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Abstract ers must find additional energy to avoid a blackout. Finally,

there are non-negligible costs stemming from the variation
The deregulation of the electricity industry in many coun-in the electricity production volume that most of the tradi-
tries has created a number of marketplaces in which productional types of energy generators (e.g. hydroelectric, ther-
ers and consumers can operate in order to more effectivelgnoelectric, nuclear) have to face. Against this background,
manage and meet their energy needs. To this end, this paptire desideratum is to achieve a market model where retailers
develops a new model for electricity retail where end-uséhave the most accurate possible prognosis and the capability
customers choose their supplier from competing electricityf influencing or guiding customers’ consumption. To this
retailers. The model is based on simultaneous reverse corend, there have been a number of initiatives, grouped under
binatorial auctions, designed as a second-price sealed-bithe general banner ddemand-Side Manageme(DSM),
multi-item auction with supply function bidding. This modelwhose main objective is to distribute the demand over time to
prevents strategic bidding and allows the auctioneer to maxavoid peak loads. Now, the easiest way to achieve this goal
imise its payoff. Furthermore, we develop optimal single-s by setting the price of the energy depending on the actual
item and multi-item algorithms for winner determination in demand load. Thus, the higher the demand, the more expen-
such auctions that are significantly less complex than thossive the price, and vice versa. Based upon these premises,
currently available in the literature. many utility companies (UCs) already present a basic form
of DSM by offering a cheaper night tariff.
1. Introducti Our aim in this work is to improve and extend this sim-
- Introduction ple market model to permit UCs to express more complex
The deregulation of electricity markets began in the earh@ims and, thus, increase their influence on customers. For
nineties when the UK Government privatised the electricinstance, in order to lighten the peak-time load, the supplier
ity supply industry in England and Wales. This process wa§an offer a discount for consuming a small amount of energy
then subsequently followed in many other countries. In mosét 8 am (peak-time) and a larger amount at midnight (off
cases, this restructuring involves separating the electricitpeak). This incentivises the customer to reschedule some
generation and retail from the natural monopoly functions ofasks to midnight (e.g. the dishwasher or the washing ma-
transmission and distribution. This, in turn, leads to the eschine). If many clients accept this compromise offer, the UC
tablishment of avholesale electricity markdor electricity ~ Will have achieved a double goal. It will have a more accu-
generation and eetail electricity marketfor electricity re- ~ rate prognosis for 8 am and midnight and it will also have
tailing. In the former case, competing generators offer theiphifted some of the peak-time consumption to off peak. In e-
electricity output to retailers and in the latter case end-useommerce terms, this process can be seemeagase combi-
customers choose their supplier from competing electricityatorial auction It is “reverse” because the customers pick
retailers. Here we focus on retail markets, which differ fromone of the available companies and tariffs to supply their fu-
their more traditional counterparts because energy cannéire consumption. And itis “combinatorial” because bidding
be stored or held in stock (as tangible goods can). Consdor a bundle of items is typically valued differently from bid-
quently, retailers are forced to work with consumption prog-ding separately for each of the constituent items (e.g. the
noses, which, in turn, creates a number of risks. First, procombinationof consuming at 8am and midnight is more ap-
ducing more than is consumed is not economical. Moreovefreciated, and thus rewarded, than, for instance, the combi-
the price of the energy mainly depends on the productiofation of consuming at 10am and 11am).
cost and this typically rises with the amount of energy pro- While combinatorial auctions provide very efficient al-
duced. Second, if the demand exceeds the prediction, supplécations that can maximise the revenue for the auctioneer,



their main drawback is the complexity of tloéearingpro-  a threshold above which the consumption becomes more ex-
cess in which buyers and sellers are matched and the quapensive. To move to a more dynamic environment where the
tities of items traded between them are determined. Specifbenefits of competition can be more fully realised, we put
cally, clearing combinatorial auctions is NP-hard [4]. More-forward the following requirements for our market design.
over, most work in this area deals with clearing combina-The arrangement of customers’ electricity supply from mul-
torial auctions withatomic propositiong6]. Thus, bids are tiple UCs should be achieved by having contracts that spec-
either accepted or rejected in their entirety, which may limitify the provision of an amount of energy for a certain period
the profit for the auctioneer. A more efficient solution is toof time (say one hour). These contracts should not necessar-
allow bidding with demand/supply functions [7, 2], in which ily be exclusive and, thus, customers may have agreements
bidders submit a function to calculate the cost of the unitsvith different companies for the same hour if this is the best
to be bought or sold. This allows the customer to accepthing to do. Finally, we assume customers auction, on a
parts of different bids and constitutes a powerful way of ex-daily basis, their next 24 hours consumption divided into
pressing complex pricing policies. In our case, productior24 items (representing one hour each). They subsequently
costs can be easily reflected in the supply function and ifeceive bids from the UCs and make their decision for the
bids are accepted partially, there may be more than one wimext 24 hours, which is a trade-off between the very static
ner for the same auction and item. This enables customesituations of today and the possibility of auctioning on a per
to accept different parts of bids from different bidders sominute basis for the coming minute.

