going deeper in the tree. These can be
chosen in many ways. One can divide the maximum
loss among the subtrees met along the path. This is
done by defining

croot = 1, cj = cpa(j)/|sibl(j)|,
where we denoted by pa(j) the immediate parent and
by sibl(j) the set of siblings of node j (including j
itself). Another possibility is to scale the loss by the
proportion of the hierarchy that is in the subtree T (j)
rooted by j, that is, to define

cj = |T (j)|/|T (root)|.
In our experiments we use both the sibling and sub-
tree scaling to re-weight prediction errors on individual
nodes, these are referred to as `-sibl and `-subtree re-
spectively. If we just use a uniform weighting (cj = 1)
in conjunction with the hierarchical loss above this is
denoted as `-unif .

Using `H for learning a model has the drawback that
it does not decompose very well: the labelings of the
complete path are needed to compute the loss. There-
fore, in this paper we consider a simplified version of
`H , namely

`H̃(y,u) =
∑

j

cjJyj 6= uj & ypa(j) = upa(j)K,

that penalizes a mistake in a child only if the label
of the parent was correct. This choice leads the loss
function to capture some of the hierarchical dependen-
cies (between the parent and the child) but allows us
define the loss in terms of edges, which is crucial for
the efficiency of our learning algorithm.

Using the above, the per-microlabel loss is divided
among the edges adjacent to the node. This is achieved
by defining an edge-loss `e(ye,ue) = `j(yj , uj)/N (j)+
`j′(yj′ , uj′)/N (j′) for each e = (j, j′), where `j is the
term regarding microlabel j, ye = (yj , yj′) is a label-
ing of the edge e and N (j) denotes the neighbours of
node j in the hierarchy (i.e. the children of a nodes and
it’s parent). Intuitively, the edges adjacent to node j
’share the blame’ of the microlabel loss `j . The multi-
label loss (`∆ or `H̃) is then written as a sum over the
edges: `(y,u) =

∑
e∈E `e(ye,ue).

2.2. Maximum margin learning

As in Taskar et al. (2003) and Tsochantaridis et al.
(2004), our goal is to learn a weight vector w that
maximizes the minimum margin on training data the
between the correct multilabel yi and the incorrect
multilabels y 6= yi. Also, we would like the margin
to scale as a function of the loss. Allotting a single
slack variable for each training example results in the
following soft-margin optimization problem:

min
w

1
2
||w||2 + C

m∑

i=1

ξi

s.t. wT ∆φφφ(xi,y) ≥ `̀̀(yi,y)− ξi, ∀i,y (2)

where ∆φφφ(xi,y) = φφφ(xi,yi) − φφφ(xi,y). This op-
timization problem suffers from the possible high-
dimensionality of the feature vectors. A dual problem

max
ααα>0

αααT `̀̀ − 1
2
αααT Kααα, s.t.

∑
y

α(i,y) ≤ C, ∀i,y (3)

where K = ∆ΦT ∆Φ is the joint kernel matrix for
pseudo-examples (xi,y) and `̀̀ = (`(yi,y))i,y is the loss
vector, allows us to circumvent the problem with fea-
ture vectors. However, in the dual problem there are
exponentially many dual variables α(i,y), one for each
pseudo-example. One can guarantee an approximate
solution with a polynomial number of support vectors,
though (Tsochantaridis et al., 2004).

For the loss functions `∆ and `H̃ we can use the
marginalization trick of Taskar et al. (2003) to obtain
a polynomial-sized optimization problem with dual
variables

µe(i,ye) =
∑

{u|ue=ye}
α(i,u). (4)

These variables can be seen as edge-marginals of the
original dual variables. Applying (4) to (3) requires us
to write the kernel and the loss in terms of the edges.
The required loss vector is `̀̀ = (`e(ye,i, ue))i,e,ue

and
the kernel decomposition is

K(i,y; i′,y′) =
∑

e∈E

∆φφφe(xi,ye)T ∆φφφe(x′i,y
′
e)

=
∑

e∈E

Ke(i,ye; i′,y′e),

where Ke is the joint kernel for edge e. With the vector
µµµ = (µe(i,ue))i,e,ue

of marginal dual variables, loss
vector `̀̀ and the edge-kernels Ke the objective in (3)
can be expressed as

