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Abstract

The deregulation of the electricity industry in many coun-
tries has created a number of marketplaces in which produc-
ers and consumers can operate in order to more effectively
manage and meet their energy needs. To this end, this paper
develops a new model for electricity retail where end-use
customers choose their supplier from competing electricity
retailers. The model is based on simultaneous reverse com-
binatorial auctions, designed as a second-price sealed-bid
multi-item auction with supply function bidding. This model
prevents strategic bidding and allows the auctioneer to max-
imise its payoff. Furthermore, we develop optimal single-
item and multi-item algorithms for winner determination in
such auctions that are significantly less complex than those
currently available in the literature.

1. Introduction

The deregulation of electricity markets began in the early
nineties when the UK Government privatised the electric-
ity supply industry in England and Wales. This process was
then subsequently followed in many other countries. In most
cases, this restructuring involves separating the electricity
generation and retail from the natural monopoly functions of
transmission and distribution. This, in turn, leads to the es-
tablishment of awholesale electricity marketfor electricity
generation and aretail electricity marketfor electricity re-
tailing. In the former case, competing generators offer their
electricity output to retailers and in the latter case end-use
customers choose their supplier from competing electricity
retailers. Here we focus on retail markets, which differ from
their more traditional counterparts because energy cannot
be stored or held in stock (as tangible goods can). Conse-
quently, retailers are forced to work with consumption prog-
noses, which, in turn, creates a number of risks. First, pro-
ducing more than is consumed is not economical. Moreover,
the price of the energy mainly depends on the production
cost and this typically rises with the amount of energy pro-
duced. Second, if the demand exceeds the prediction, suppli-

ers must find additional energy to avoid a blackout. Finally,
there are non-negligible costs stemming from the variation
in the electricity production volume that most of the tradi-
tional types of energy generators (e.g. hydroelectric, ther-
moelectric, nuclear) have to face. Against this background,
the desideratum is to achieve a market model where retailers
have the most accurate possible prognosis and the capability
of influencing or guiding customers’ consumption. To this
end, there have been a number of initiatives, grouped under
the general banner ofDemand-Side Management(DSM),
whose main objective is to distribute the demand over time to
avoid peak loads. Now, the easiest way to achieve this goal
is by setting the price of the energy depending on the actual
demand load. Thus, the higher the demand, the more expen-
sive the price, and vice versa. Based upon these premises,
many utility companies (UCs) already present a basic form
of DSM by offering a cheaper night tariff.

Our aim in this work is to improve and extend this sim-
ple market model to permit UCs to express more complex
aims and, thus, increase their influence on customers. For
instance, in order to lighten the peak-time load, the supplier
can offer a discount for consuming a small amount of energy
at 8 am (peak-time) and a larger amount at midnight (off
peak). This incentivises the customer to reschedule some
tasks to midnight (e.g. the dishwasher or the washing ma-
chine). If many clients accept this compromise offer, the UC
will have achieved a double goal. It will have a more accu-
rate prognosis for 8 am and midnight and it will also have
shifted some of the peak-time consumption to off peak. In e-
commerce terms, this process can be seen as areverse combi-
natorial auction. It is “reverse” because the customers pick
one of the available companies and tariffs to supply their fu-
ture consumption. And it is “combinatorial” because bidding
for a bundle of items is typically valued differently from bid-
ding separately for each of the constituent items (e.g. the
combinationof consuming at 8am and midnight is more ap-
preciated, and thus rewarded, than, for instance, the combi-
nation of consuming at 10am and 11am).