th_ey can get energy simultan_eoysly_ from_several suppliers 5 Mmarket Design

Since the transmission and distribution grids are shared and ) )

the path followed by the electricity cannot be tracked down, | he requirements detailed above can be best met by struc-
it is impossible to determine the producer of the energy belU"ng the market as a reverse auction. Furthermore, we
ing consumed. Therefore, the hypothesis of customers beirfipSUMe customers don't issue any bids but simply choose
simultaneously supplied by several UCs does not pose argnongd those offered by the UCs. An exchange (in which
technical problems. multiple buyers and sellers submit their bids and offers to

Against this background, this paper advances the state &f’ independent al_Jctioneer that decides th'e winners [6]) was
the art in two main ways. First, we present, for the first'éiected because it scales poorly. In practice, the number of

time, an energy retail market designed as a system of r&ustomers may be up to tens of thousands, each of which is

verse combinatorial auctions with supply function bidding.S€lling 24 items, and with combinatorial bidding, clearing

This novel market allows customers to increase their profifUch an exchange becomes intractable very fast. Unlike ex-
and provides UCs with a mechanism to influence customer&nanges, reverse auctions have the advantage that they may

behaviour. Second, we develop new optimal clearing algobe performed in parallel. This means the complexity can be

rithms tailored to electricity supply functions that perform divided between the number of customers because instead

better than the existing more general clearing algorithm<2f One big auction, mangmallerones are carried out at the
The remainder of the paper is organized as follows. Sectiop@Me time. For these reasons, we have designed our sys-
2 details the overall market design. Section 3 presents tHEM as & series of simultaneous reverse auctions despite the
single-item and the multi-item clearing algorithms and analfisk of overbooking That is, although the UCs issue their
yses their complexity and optimality. Section 4 examines th@Wn tariffs they cannot control the number of customers that
results of comparing the multi-item algorithm with the only ch00se them. So the demand could exceed their capability.
other optimal multi-item one defined in the literature. Sec-HOWever, in this case, we allow overbooked UCs to buy the
tion 5 discusses related work. Finally, Section 6 conclude@dditional energy from non-overbooked ones (also see sec-
and outlines the avenues of future work. tion 6). As combinatorial bidding is permitted, UCs submit
their specialdiscounts together with the usual hour tariffs.
2. Electricity Retail Markets In this case, having 24 hours (or items) means that there may
be up to22* different combinations of discounts. This is ob-

This section discusses the nature of current electricity reviously a worst-case scenario because, in practice, our expe-
tail markets and outlines the design of our solution. rience in the domain indicates that UCs are highly unlikely
to issue a different discount for each possible combination.
Moreover, we decided that the auctions should be sealed (to

Currently, most customers only partially enjoy the bene+eveal the least possible information) and single-round (to
fits of a deregulated market. They typically sign mid-termminimise communication and other delays). The auctions
contracts with a single supplier and the tariffs do not re-also need to be both multi-item and multi-unit. As each item
flect the pressure of competition. Moreover, whereas class the supply of electricity in one hour, there are 24 items to
sical capitalist pricing policies encourage demand by applyallocate in an auction. In addition, each bidder may not allo-
ing discounts on quantity (the more you buy, the cheaper theate the whole consumption within an hour but rather just a
unit price becomes), actual electricity contracts often includgortion of it (i.e. some units).