∑

e∈E

µµµT
e `̀̀e − 1

2
µµµT

e Keµµµe,
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with the constraints
∑
ue

µe(i,ue) ≤ C, ∀i, e ∈ E. (5)

However, in order to ensure that the marginal dual
variables µe(i,ye) correspond to a valid α(i,y), ad-
ditional constraints need to be inserted. To ensure
overall consistency, for tree-shaped models it is suffi-
cient to make sure that adjacent edges have consistent
marginals (Taskar et al., 2003; Wainwright & Jordan,
2003). If two edges share a node j, they need to have
equal node-marginals µj :

∑

y′
µe(i, y, y′) = µj(i, y) =

∑

y′
µe′(i, y, y′). (6)

To enforce this constraint, it suffices to pair up each
edge with its parent which results in the set of edge
pairs E2 = {(e, e′) ∈ E × E|e = (p, i), e′ = (i, j)}. By
introduction of these marginal consistency constraints
the optimization problem gets the form

max
µµµ>0

∑

e∈E

µµµT
e `̀̀e − 1

2

∑

e∈E

µµµT
e Keµµµe (7)

s.t
∑

y,y′
µe(i, y, y′) ≤ C, ∀i, e ∈ E,

∑

y′
µe(i, y′, y) =

∑

y′
µe′(i, y, y′), ∀i, y, (e, e′) ∈ E2,

While the above formulation is closely related to that
described in Taskar et al. (2003), there are a few
differences to be pointed out. Firstly, as we assign
the loss to the edges rather than the microlabels, we
are able to use richer loss functions than the simple
`∆. Secondly, single-node marginal dual variables (the
µj ’s in 6) become redundant when the constraints are
given in terms of the edges. Thirdly, we have utilized
the fact that in our feature representation the ’cross-
edge’ values ∆φφφe(x,y)T ∆φφφe′(x′,y′) do not contribute
to the kernel, hence we have a block-diagonal ker-
nel KE = diag(Ke1 , . . . , Ke|E|), KE(i, e,ue; j, e,ve) =
Ke(i,ue; j,ve) with the number of non-zero entries
thus scaling linearly rather than quadratically in the
number of edges. Finally, we write the box constraint
(5) as an inequality as we want the algorithm to be
able to inactivate training examples (see Section 3.2).

Like that of Taskar et al. (2003), our approach can be
generalized to non-tree structures. However, the feasi-
ble region in (7) will in general only approximate that
of (3), which will give rise to a approximate solution
to the primal. Also, finding the maximum likelihood
multilabel can only be approximated tractably.

3. Efficient Optimization using
Conditional Subspace Gradient
Ascent

While the above quadratic program is polynomial-
sized—and considerably smaller than that described
in Taskar et al. (2003)—it is still easily too large in
practise to fit in main memory or to solve by off-the-
shelf QP solvers. To arrive at a more tractable prob-
lem, we notice that both the box constraints (5) and
the marginal consistency constraints (6) are defined
for each x separately, and they only depend on the
edge set E, not on the training example in question.
Thus, the constraints not only decompose by the train-
ing examples but the constraints are also identical for
each example. However, the kernel matrix only com-
poses by the edges. Thus there does not seem to be a
straightforward way to decompose the quadratic pro-
gramme.

A decomposition becomes possible when considering
gradient-based approaches. Let us consider optimiz-
ing the dual variables µµµi = (µe(i,ye))e,ye

of example
xi. Let us denote by Kij = (Ke(i,ue; j,ve)e,ue,ve

the
block of kernel values between examples i and j, and
by Ki· = (Kij)j the columns of the kernel matrix KE

referring to example i.