While combinatorial auctions provide very efficient al-
locations that can maximise the revenue for the auctioneer,



their main drawback is the complexity of theclearing pro-
cess in which buyers and sellers are matched and the quan-
tities of items traded between them are determined. Specifi-
cally, clearing combinatorial auctions is NP-hard [4]. More-
over, most work in this area deals with clearing combina-
torial auctions withatomic propositions[6]. Thus, bids are
either accepted or rejected in their entirety, which may limit
the profit for the auctioneer. A more efficient solution is to
allow bidding with demand/supply functions [7, 2], in which
bidders submit a function to calculate the cost of the units
to be bought or sold. This allows the customer to accept
parts of different bids and constitutes a powerful way of ex-
pressing complex pricing policies. In our case, production
costs can be easily reflected in the supply function and if
bids are accepted partially, there may be more than one win-
ner for the same auction and item. This enables customers
to accept different parts of bids from different bidders so
they can get energy simultaneously from several suppliers.
Since the transmission and distribution grids are shared and
the path followed by the electricity cannot be tracked down,
it is impossible to determine the producer of the energy be-
ing consumed. Therefore, the hypothesis of customers being
simultaneously supplied by several UCs does not pose any
technical problems.

Against this background, this paper advances the state of
the art in two main ways. First, we present, for the first
time, an energy retail market designed as a system of re-
verse combinatorial auctions with supply function bidding.
This novel market allows customers to increase their profit
and provides UCs with a mechanism to influence customers’
behaviour. Second, we develop new optimal clearing algo-
rithms tailored to electricity supply functions that perform
better than the existing more general clearing algorithms.
The remainder of the paper is organized as follows. Section
2 details the overall market design. Section 3 presents the
single-item and the multi-item clearing algorithms and anal-
yses their complexity and optimality. Section 4 examines the
results of comparing the multi-item algorithm with the only
other optimal multi-item one defined in the literature. Sec-
tion 5 discusses related work. Finally, Section 6 concludes
and outlines the avenues of future work.

2. Electricity Retail Markets

This section discusses the nature of current electricity re-
tail markets and outlines the design of our solution.

2.1. Requirements

Currently, most customers only partially enjoy the bene-
fits of a deregulated market. They typically sign mid-term
contracts with a single supplier and the tariffs do not re-
flect the pressure of competition. Moreover, whereas clas-
sical capitalist pricing policies encourage demand by apply-
ing discounts on quantity (the more you buy, the cheaper the
unit price becomes), actual electricity contracts often include

a threshold above which the consumption becomes more ex-
pensive. To move to a more dynamic environment where the
benefits of competition can be more fully realised, we put
forward the following requirements for our market design.
The arrangement of customers’ electricity supply from mul-
tiple UCs should be achieved by having contracts that spec-
ify the provision of an amount of energy for a certain period
of time (say one hour). These contracts should not necessar-
ily be exclusive and, thus, customers may have agreements
with different companies for the same hour if this is the best
thing to do. Finally, we assume customers auction, on a
daily basis, their next 24 hours consumption divided into
24 items (representing one hour each). They subsequently
receive bids from the UCs and make their decision for the
next 24 hours, which is a trade-off between the very static
situations of today and the possibility of auctioning on a per
minute basis for the coming minute.

2.2. Market Design
The requirements detailed above can be best met by struc-

turing the market as a reverse auction. Furthermore, we
assume customers don’t issue any bids but simply choose
among those offered by the UCs. An exchange (in which
multiple buyers and sellers submit their bids and offers to
an independent auctioneer that decides the winners [6]) was
rejected because it scales poorly. In practice, the number of
customers may be up to tens of thousands, each of which is
selling 24 items, and with combinatorial bidding, clearing
such an exchange becomes intractable very fast. Unlike ex-
changes, reverse auctions have the advantage that they may
be performed in parallel. This means the complexity can be
divided between the number of customers because instead
of one big auction, manysmallerones are carried out at the
same time. For these reasons, we have designed our sys-
tem as a series of simultaneous reverse auctions despite the
risk of overbooking. That is, although the UCs issue their
own tariffs they cannot control the number of customers that
choose them. So the demand could exceed their capability.
However, in this case, we allow overbooked UCs to buy the
additional energy from non-overbooked ones (also see sec-
tion 6). As combinatorial bidding is permitted, UCs submit
their specialdiscounts together with the usual hour tariffs.
In this case, having 24 hours (or items) means that there may
be up to224 different combinations of discounts. This is ob-
viously a worst-case scenario because, in practice, our expe-
rience in the domain indicates that UCs are highly unlikely
to issue a different discount for each possible combination.
Moreover, we decided that the auctions should be sealed (to
reveal the least possible information) and single-round (to
minimise communication and other delays). The auctions
also need to be both multi-item and multi-unit. As each item
is the supply of electricity in one hour, there are 24 items to
allocate in an auction. In addition, each bidder may not allo-
cate the whole consumption within an hour but rather just a
portion of it (i.e. some units).