2.1. Requirements



Another important component to set is the price paid byDefinition 2 An allocation is a list containing a number
the winner. We do not want to have a first price auction be{between one and the number of suppliers) of single allo-
cause it offers incentives for strategic behaviour (i.e. the parations that detail the supply of electricity to be provided to
ticipants act according to beliefs formed about others’ valuethe customer at a given time-slot.
and types, which does not assure them of maximising their
payoff). To circumvent this, we choose a uniform secondPefinition 3 Amore profitable allocatiorfrom two alterna-
price for combinatorial auctions (Vickrey-Clarke-Groves)tives is the one that for a given total demand g, has the lower
since this has the dominant strategy of bidders bidding thefiotal price p.
true valuations of the goods [5, 3]. The price paid by the win-
ner is not directly specified in the bid because bidders submRefinition 4 An optimal allocationis one in which the de-

a Supp|y function. ThUS, the customer must calculate the eﬁnand constraint is satisfied and there is no more prOﬁtable
ergy it wants to consume within a time slot (i.e. the units ofallocation.

that item to be auctioned) and then decide the cheapest com- . o

bination with the supply functions submitted (i.e. number ofP€finition 5 An optimal day allocationis a set of 24 op-
units to be allocated with each bidder. Therefore, the bigdmal allocations, each of which corresponds to a different
are accepted partially. To this end, we use the compact nd€m (i-€. there is an optimal allocation for each hour).

tation introduced in [2], where bidders submit for a certain
item a piece-wise linear supply functidh composed of:
linear segments. Each segmeérit < | < n, is described by

a starting quantity;, an ending quantity;, a unit pricer;,
and a fixed pric€;. Thus, if a customer wants to bgynits

of that item from the supplier, it will pay, = 7; - g + C;

The clearing algorithms we present in this section are re-
lated in that the multi-item one is a consecutive and iterative
processing of the single-item one (i.e. the result of the multi-
item algorithm is obtained by executing the single-item one
with different values). Specifically, clearing a single-item

if s; < g < ¢;. Additionally, bidders submit a correlation case implieg finding the opt?mal allocation for t_hat item, SO
functBn,w_,which shows the reward or penalty of buying athIS enterprlse deals only Wlth the supply functions sub.mlt-
number of items together (it is this that makes the bidding‘oecj.tO one item. Th? multi-item case has a broader remit (an
truly combinatorial). For instancey; (A, B) = 0.95 would ptimal day allocation) and, thus, it also takes into account
mean that if buying: units of itemsA ar;dy units of B (i.e the relationships between the different items of the optimal

consumingz Kw at time A andy Kw at time B), the price allocations (i.e. the correlation functions). Let us first start
paid will have a 5% discount. Thus, if the unit price of item with the explanation of the single-item case.

A'is p, and the unit price of itenB is p,, the total price  3.1. The Optimal Single-ltem Clearing Algorithm

would be0.95 - ((z - pa) + (v - pp))- . . . . — .

Currently, there is only one optimal algorithm to solve Clgarmg a §|ngle-|tem aIgorn_hm with piece-wise supply

this problem. Specifically, the one presented by Dang an{]unctlon bids |nvolve.s detelrmlnlng. the amount to bg allo-
cated to each submitted bid function. In essence, in each

Jennings in [2] (described in more detail in section 5). How-

ever, we believe this is inapplicable in our scenario bec::xuslé)op the algorithm selects one segment of each supply func-

it scales poorly (as we show in section 4). Therefore, witHion (the one corresponding to the already allocated demand)

the market described above in place, the next step is to d Ind allocateg units to the segment with the best price (i.e.

sign a clearing algorithm that solves the winner determinal ® lowest price fok units after applying any relevant dis-

tion problem more efficiently and allows it to be actually F:oung C}n ?eNaTorhntz't;—he l?Op]; r%peateq untll the'derr(ljand
applied in realistic contexts. is satisfied. Note that the value biis dynamically assigne

in each loop to guarantee the optimality of the algorithm.
Specifically, it always has the ending quantity valag 6f
the shortest segment being evaluated at that moment.