Obtaining the gradient for the xi-subspace requires
computing gi = `̀̀i −Ki·µµµ where `̀̀i = (`e(i,ue))e,ue

is
the loss vector for xi. However, when updating µµµi only,
evaluating the change in objective and updating the
gradient can be done more cheaply: ∆gi = −Kii∆µµµi

and ∆obj = `̀̀T
i ∆µµµi− 1/2∆µµµiKii∆µµµi. Thus local opti-

mization in a subspace of a single training example can
be done without consulting the other training exam-
ples. On the other hand, we do not want to spend too
much time in optimizing a single example: When the
dual variables of the other examples are non-optimal,
so is the initial gradient gi. Thus the optimum we
would arrive at would not be the global optimum of
the quadratic objective. It makes more sense to op-
timize all examples more or less in tandem so that
the full gradient approaches its optimum as quickly as
possible.

In our approach, we have chosen to conduct a few op-
timization steps for each training example using a con-
ditional gradient ascent (see Section 3.1) before mov-
ing on to the next example. The iteration limit for
each example is set by using the KKT conditions as a
guideline (see Section 3.2).

The pseudocode of our algorithm is given in Algorithm
1. It takes as input the training data, the edge set of
the hierarchy, the loss vector `̀̀ = (`̀̀i)

m
i=1 and the con-
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straints defining the feasible region. The algorithm
chooses a chunk of examples as the working set, com-
putes the x-kernel and makes an optimization pass over
the chunk. After one pass, the gradient, slacks and the
duality gap are computed and a new chunk is picked.
The process is iterated until the duality gap gets below
given threshold.

Note in particular, that the joint kernel is not explic-
itly computed, although evaluating the gradient re-
quires computing the product Kµµµ. However, we are
able to take advantage of the special structure of the
feature vectors–repeating the same feature vector in
different contexts–to facilitate the computation using
the x-kernel KX(i, j) = φφφ(xi)Tφφφ(xj) and the dual vari-
ables only.

Algorithm 1 Maximum margin optimization algo-
rithm for the H-M3 hierarchical classification model.
h-m3(S, E, `̀̀,F)
Inputs: Training data S = ((xi,yi))

m
i=1, edge set E

of the hierarchy, a loss vector `̀̀, constraint matrix
A and vector b.

Outputs: Dual variable vector µµµ and objective value
obj.

1: Initialize g = `̀̀, ξξξ = `̀̀,dg = ∞ and OBJ = 0.
2: while dg > dgmin & iter < max iter do
3: [WS,Freq] = UpdateWorkingSet(µµµ,g, ξξξ);
4: Compute x-kernel values KX,WS =

KX(·, ·; WS, ·);
5: for i ∈ WS do
6: Compute joint kernel block Kii and subspace

gradient gi;
7: [µµµi, ∆obj] = CSGA(µµµi,gi,Ki,F , F reqi);
8: end for
9: Compute gradient g, slacks ξξξ and duality gap

dg;
10: end while

3.1. Optimization in single example subspaces

The optimization algorithm used for a single example
is a variant of conditional gradient ascent (or descent)
algorithms (Bertsekas, 1999). The algorithms in this
family solve a constrained quadratic problem by it-
eratively stepping to the best feasible direction with
respect to the current gradient.

The pseudocode of our variant CSGA is given in Algo-
rithm 2. The algorithm takes as input the current dual
variables, gradient, constraints and the kernel block for
the example, and an iteration limit. It outputs new
values for the dual variables and the change in ob-
jective value. As discussed above, the iteration limit
is set very tight so that only a few iterations will be

typically conducted.

For choosing the step length, c we take the optimal
solution, namely we look for the saddle point along
the ray µµµi(c) = µµµi + c∆µµµ, c > 0, where ∆µµµ = µµµ′i − µµµi

is the line segment between the highest feasible point
along the gradient and the current point. The saddle
point is found by solving

d
dc

`̀̀T
i µµµi(c)− 1/2µµµi(c)T Kiµµµi(c) = 0.

If c > 1, the saddle point is infeasible and the feasible
maximum is obtained at c = 1. In our experience, the
time taken to compute the saddle point was negligible
compared to finding µµµ′i, which in implementation was
done by Matlab’s linear interior point solver LIPSOL.

Algorithm 2 Conditional subspace gradient ascent
optimization step.
CSGA(µµµ0,g,K,F ,maxiter)
Inputs: Initial dual variable vector µµµ0, gradient g,

constraints of the feasible region F , a joint kernel
block K for the subspace, and an iteration limit
maxiter.