Another important component to set is the price paid by
the winner. We do not want to have a first price auction be-
cause it offers incentives for strategic behaviour (i.e. the par-
ticipants act according to beliefs formed about others’ values
and types, which does not assure them of maximising their
payoff). To circumvent this, we choose a uniform second
price for combinatorial auctions (Vickrey-Clarke-Groves)
since this has the dominant strategy of bidders bidding their
true valuations of the goods [5, 3]. The price paid by the win-
ner is not directly specified in the bid because bidders submit
a supply function. Thus, the customer must calculate the en-
ergy it wants to consume within a time slot (i.e. the units of
that item to be auctioned) and then decide the cheapest com-
bination with the supply functions submitted (i.e. number of
units to be allocated with each bidder. Therefore, the bids
are accepted partially. To this end, we use the compact no-
tation introduced in [2], where bidders submit for a certain
item a piece-wise linear supply functionP composed ofn
linear segments. Each segmentl, 1 ≤ l ≤ n, is described by
a starting quantitysl, an ending quantityel, a unit priceπl,
and a fixed priceCl. Thus, if a customer wants to buyq units
of that item from the supplier, it will payPl = πl · q + Cl

if sl ≤ q ≤ el. Additionally, bidders submit a correlation
function,ω, which shows the reward or penalty of buying a
number of items together (it is this that makes the bidding
truly combinatorial). For instance,ω1(A, B) = 0.95 would
mean that if buyingx units of itemsA andy units ofB (i.e.
consumingx Kw at timeA andy Kw at timeB), the price
paid will have a 5% discount. Thus, if the unit price of item
A is pa and the unit price of itemB is pb, the total price
would be0.95 · ((x · pa) + (y · pb)).

Currently, there is only one optimal algorithm to solve
this problem. Specifically, the one presented by Dang and
Jennings in [2] (described in more detail in section 5). How-
ever, we believe this is inapplicable in our scenario because
it scales poorly (as we show in section 4). Therefore, with
the market described above in place, the next step is to de-
sign a clearing algorithm that solves the winner determina-
tion problem more efficiently and allows it to be actually
applied in realistic contexts.

3. Optimal Clearing Algorithms

This section details the optimal single-item (sPJ) and the
optimal multi-item clearing algorithm (mPJ) that we have
developed for the electricity retail market described in sec-
tion 2. Furthermore, we analyse their complexity, prove their
optimality, and analyse strategies to keep them tractable.
First of all, let us introduce some basic definitions that will
be used thereafter:

Definition 1 A single allocationis a set<time-slot t, sup-
plier s, amount q, price p> meaning that s wants to pay p to
buy q units of energy to be consumed at time t.

Definition 2 An allocation is a list containing a number
(between one and the number of suppliers) of single allo-
cations that detail the supply of electricity to be provided to
the customer at a given time-slot.

Definition 3 A more profitable allocationfrom two alterna-
tives is the one that for a given total demand q, has the lower
total price p.

Definition 4 An optimal allocation is one in which the de-
mand constraint is satisfied and there is no more profitable
allocation.

Definition 5 An optimal day allocationis a set of 24 op-
timal allocations, each of which corresponds to a different
item (i.e. there is an optimal allocation for each hour).