Let us now illustrate this procedure with the example of

This SeC“F’F‘ details the optima] single-item (sPJ) and th'I::igure 1. Assume there are three potential buyeps and3
optimal multi-item clearing algorithm (mPJ) that we haVethat submit their supply functiond, s2, ands3 for a certain

developed for the electricity retail market described in sec- : S ,
. . : “jtem (i.e. the consumption in one hour). In the first loop, the
tion 2. Furthermore, we analyse their complexity, prove their . :

Lo . algorithm processes the segments, s2;, ands3;. Since
optimality, and analyse strategies to keep them tractabl

) . R S
First of all, let us introduce some basic definitions that will(?he sh?rtest of the three is segmem(l.e.lel DN i),

: k = e7 and the algorithm compared(e;), s2;(e;), and
be used thereafter:

s32(ei). Suppose the price 68 (e}) is less than the price

of s1;(et) ands2;(el); then, it selects3; to supply these
Definition 1 A single allocationis a set<time-slot t, sup- firste! units. In the second loop, the algorithm processes the
plier s, amount g, price p meaning that s wants to pay pto segments1,, s2;, ands3; (but starting frome1) and givesk

buy g units of energy to be consumed at time t. the value ofe? — e! because it is less than ande?. Then,

3. Optimal Clearing Algorithms



Units sl s2! s&: Input: m supply functionsf anddemand.

| :
3
Consumed / s3 €2 e Pre-loop: initialise needed variablestiocated to keep the
total allocated demand, the liatiocation showing the allo-
' cated demand per bidder, and the temporal storage vakable

S3 ... 3
€1 e Loop: in each loop, until the demand is satisfied, select|the
Price# segment with the lowest gradient and allocate the minimum
. , . ending quantity units.
or——— ;
S:gg:: %2 gﬂpp:y ;323 . While (allocated< demand) do
Bidder 3's S pplyf ,0" _________________ k = select the minimum ending quantity
idder 3's Supply function if (demand - allocated: k) then
) . . . . winner = select the minimuryi,, (K
Figure 1. Linear piece-wise supply functions allocated += k 9
submitted to a single item. allocation[winner] += k
else
it compares;ll_(e:{’ —el), .521(6‘;’ - ?%), ands3; (e}), and so \;\/Illr;zze?re:leé:;tgag;,a \_Ngﬁ'olggzzt gradient
on. The algorithm continues until the amount of allocated allocation[winner] += demand - allocated

units is equal to the demand.

As we can see, the a|gorithm evaluates one function per OUtpUt: allocat.ion, the variable detailing the amount allg
bidder in each step so it has a complexitym) per loop, | cated to each bidder.
wherem is the number of bidders. As the loop is repeated
k times, wherek is the number of segments of the function
with the highest number of them, the overall complexity is

O(km). A safe way to reach an optimal allocation is to € prute-force strategy for identifying all the possibilities. Here,

lect for each unit the segment that offers the best price ("eaill possible bids from each bidder are combined with all

k = 1). However, it is not necessary to repeat the process for " . . . L
). o . \ry P P : ossible bids from the rest of the bidders. However, it is
each single unit since price and discount are constant in ea S .
X Nnot necessary to evaluate all the combinations since some
segment. So, as long as the segments evaluated in each lo .
them are repeated. For instance, Table 1 shows an auc-

are the same (unit price and fixed price remain unchange fon with two suppliers { and2) and two items ¢ andb).

the winner will also be the same. Thus, in each loop it 'Srgu this case, there is one possible correlation for each bid-

Figure 2. The sPJ clearing algorithm.

only necessary to compare the price of allocating the lowes 1 - ) - .
ening quantyof re seqentsbeng processed, epearr (). A0 L T S e
this process until the demand is satisfied. Therefore, sPJ (de- P g

LA . ) . supplierl and2 bid normally for itema (so the single-item
ﬁ;:)ecitl;:)rllzlgure 2) always finds the most profitable optlmalClearing algorithm is run with supply functiorg! — P2);

_ _ _ ) supplierl bids for itema andb with discount and suppliex
3.2. The Optimal Multi-ltem Clearing Algorithm bids normally for itermb (so the single-item algorithm clears

This algorithm, detailed in Figure 3, is more complex t€Ma With supply functionz7; and itemb with = F; and

since it cannot simply be generalised from the single-itenﬁz)' and so on.

one. If there were no correlations, it would be sufficient to

run the sPJ case once for each item. However, the existence Table 1. Single-item evaluations with two items
of correlations poses the problem of the inconsistent appli- and two bidders, repeated in bold.