Outputs: New values for dual variables µµµ and change
in objective ∆obj.

1: µµµ = µµµ0;∆obj = 0; iter = 0;
2: while iter < maxiter do
3: % find highest feasible point given g
4: µµµ = argmaxv∈F gT v;
5: ∆µµµ = µµµ−µµµ0;
6: l = gT

x ∆µµµ; q = ∆µµµT K∆µµµ; % saddle point
7: c = min(l/q, 1); % clip to remain feasible
8: if c ≤ 0 then
9: break; % no progress, stop

10: else
11: µµµ0 = µµµ;µµµ = µµµ + c∆µµµ; % update
12: gx = gx − cK∆µµµ;
13: ∆obj = ∆obj + cl − c2q/2;
14: end if
15: iter = iter + 1;
16: end while

3.2. Working set maintenance

We wish to maintain the working set so that the most
promising examples to be updated are contained there
at all times to minimize the amount of computation
used for unsuccessful updates. Our working set update
is based on the KKT conditions which at optimum
hold for all xi:

1. (C −∑
e,ye

µe(i,ye))ξi = 0, and

2. α(i,y)(wT φ(xi,y)− `(xi, y) + ξi) = 0.
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The first condition states that, at optimum, only ex-
amples that saturate the box constraint can have pos-
itive slack, and consequently a pseudo-example that
has a negative margin. The second condition states
that pseudo-examples with non-zero dual variables are
those that have the minimum margin, that is, need
the full slack ξi. Consequently, if all pseudo-examples
of xi have positive margin, all dual variables satisfy
α(i,y) = 0. This observation leads to the following
heuristics for the working set update:

• Non-saturated (
∑

e,ye
µe(i,ye) < C) examples

are given priority as they certainly will need to
be updated to reach the optimum.

• Saturated examples (
∑

e,ye
µe(i,ye) = C) are

added if there are not enough non-saturated ones.
The rationale is that the even though an example
is saturated, the individual dual variable values
may still be suboptimal.

• Inactive (
∑

e,ye
µe(i,ye) = 0) non-violators (ξi =

0) are removed from the working set, as they do
not constrain the objective.

Another heuristic technique to concentrate computa-
tional effort to most promising examples is to favour
examples with a large duality gap

∆obj(µµµ,ξξξ) =
∑

i

Cξi + µµµT
xi

gxi .

As feasible primal solutions always are least as large as
feasible dual solutions, the duality gap gives an upper
bound to the distance from the dual solution to the
optimum. We use the quantity ∆i = Cξ +µµµT

xi
gxi as a

heuristic measure of the work needed for that particu-
lar example in order to reach the optimum. Examples
are then chosen to the chunk to be updated with prob-
ability proportional to pi ∝ ∆i−minj ∆j . An example
that is drawn more than once will be set a higher it-
eration limit for the next optimization step.

4. Experiments

We tested the presented learning approach on two pub-
licly available document collection that have an asso-
ciated classification hierarchy:

• Reuters Corpus Volume 1, RCV1 (Lewis et al.,
2004). 2500 documents were used for training and
5000 for testing. As the label hierarchy we used
the ’CCAT’ family of categories, which had a total
of 34 nodes, organized in a tree with maximum
depth 3. The tree is quite unbalanced, half of the
nodes residing in depth 1.

• WIPO-alpha patent dataset (WIPO, 2001). The
dataset consisted of the 1372 training and 358

testing document comprising the D section of the
hierarchy. The number of nodes in the hierar-
chy was 188, with maximum depth 3. Each doc-
ument in this dataset belongs to exactly one leaf
category, hence it contains no multiple or partial
paths.

Both datasets were processed into bag-of-words repre-
sentation with TFIDF weighting. No word stemming
or stop-word removal was performed.