The clearing algorithms we present in this section are re-
lated in that the multi-item one is a consecutive and iterative
processing of the single-item one (i.e. the result of the multi-
item algorithm is obtained by executing the single-item one
with different values). Specifically, clearing a single-item
case implies finding the optimal allocation for that item, so
this enterprise deals only with the supply functions submit-
ted to one item. The multi-item case has a broader remit (an
optimal day allocation) and, thus, it also takes into account
the relationships between the different items of the optimal
allocations (i.e. the correlation functions). Let us first start
with the explanation of the single-item case.

3.1. The Optimal Single-Item Clearing Algorithm

Clearing a single-item algorithm with piece-wise supply
function bids involves determining the amount to be allo-
cated to each submitted bid function. In essence, in each
loop the algorithm selects one segment of each supply func-
tion (the one corresponding to the already allocated demand)
and allocatesk units to the segment with the best price (i.e.
the lowest price fork units after applying any relevant dis-
count on the amount). The loop is repeated until the demand
is satisfied. Note that the value ofk is dynamically assigned
in each loop to guarantee the optimality of the algorithm.
Specifically, it always has the ending quantity value (el) of
the shortest segment being evaluated at that moment.

Let us now illustrate this procedure with the example of
Figure 1. Assume there are three potential buyers1, 2, and3
that submit their supply functionss1, s2, ands3 for a certain
item (i.e. the consumption in one hour). In the first loop, the
algorithm processes the segmentss11, s21, ands31. Since
the shortest of the three is segments11(i.e. e1

1 < e2
1 < e3

1),
k = e1

1 and the algorithm comparess11(e1
1), s21(e1

1), and
s32(e1

1). Suppose the price ofs31(e1
1) is less than the price

of s11(e1
1) ands21(e1

1); then, it selectss31 to supply these
first e1

1 units. In the second loop, the algorithm processes the
segmentss11, s21, ands31(but starting frome1

1) and givesk
the value ofe3

1 − e1
1 because it is less thane1

1 ande2
1. Then,
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Figure 1. Linear piece-wise supply functions
submitted to a single item.

it comparess11(e3
1− e1

1), s21(e3
1− e1

1), ands31(e1
1), and so

on. The algorithm continues until the amount of allocated
units is equal to the demand.

As we can see, the algorithm evaluates one function per
bidder in each step so it has a complexityO(m) per loop,
wherem is the number of bidders. As the loop is repeated
k times, wherek is the number of segments of the function
with the highest number of them, the overall complexity is
O(km). A safe way to reach an optimal allocation is to se-
lect for each unit the segment that offers the best price (i.e.
k = 1). However, it is not necessary to repeat the process for
each single unit since price and discount are constant in each
segment. So, as long as the segments evaluated in each loop
are the same (unit price and fixed price remain unchanged),
the winner will also be the same. Thus, in each loop it is
only necessary to compare the price of allocating the lowest
ending quantity of the segments being processed, repeating
this process until the demand is satisfied. Therefore, sPJ (de-
tailed in Figure 2) always finds the most profitable optimal
allocation.

3.2. The Optimal Multi-Item Clearing Algorithm

This algorithm, detailed in Figure 3, is more complex
since it cannot simply be generalised from the single-item
one. If there were no correlations, it would be sufficient to
run the sPJ case once for each item. However, the existence
of correlations poses the problem of the inconsistent appli-
cation of discounts. First, if a supplier bids for two items
and offers a reduction if both bids get accepted, no reduction
should be applied if only one of them succeeds. Second,
functions become different after applying a discount. For
example, assumePl is a piece-wise supply function for the
iteml and it is included in the correlationω(l, ...) = x. Then,
P ′l is the new supply function with the valueP ′l = xPl.
Thus, the optimal allocation of a set of functions in whichPl

is included may not be the same as the one in which every-
thing else is the same but withP ′l instead ofPl.

In this way, mPJ must process all possible combinations
of discounted and non-discounted functions and check that
discounts are applied consistently. To this end, we use a

Input: m supply functionsf anddemand.