cation of discounts. First, if a supplier bids for two items

and offers a reduction if both bids get accepted, no reduction P? yP? P? -
should be applied if only one of them succeeds. Second, yP?
functions become different after applying a discount. For[  pr1 PI_p2 | Pl _ypP? Pl Pl
example, assumg, is a piece-wise supply function for the ¢ ©o abeZ ¢ P:2 @
item!/ and itis included in the correlatian(l, ...) = z. Then, 2P || 2P! — P2 | 2Pl — yP? 2PL 2PL
P/ is the new supply function with the valug = zP,. xP(f ;:Pl @ xP(i B P‘g Pl fpz mP‘i
Thus, the optimal allocation of a set of functions in whigh b b b g b b b b
is included may not be the same as the one in which every- | Pa1 lyPa ) 1 5 1
thing else is the same but wify instead ofF;. L) L) by —yhy L Py
In this way, mPJ must process all possible combinations - P2 ypP? -
of discounted and non-discounted functions and check that yp;? P?

discounts are applied consistently. To this end, we use a



Input: j supply functionss;, j correlation functionsv; and 3.3. Constrained Bidding

demandy; for each item. In order to prevent such pathological scenarios from oc-
e Pre-loop: Initialise variablday-setio keep the optimal allo- curring, it is_ possible to cons_train the choi_ce of possible dis-
cation for each itemitem-setto keep a group of supply func- ~ Counts so bidders can submit only a certain number of corre-
tions to be evaluated by the single-item clearing algorithm, lations. This type of restriction has already been success-
all — item — sets to keep already processed sets of supply fully applied to atomic propositions bidding, where when
functions, and a boolean variahig. limiting the allowable combinations to tree structures or
sequential combinations, the NP-hard winner determina-
tion problem can be solved in polynomial time [6]. In a
similar vein, mPJ can also take advantage of such an ap-

e Loop: For each item calculate the optimal allocation of a
possible set of supply functions and then check whether|the
selected discounts are applicable.

Do proach. Specifically, we can constrain the number of cor-
for each item i relations to a value.. Thus, bidderl can issue, for in-

for each supplies; stance, the following:wi (n1,n2...n;), wi(ni,na...n;)
add nexts’ to item-set ...wk(n1,na...n;) wherei is the number of items included

if item-set not in all-item-set then in each discount (for the sake of simplicity, let us suppose
optimal-allocation = singleitem.algorithm(item-set) it is a fixed number less tham, the number of items, but
store item-set in all-item-sets big enough to allow the bidder to be sufficient flexible in its

add optimal-allocation to day-set offering).

ok = check constraints (day-set,).
If ok then compare day-set with best so far
until all the combinations are explored

In this way, the single-item algorithm sPJ will be exe-
cuted, withm bidders,i - ¢"* times (again, supposing that
is fixed) and the complexity of the mPJ algorithm will drop
Output: day-set a set ofi optimal allocations (one for eac to O(ki - ¢™). Unfortunately, in this case, the mPJ algo-
item) with the lowest total price. rithm cannot skip evaluating half of the combinations (as in
section 3). With this constrained discount choice, the reduc-
tion depends much more on the specific discount combina-
tions chosen. For instance, if the combinations include many
items (i.e.i is bigger), the single-item algorithm will be ex-
ecuted more often than if the combinations only include two

This brute-force strategy evaluates all possible bid comi!ems each. In short, there is no way to accurately deter-
binations (without repeating some of them) and, thereforeNe ita priori. Similarly, restricting the available amounts
it always finds the most profitable optimal day allocation.@ssigned to the discount increases the number of repeated
However, it also scales poorly. First, the number of possibléombinations. Thus, if a supplier offers the same reduction
combinations depends on the number of items. In our casér accepting two different items (e.g(a, b) =w(c, d)), the
with 24 items, there are? different combinations. Second, Number of repeated combinations would increase further and

it also rises exponentially as the number of bidders growshe complexity would continue decreasing.

with n items, and two bidder22"; with three bidderg3”, : : ;