We compared the performance of the presented learn-
ing approach—below denoted by h-m3—to three al-
gorithms: svm denotes an SVM trained for each mi-
crolabel separately, h-svm denotes the case where
the SVM for a microlabel is trained only with exam-
ples for which the ancestor labels are positive. h-
rls is the hierarchical least squares algorithm de-
scribed in Cesa-Bianchi et al. (2004). It essentially
solves for each node i a least squares style problem
wi = (I + SiS

T
i + xxT )−1Siyi, where Si is a matrix

consisting of all training examples for which the parent
of node i was classified as positive, yi is a microlabel
vector for node i of those examples and I is an identity
matrix. Predictions for a node i for a new example x
is −1 if the parent of the node was classified negatively
and sign(wT

i x) otherwise.

The algorithms were implemented in MATLAB and
the tests were run on a high-end PC. For svm,h-svm
and h-m3, the regularization parameter value C = 1
was used in all experiments.

Obtaining consistent labelings. As the learning
algorithms compared here all decompose the hierar-
chy for learning, the multilabel composed of naively
combining the microlabel predictions may be incon-
sistent, that is, they may predict a document as part
of the child but not as part of the parent. For svm
and h-svm consistent labelings were produced by post-
processing the predicted labelings as follows: start at
the root and traverse the tree in a breadth-first fash-
ion. If the label of a node is predicted as −1 then all
descendants of that node are also labelled negatively.
This post-processing turned out to be crucial to ob-
tain good accuracy, thus we only report results with
the postprocessed labelings. Note that h-rls performs
essentially the same procedure (see above). For h-m3

models, we computed by dynamic programming the
consistent multilabel with maximum likelihood

ŷ(x) = argmaxy∈YT
P (y|x) = argmaxyw

Tφφφ(x,y),

where YT is the set of multilabels that correspond to
unions of partial paths in T .
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Figure 1. The objective function (% of optimum) and zero-
one error rates for h-m3 on training and test sets (WIPO-
alpha). `H̃ loss with no scaling was used for training.

Table 1. Prediction losses obtained using different training
losses on Reuter’s (top) and WIPO-alpha data (bottom).
The loss `0/1 is given as a percentage, the other losses as
averages per-example.

Test loss
`0/1 `∆ `H̃ +scaling

Tr. loss % unif sibl. subtree
`∆ 27.1 0.574 0.344 0.114 0.118
`H̃ -unif 26.8 0.590 0.338 0.118 0.122
`H̃ -sibl. 28.2 0.608 0.381 0.109 0.114
`H̃ -subtree 27.9 0.588 0.373 0.109 0.109

`0/1 `∆ `H̃ +scaling
Tr. loss % unif sibl. subtree
`∆ 70.9 1.670 0.891 0.050 0.070
`H̃ -unif. 70.1 1.721 0.888 0.052 0.074
`H̃ -sibl. 64.8 1.729 0.927 0.048 0.071
`H̃ -subtree 65.0 1.709 0.919 0.048 0.072

Efficiency of optimization. To give an indication
of the efficiency of the h-m3 algorithm, Figure 1 shows
an example learning curve on WIPO-alpha dataset.
The number of dual variables for this training set is
just over one million with a joint kernel matrix with ap-
prox 5 billion entries. Note that the solutions for this
optimisation are not sparse, typically less than 25%
of the marginal dual variables are zero. The training
error obtains its minimum after ca. 6 hours of CPU
time, when the objective was around 95% of the maxi-
mum. Testing error (`0/1 loss) reaches close to its min-
imum after 2 hours, suggesting the possibility of early
stopping. In our experiments, the running time of h-
rls, although faster than h-m3, was in the same order
of magnitude whereas svm and h-svm are expectedly
much faster than the other two algorithms.

Table 2. Prediction loss, precision, recall and F1 values ob-
tained using different learning algorithms on Reuter’s (top)
and WIPO-alpha data (bottom). The loss `0/1 is given as a
percentage, the other losses as averages per-example. Pre-
cision and recall are computed in terms of totals of micro-
label predictions in the test set.