• Pre-loop: initialise needed variables:allocated to keep the
total allocated demand, the listallocation showing the allo-
cated demand per bidder, and the temporal storage variablek.

• Loop: in each loop, until the demand is satisfied, select the
segment with the lowest gradient and allocate the minimum
ending quantity units.

While (allocated< demand) do
k = select the minimum ending quantity
if (demand - allocated< k) then

winner = select the minimumfm(k)
allocated += k
allocation[winner] += k

else
winner = select thefm with lowest gradient
allocated += demand - allocated
allocation[winner] += demand - allocated

Output: allocation, the variable detailing the amount allo-
cated to each bidder.

Figure 2. The sPJ clearing algorithm.

brute-force strategy for identifying all the possibilities. Here,
all possible bids from each bidder are combined with all
possible bids from the rest of the bidders. However, it is
not necessary to evaluate all the combinations since some
of them are repeated. For instance, Table 1 shows an auc-
tion with two suppliers (1 and2) and two items (a andb).
In this case, there is one possible correlation for each bid-
der, ω1(a, b) = x and ω2(a, b) = y. Thus, clearing the
multi-item case implies evaluating the combinations where
supplier1 and2 bid normally for itema (so the single-item
clearing algorithm is run with supply functionsP 1

a − P 2
a );

supplier1 bids for itema andb with discount and supplier2
bids normally for itemb (so the single-item algorithm clears
item a with supply functionxP 1

a and itemb with xP 1
b and

P 2
b ), and so on.

Table 1. Single-item evaluations with two items
and two bidders, repeated in bold.

P 2
a yP 2

a P 2
b -

yP 2
b

P 1
a P 1

a − P 2
a P 1

a − yP 2
a P 1

a P 1
a

yP 2
b P 2

b

xP 1
a xP 1

a − P 2
a xP 1

a − yP 2
a xP 1

a xP 1
a

xP 1
b xP 1

b xP 1
b − yP 2

b xP 1
b − P 2

b xP 1
b

P 2
a yP 2

a
P 1

b P 1
b P 1

b − yP 2
b P 1

b − P 2
b P 1

b

- P 2
a yP 2

a -
yP 2

b P 2
b



Input: j supply functionssj , j correlation functionsωj and
demandqi for each itemi.

• Pre-loop: Initialise variableday-setto keep the optimal allo-
cation for each item,item-setto keep a group of supply func-
tions to be evaluated by the single-item clearing algorithm,
all − item − sets to keep already processed sets of supply
functions, and a boolean variableok.

• Loop: For each item calculate the optimal allocation of a
possible set of supply functions and then check whether the
selected discounts are applicable.

Do
for each item i

for each suppliersj

add nextsi
j to item-set

if item-set not in all-item-set then
optimal-allocation = singleitem algorithm(item-set)
store item-set in all-item-sets

add optimal-allocation to day-set
ok = check constraints (day-set,ωj).
If ok then compare day-set with best so far
until all the combinations are explored

Output: day-set, a set ofi optimal allocations (one for each
item) with the lowest total price.

Figure 3. The mPJ clearing algorithm.

This brute-force strategy evaluates all possible bid com-
binations (without repeating some of them) and, therefore,
it always finds the most profitable optimal day allocation.
However, it also scales poorly. First, the number of possible
combinations depends on the number of items. In our case,
with 24 items, there are224 different combinations. Second,
it also rises exponentially as the number of bidders grows:
with n items, and two bidders,22n; with three bidders23n,
and so on. In the extreme situation with two bidders submit-
ting a different supply function for each one of the 24 items
and224 correlations, there are2 · 248 possible combinations.
This is, n · (2n)m, wheren is the number of items andm
the number of bidders. For instance, in the example of Ta-
ble 1, there are2 · (22)2 = 32 possible combinations, but
half of the combinations do not need to be re-calculated (in
bold format in Table 1). Thus, if bidders bid for all items
and submit all possible correlations, the number of times
that the multi-item algorithm clears the single-item one is
n · (2n − 2n−1)m = n · (2n−1)m. Therefore, the complex-
ity is O(kmn · 2(n−1)·m), wheren is the number of items,
m the number of suppliers andk the number of segments
of the supply function with more segments. Note, how-
ever, that this is a pathological worst-case scenario, which
is highly unlikely to happen in practice. Furthermore, as we
discuss bellow, it can be mitigated against by constraining
the agent’s bidding behaviours.