and so on. In the extreme situation with two bidders submit-4' Evaluation of the mP.J clearing Algorithm
ting a different supply function for each one of the 24 items In this section we present the results of comparing the
and22* correlations, there are- 2*8 possible combinations. performance of our mPJ algorithm (introduced in section
This is,n - (2™)™, wheren is the number of items angh ~ 3.2) with the only other optimal algorithm for this class of
the number of bidders. For instance, in the example of Taproblem. Specifically, our benchmarks are the algorithm
ble 1, there ar@ - (22)2 = 32 possible combinations, but mDJ presented by Dang and Jennings in [2] (described in
half of the combinations do not need to be re-calculated (iore detail in section 5, hereafter referred to as “sDJ” for
bold format in Table 1). Thus, if bidders bid for all items the single-item one and “mDJ” for multi-item) and the con-
and submit all possible correlations, the number of timestrained bidding variant of our algorithm (as detailed in sec-
that the multi-item algorithm clears the single-item one istion 3.3). In this later algorithm, we have set the maximum
n- (2" —2n=1)ym = p . (27~1)m, Therefore, the complex- number of bids to be issued as half of the maximum possible
ity is O(kmn - 2(»=1)"™) wheren is the number of items, (c = 2"~!) and the maximum number of items included in a
m the number of suppliers andthe number of segments correlation as the number of itemis=€ n).

of the supply function with more segments. Note, how- The comparison shown in Figure 4 details how the com-
ever, that this is a pathological worst-case scenario, whichlexity (defined in terms of X, the number of bids) scales
is highly unlikely to happen in practice. Furthermore, as wenvhen the number of itemsincreases for a constant number
discuss bellow, it can be mitigated against by constrainingf biddersm. As can be seen, mDJ soon becomes intractable
the agent’s bidding behaviours. (i.e. prohibitively high complexity), mPJ scales better, and

=N

Figure 3. The mPJ clearing algorithm.



the constrained variant presents the best profile for our pur-  yuaper *°° /
poses. This would have been even clearer if we had not set  of Bids 200 i
the value ofc andi depending on the number of itemqas Tt ]2 |3 |45 |8 |7 |8
detailed above). With a fixed andi, the constrained vari- mbJ B4 | 324 | 10242500 | 5184 | 9604 |16384 26244
ant would had presented a flat line, whereas mDJ and mPJ mPJ ' | 32 | 48 | B4 | B | 9B | 112 | 128

would had grown exponentially because in contrast to mDJ L==-" Constr Bid| 8 | 16 | 24 | 32 | 40 | 48 | 56 | B4

and mPJ, the constrained variant does not depend directly on

the number of items being auctioned. Figure 6. CompIeXIty evolution with n and m
increasing.

200000
Number

of Bids 100000 n the algorithm grows exponentially with as the base). In

S T R R - T7 [ & contrast, for mPJ increasinigjust implies that the single-
mDJ B4 | 384 | 2048 | 10240 | 43152 |220376 [1048575 item algorithm is going to process more steps (therefore the
mP.J 18 | 98 | 512 | 2660 | 12283 | 57344 |262144 algorithm grows linearly withk: as the factor).

----- Constr. bid g 45 256 1280 | 6144 | 28672 (131072
1000 ///__f ’,,-—
Figure 4. Complexity evolution with  n increas- Ti‘f“};‘l’;: oo | 2 '_: T
ing and m steady (m = 2). ' 0 - m
2 3 4 5 f 7 g
Figure 5 tests how the algorithms react to the increment D] 1=2 64 | 384 | 2042 | 10240 | 40157 [220376] 1E+06
of m (bidders) whem (items) remains steady. Again, mDJ  |[——upJn=3 384 | 4603 | 49152 [491520(SE+06 |4E+07 [4E+03
becomes intractable as soon as it did in Fig. 4, whereas mPJ|— — - wmPJ n=2 16 | 48 | 128 | 320 | 765 | 1792 | 4006
and its constrained variant present a significantly better per- |=— —mpJn=3 96 | 576 | 3072 | 15360 | 73728 [344064| 2E+06
formance profile. The main reason for this behaviour is the |- - - - Constr. Bidn=2| 8 | 16 | 32 | 64 | 128 | 356 | 512
sensitivity of mDJ to the increment of bothandm (while T - - Constr Bidn=3| 48 | 102 | 763 | 3072 | 12235 |4D152[106603

mPJ is only sensitive to the incrementgfas seen in Fig. 4).