Alg. `0/1 `∆ `H P R F1
svm 32.9 0.61 0.099 94.6 58.4 72.2

h-svm 29.8 0.57 0.097 92.3 63.4 75.1
h-rls 28.1 0.55 0.095 91.5 65.4 76.3

h-m3-`∆ 27.1 0.58 0.114 91.0 64.1 75.2
h-m3-`H̃ 27.9 0.59 0.109 85.4 68.3 75.9

Alg. `0/1 `∆ `H P R F1
svm 87.2 1.84 0.053 93.1 58.2 71.6

h-svm 76.2 1.74 0.051 90.3 63.3 74.4
h-rls 72.1 1.69 0.050 88.5 66.4 75.9

h-m3-`∆ 70.9 1.67 0.050 90.3 65.3 75.8
h-m3-`H̃ 65.0 1.73 0.048 84.1 70.6 76.7

Effect of choice of the loss function. In order to
show the effect of training the h-m3 algorithm using
the different loss functions described in Section 2.1, we
compared the performance of the algorithm on both
the Reuters and WIPO data sets. The results can be
seen in Table 1. The WIPO dataset would suggest
that using a hierarchical loss function during training
(e.g. either `H̃ -sibl. or `H̃ -subtree) leads to a reduced
0/1 loss on the test set. On Reuters dataset this effect
is not observed, however this is due to the fact that
the label tree of the Reuters data set is very shallow.

Comparison to other learning methods. In our
final test we compare the predictive accuracy of h-m3

to other learning methods. For h-m3 we include the
results for training with `∆ and `H̃ -subtree losses. For
training svm and h-svm, these losses produce the same
learned model.

Table 2 depicts the different test losses, as well as the
standard information retrieval statistics precision (P),
recall (R) and F1 statistic (F1 = 2PR/(P +R)). Pre-
cision and recall were computed over all microlabel
predictions in the test set. Flat svm is expectedly
inferior to the competing algorithms with respect to
most statistics, as it cannot utilize the dependencies
between the microlabels in any way. The two variants
of h-m3 are the most efficient in getting the complete
tree correct as shown by the low zero-one loss. With
respect to other statistics, the hierarchical methods are
quite evenly matched overall.

Finally, to highlight the differences between the pre-
dicted labelings, we computed level-wise precision and
recall values, that is, the set of predictions contained
all test instances and microlabels on a given level of the
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Table 3. Precision/Recall statistics for each level of the hi-
erarchy for different algorithms on Reuters RCV1 (top) and
WIPO-alpha (bottom) datasets.

Alg. Level 0 Level 1 Level 2 Level 3
svm 92.4/89.4 96.8/38.7 98.1/49.3 81.8/46.2

h-svm 92.4/89.4 93.7/43.6 91.1/61.5 72.0/46.2
h-rls 93.2/89.1 90.9/46.8 89.7/64.8 76.0/48.7

h-m3-`∆ 94.1/83.0 87.3/48.9 91.1/63.2 79.4/69.2
h-m3-`H̃ 91.1/87.8 79.2/53.1 85.4/66.6 77.9/76.9

Alg. Level 0 Level 1 Level 2 Level 3
svm 100/100 92.1/77.7 84.4/42.5 82.1/12.8

h-svm 100/100 92.1/77.7 79.6/51.1 77.0/24.3
h-rls 100/100 91.3/79.1 78.2/57.0 72.6/29.6

h-m3-`∆ 100/100 90.8/80.2 86.1/50.0 72.1/31.0
h-m3-`H̃ 100/100 90.9/80.4 76.4/62.3 60.4/39.7

tree (Table 3). On both datasets, recall of all meth-
ods, especially with svm and h-svm, diminishes when
going farther from the root. h-m3 is the most efficient
method in fighting the recall decline, and is still able
to obtain reasonable precision.

5. Conclusions and Future Work

In this paper we have proposed a new method for train-
ing variants of the Maximum Margin Markov Network
framework for hierarchical multi-category text classi-
fication models.

Our method relies on a decomposition of the prob-
lem into single-example subproblems and conditional
gradient ascent for optimisation of the subproblems.
The method scales well to medium-sized datasets with
label matrix (examples × microlabels) size upto hun-
dreds of thousands, and via kernelization, very large
feature vectors for the examples can be used. Initial
experimental results on two text classification tasks
show that using the hierarchical structure of multi-
category labelings leads to improved performance over
the more traditional approach of combining individual
binary classifiers.

Our future work includes generalization of the ap-
proach to general graph structures and looking for
ways to scale up the method further.
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