3.3. Constrained Bidding

In order to prevent such pathological scenarios from oc-
curring, it is possible to constrain the choice of possible dis-
counts so bidders can submit only a certain number of corre-
lations. This type of restriction has already been success-
fully applied to atomic propositions bidding, where when
limiting the allowable combinations to tree structures or
sequential combinations, the NP-hard winner determina-
tion problem can be solved in polynomial time [6]. In a
similar vein, mPJ can also take advantage of such an ap-
proach. Specifically, we can constrain the number of cor-
relations to a valuec. Thus, bidder1 can issue, for in-
stance, the following:ω1

1(n1, n2 . . . ni), ω1
2(n1, n2 . . . ni)

. . .ω1
c (n1, n2 . . . ni) wherei is the number of items included

in each discount (for the sake of simplicity, let us suppose
it is a fixed number less thann, the number of items, but
big enough to allow the bidder to be sufficient flexible in its
offering).

In this way, the single-item algorithm sPJ will be exe-
cuted, withm bidders,i · cm times (again, supposing thati
is fixed) and the complexity of the mPJ algorithm will drop
to O(ki · cm). Unfortunately, in this case, the mPJ algo-
rithm cannot skip evaluating half of the combinations (as in
section 3). With this constrained discount choice, the reduc-
tion depends much more on the specific discount combina-
tions chosen. For instance, if the combinations include many
items (i.e.i is bigger), the single-item algorithm will be ex-
ecuted more often than if the combinations only include two
items each. In short, there is no way to accurately deter-
mine it a priori. Similarly, restricting the available amounts
assigned to the discount increases the number of repeated
combinations. Thus, if a supplier offers the same reduction
for accepting two different items (e.g.ω(a, b) = ω(c, d)), the
number of repeated combinations would increase further and
the complexity would continue decreasing.

4. Evaluation of the mPJ clearing Algorithm

In this section we present the results of comparing the
performance of our mPJ algorithm (introduced in section
3.2) with the only other optimal algorithm for this class of
problem. Specifically, our benchmarks are the algorithm
mDJ presented by Dang and Jennings in [2] (described in
more detail in section 5, hereafter referred to as “sDJ” for
the single-item one and “mDJ” for multi-item) and the con-
strained bidding variant of our algorithm (as detailed in sec-
tion 3.3). In this later algorithm, we have set the maximum
number of bids to be issued as half of the maximum possible
(c = 2n−1) and the maximum number of items included in a
correlation as the number of items (i = n).

The comparison shown in Figure 4 details how the com-
plexity (defined in terms of X, the number of bids) scales
when the number of itemsn increases for a constant number
of biddersm. As can be seen, mDJ soon becomes intractable
(i.e. prohibitively high complexity), mPJ scales better, and



the constrained variant presents the best profile for our pur-
poses. This would have been even clearer if we had not set
the value ofc andi depending on the number of itemsn (as
detailed above). With a fixedc andi, the constrained vari-
ant would had presented a flat line, whereas mDJ and mPJ
would had grown exponentially because in contrast to mDJ
and mPJ, the constrained variant does not depend directly on
the number of items being auctioned.

Figure 4. Complexity evolution with n increas-
ing and m steady ( m = 2).

Figure 5 tests how the algorithms react to the increment
of m (bidders) whenn (items) remains steady. Again, mDJ
becomes intractable as soon as it did in Fig. 4, whereas mPJ
and its constrained variant present a significantly better per-
formance profile. The main reason for this behaviour is the
sensitivity of mDJ to the increment of bothn andm (while
mPJ is only sensitive to the increment ofn, as seen in Fig. 4).
For mDJ, a larger number of items and clients means a larger
number of single-allocations to form the set from which the
allocations will be formed. Whereas for mPJ, more clients
means more correlations to clear, but half of which need not
be processed since they are repeated.