For mDJ, a larger number of items and clients means a larger Figure 7. Complexity evolution with  n and m
number of single-allocations to form the set from which the steady and & increasing ( n,m = 2).

allocations will be formed. Whereas for mPJ, more clients

means more correlations to clear, but half of which need not Note that the complexity of the constrained variant can

be processed since they are repeated. be further reduced depending on the valuesaridc. With
the values, we assigned t@ndc for these comparisons, it
Naber Y is only m times less complex than mPJ (since= 21,
of Bids 20000 " i = n andO(ki - ¢™), then the complexity after substitu-
o tion of ¢ andi is O(kn - 2(»=1V™)). The genuine advan-
2 (3 ;4 15 |8 17 |8 tage of the constrained variant can be found when there are
b oA | %4 | 204 |04 | 49152 229576 | TE higher values ofr andm. Thus, based on our beliefs about
mPJ 16 43 128 320 768 1792 | 4096 . . . “
oo wal 5 T 5 T o [ 2 e the likely operation of the retail energy market some “typ-

ical” values might be to have 24 items (e.g. 24 hours) and
around 20 bidders (e.g. 20 UCs trying to sell their energy).
Therefore, if we sek = 1 and restrict the number of pos-
sible correlations to 10, each one with 5 items (which ex-
perience indicates will provide UCs with enougérsuasive
power), the results are clear: mDJ presents a complexity of
1,498 F + 147, our mPJ1,429F + 141 and the constrained
most equivalent to the = 3 of our multi-item algorithm. variants £ + 20. In our opinion, this means the constrained
The best results are again achieved by the constrained va}‘l"—i.”"’mt |.s.suff|C|entIy close to the op_'umal to be useful, butis
ant (as we would expect). still sufficiently tractable to be practicable.

_ Finally, Figure 7 depicts t_he dependen_ce of each a_lgo5' Related Work

rithm on k&, the number of units allocated in each iteration

of the single-item algorithm. In this dimension both our al- There has been comparatively little previous work in
gorithm and its constrained variant perform again well. Forcombinatorial energy markets, but there is a much larger
mDJ, increasing: implies increasing the number of single literature on clearing algorithms for combinatorial auctions.
allocations that may be combined with each other (thereforélowever, these two strands of work have not been brought

Figure 5. Complexity evolution with  m increas-
ing and n steady (n = 2).

Similarly, Figure 6 illustrates the behaviour of the algo-
rithms when bot (items) andn (bidders) increase. Again,
mDJ performs worse than the others. 1its= 2 series is al-



together before. The work of Ygge [8] is seminal in the areaeward customers that consume electricity off-peak. Thus,
of agents and energy management. Specifically, he conthey have an additional tool for energy management besides
bines power load management with market-oriented prosetting off-peak prices lower than peak ones. Moreover, the
gramming. He introduces a hierarchical structurélofme-  use of combinatorial auctions helps to produce efficient allo-
Bots intelligent agents that represent every load in thecations of goods because combinatorial bidding allows the
system and buy the energy in a system of forward nonexpression of more complex synergies between auctioned
combinatorial auctions. With only one energy supplier, histems [4]. Together with the use of supply functions and
approach places all the initiative on tiomeBotsso the  non-atomic propositions, consumers are able to accept en-
UCs cannot express their preferences for having more or legsgy from diverse UCs simultaneously, which, in turn, helps
demand at a certain time. We address this shortcoming by alkem to maximise their benefits.
lowing combinatorial bidding. Against this background, this paper presents, for the first
Recently, there has been an enormous amount of researttime, an electricity retail market as a system of simultane-
in combinatorial auctions [6], but most of this has focusedous reverse combinatorial auctions with supply-function bid-
on atomic propositions that may limit the choice (and hencaling. Furthermore, we have developed the novel single and
the profit) to the auctioneer. Addressing this limitation, sev-multi-item clearing algorithms sPJ and mPJ that are optimal,
eral authors have developed algorithms that deal with deas well as a strategy to keep the multi-item algorithm within
mand/supply bidding [7]. Moreover, [1] developed a single-tractable ranges for the real-world problem we face. Future
item and a multi-item algorithm for multi-unit combinatorial work will focus on evaluating the whole electricity market
reverse auctions with demand/supply functions that run irsystem and on reducing the complexity of the multi-item
polynomial time (but that are not guaranteed to find the opelearing algorithm with additional restrictions on combinato-
timal solution). In [2] the same authors present another twaial bidding. Further, we will focus on failure-scenarios and
algorithms for the same environment but they are optimalhow to keep the demand in secure ranges to avoid blackouts
The strategy they use consists in defining a dominant set con+ massive overbooking of the system. Finally, the likely
taining an increasingly sorted group of single allocations angbricing strategies of the suppliers need a more detailed study
searching within this dominant set for the combinations thato determine how to maximise their revenue.
form the most profitable day allocation. The complexity in
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