Figure 5. Complexity evolution with m increas-
ing and n steady ( n = 2).

Similarly, Figure 6 illustrates the behaviour of the algo-
rithms when bothn (items) andm (bidders) increase. Again,
mDJ performs worse than the others. Itsn = 2 series is al-
most equivalent to then = 3 of our multi-item algorithm.
The best results are again achieved by the constrained vari-
ant (as we would expect).

Finally, Figure 7 depicts the dependence of each algo-
rithm on k, the number of units allocated in each iteration
of the single-item algorithm. In this dimension both our al-
gorithm and its constrained variant perform again well. For
mDJ, increasingk implies increasing the number of single
allocations that may be combined with each other (therefore

Figure 6. Complexity evolution with n and m
increasing.

the algorithm grows exponentially withk as the base). In
contrast, for mPJ increasingk just implies that the single-
item algorithm is going to process more steps (therefore the
algorithm grows linearly withk as the factor).

Figure 7. Complexity evolution with n and m
steady and k increasing ( n,m = 2).

Note that the complexity of the constrained variant can
be further reduced depending on the values ofi andc. With
the values, we assigned toi andc for these comparisons, it
is only m times less complex than mPJ (sincec = 2n−1,
i = n andO(ki · cm), then the complexity after substitu-
tion of c and i is O(kn · 2(n−1)m)). The genuine advan-
tage of the constrained variant can be found when there are
higher values ofn andm. Thus, based on our beliefs about
the likely operation of the retail energy market some “typ-
ical” values might be to have 24 items (e.g. 24 hours) and
around 20 bidders (e.g. 20 UCs trying to sell their energy).
Therefore, if we setk = 1 and restrict the number of pos-
sible correlations to 10, each one with 5 items (which ex-
perience indicates will provide UCs with enoughpersuasive
power), the results are clear: mDJ presents a complexity of
1, 498E + 147, our mPJ1, 429E + 141 and the constrained
variant5E + 20. In our opinion, this means the constrained
variant is sufficiently close to the optimal to be useful, but is
still sufficiently tractable to be practicable.

5. Related Work

There has been comparatively little previous work in
combinatorial energy markets, but there is a much larger
literature on clearing algorithms for combinatorial auctions.
However, these two strands of work have not been brought



together before. The work of Ygge [8] is seminal in the area
of agents and energy management. Specifically, he com-
bines power load management with market-oriented pro-
gramming. He introduces a hierarchical structure ofHome-
Bots, intelligent agents that represent every load in the
system and buy the energy in a system of forward non-
combinatorial auctions. With only one energy supplier, his
approach places all the initiative on theHomeBotsso the
UCs cannot express their preferences for having more or less
demand at a certain time. We address this shortcoming by al-
lowing combinatorial bidding.

Recently, there has been an enormous amount of research
in combinatorial auctions [6], but most of this has focused
on atomic propositions that may limit the choice (and hence
the profit) to the auctioneer. Addressing this limitation, sev-
eral authors have developed algorithms that deal with de-
mand/supply bidding [7]. Moreover, [1] developed a single-
item and a multi-item algorithm for multi-unit combinatorial
reverse auctions with demand/supply functions that run in
polynomial time (but that are not guaranteed to find the op-
timal solution). In [2] the same authors present another two
algorithms for the same environment but they are optimal.
The strategy they use consists in defining a dominant set con-
taining an increasingly sorted group of single allocations and
searching within this dominant set for the combinations that
form the most profitable day allocation. The complexity in
a worst case scenario isO(n · (k + 1)n) in the single-item
case andO(mn · (k + 1)mn) in the multi-item (wheren,
m, andk have the same meaning as in the previous section).
In comparison to this work, sPJ is less general than sDJ (be-
cause it only clears continuous piece-wise supply functions),
but both our algorithms present significantly lower compu-
tational complexity even in a worst-case scenario (O(km)
in the single-item case andO(kmn · 2(n−1)·m) in the multi-
item). That is even if, for instancek = 1, our mPJ algorithm
is still 2n−1 times less complex than mDJ.

6. Conclusions and Future Work

The deregulation of the electricity industry offers new op-
portunities for providers and consumers. In this environ-
ment, customers can choose their suppliers to get cheaper
energy and suppliers can compete to increase the number
of their customers and, subsequently, their profits. To make
this happen in practice, however, efficient electricity markets
need to be developed. To this end, traditionally, energy man-
agement techniques have presented the two different sides
with their own purposes and measures. On one hand, suppli-
ers and retailers aim to smooth the overall energy consump-
tion to avoid sudden peak loads. On the other hand, cus-
tomers intend to reduce their energy bills without giving up
freedom (meaning they can use energy at any time). Our sys-
tem addresses both needs. It helps to reduce peak loads and
to distribute them amongst less-loaded time slots. Specif-
ically, by including off-peak hours in the discounts, UCs

reward customers that consume electricity off-peak. Thus,
they have an additional tool for energy management besides
setting off-peak prices lower than peak ones. Moreover, the
use of combinatorial auctions helps to produce efficient allo-
cations of goods because combinatorial bidding allows the
expression of more complex synergies between auctioned
items [4]. Together with the use of supply functions and
non-atomic propositions, consumers are able to accept en-
ergy from diverse UCs simultaneously, which, in turn, helps
them to maximise their benefits.

Against this background, this paper presents, for the first
time, an electricity retail market as a system of simultane-
ous reverse combinatorial auctions with supply-function bid-
ding. Furthermore, we have developed the novel single and
multi-item clearing algorithms sPJ and mPJ that are optimal,
as well as a strategy to keep the multi-item algorithm within
tractable ranges for the real-world problem we face. Future
work will focus on evaluating the whole electricity market
system and on reducing the complexity of the multi-item
clearing algorithm with additional restrictions on combinato-
rial bidding. Further, we will focus on failure-scenarios and
how to keep the demand in secure ranges to avoid blackouts
or massive overbooking of the system. Finally, the likely
pricing strategies of the suppliers need a more detailed study
to determine how to maximise their revenue.

Acknowledgments

MThe authors would like to thank Viet Dang, Raj Dash
and Alex Rogers from the IAM Group at the University of
Southampton for their support and assistance.

References
[1] V. D. Dang and N. R. Jennings. Polynomial algorithms for

clearing multi-unit single item and multi-unit combinatorial
reverse auctions. InProceedings of ECAI ’02 (Lyon France),
pages 23–27, Lyon France, 2002.

[2] V. D. Dang and N. R. Jennings. Optimal clearing algorithms
for multi-unit single item and multi-unit combinatorial auc-
tions with demand/suppy function bidding. InProceedings of
ICEC’03, pages 25–30, Pittsburgh PA, 2003.

[3] R. K. Dash, D. C. Parkes, and N. R. Jennings. Computational
mechanism design: A call to arms.IEEE Intelligent Systems,
18(6):20–47, 2003.

[4] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions: Optimal
and approximate approaches. InProceedings of the IJCAI’99,
pages 548–553, Stockholm Sweden, 1999.

[5] T. Groves. Incentives in teams.Econometrica, 41:617–31,
1973.

[6] T. Sandholm. Algorithm for optimal winner determination
in combinatorial auctions.Artificial Intelligence, 135:1–54,
2002.

[7] T. Sandholm and S. Suri. Market clearability. InProceedings
of the IJCAI’01, pages 1145–1151, Seattle WA, 2001.

[8] F. Ygge.Market-oriented programming and its application to
power load management. PhD thesis, Department of Computer
Science, Lund University, 1998.


