
Distributing Coalitional Value Calculations among Cooperative Agents
Talal Rahwan and Nicholas R. Jennings

University of Southampton. Southampton SO17 1BJ, UK.
{tr03r, nrj}@ecs.soton.ac.uk

ABSTRACT

The process of forming coalitions of software agents gener-
ally requires calculating a value for every possible coalition
which indicates how beneficial that coalition would be if it
was formed. Now, since the number of possible coalitions
increases exponentially with the number of agents involved,
having one agent calculate all the values is inefficient. Given
this, we present a novel algorithm for distributing this calcula-
tion among agents in cooperative environments. Specifically,
by using our algorithm, each agent is assigned some part of
the calculation such that the agents’ shares are exhaustive and
disjoint. Moreover, the algorithm is decentralized, requires no
communication between the agents, and has minimal memory
requirements. To evaluate the effectiveness of our algorithm
we compare it with the only other algorithm available in the
literature (due to Shehory and Kraus). This shows that for the
case of 25 agents, the distribution process of our algorithm
took 0.00037% of the time, the values were calculated using
0.000006% of the memory, the calculation redundancy was re-
duced from 477826101 to 0, and the total number of bytes sent
between the agents dropped from 674047872 to 0 (note that
for larger numbers of agents, these improvements become ex-
ponentially better).

Introduction
Coalition formation, the process by which a group of software
agents come together and agree to coordinate and cooperate in
the performance of a specific task, is an important form of in-
teraction in multi-agent systems. Such coalitions can improve
the performance of the individual agents and/or the system as
a whole. Now, if we view the population of agents as a set A,
then every subset of A is a potential coalition (meaning that
the total number of these subsets is 2|A| - 1). Given this, a
number of coalition formation algorithms have been developed
to determine which of the potential coalitions should actually
be formed. To do so, they typically calculate a value for each
coalition, known as the coalition value, which provides an in-
dication of the expected outcome that could be derived if that
coalition was formed. Then, having computed all the coali-
tional values, the decision about the optimal coalition to form
can be taken. The problem here, however, is that computing the
coalitional values is exponentially complex due to the number
of possible coalitions which must be considered. To help com-
bat this computational explosion, some coalition formation al-
gorithms only search a sub-set of the potential set of coalitions
(see related work section for details). In either case, however,
it is desirable to distribute the calculations of these coalitional
values among the agents, rather than having it done centrally by
one agent (as is the case in most extant work). In this way, the

Copyright c© 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

search can be done faster and the agents can share the burden of
the calculations. To this end, there are a number of desiderata
that we can place on such a distribution algorithm:

1. The distribution process should be decentralized. That is, no
one decision maker should be required to decide which agent
calculates which values, otherwise the system would have a
performance bottleneck and a single point of failure.

2. Communication between the agents should be minimized.

3. The coalitional value of all the desired coalitions should be
computed and the agents should minimize the number of cal-
culations that are redundantly carried out.

4. Each agent should compute an equal number of values.

5. The amount of memory each agent requires to perform the
computations should be minimized 1.

Against these requirements, we present a novel algorithm
(called DCVC) for Distributing Coalitional Value Calculations
among the constituent agents. Here, we assume that the
agents are cooperative (i.e. they carry out their share of the
computations and they report the results truthfully)2.

In more detail, DCVC ensures each agent is assigned
some part of the calculations such that the agents’ shares
are exhaustive and disjoint. Moreover, the algorithm is
decentralized, requires no communication between the agents,
and distributes the calculations equally. We also show how,
using DCVC, the agents can calculate all the coalitional values
by saving no more than one coalition each. To benchmark the
effectiveness of our algorithm we compare it with the only
other algorithm available in the literature (Shehory & Kraus
1998). In so doing, we show that for the case of 25 agents,
the distribution process of our algorithm took 0.00037% of
the time, the values were calculated using 0.000006% of
the memory, the calculation redundancy was reduced from
477826101 to 0, and the total number of bytes sent between
the agents dropped from 674047872 to 0. Note that for larger
numbers of agents, these improvements become exponentially
better.

1Since the number of possible coalitions is exponentially large, any
algorithm that requires each agent to save all the possible coalitions in
its share will require infeasibly large amounts of memory (e.g. saving
a list of all the possible coalitions of 40 agents requires a total of 5120
GB of memory).

2However, the underlying algorithm can also be applied in envi-
ronments where the agents are selfish (i.e. they act to increase their
own outcome and may lie about the results they find if it is beneficial
to do so). This can be achieved using an additional enforcement mech-
anism by which the agents are incentivized to calculate all the values
they are assigned and to announce the true results they find. The exact
nature of this mechanism is left for future work at this stage.

Related Work

Coalition formation has received a considerable amount of
attention in recent research, and has proven to be useful in
a number of real-world scenarios and multi-agent systems.
In e-commerce, for example, buyers can form coalitions
to purchase a product in bulk and take advantage of price
discounts (Tsvetovat et al. 2000). In e-business and grid
contexts, virtual organisations of agents can be formed in order
to satisfy particular market niches (Norman et al. 2004).

In general, finding the optimal coalition(s) requires searching
the whole set of possible coalitions, which is exponential in the
number of agents. To tackle this problem, some researchers
have proposed algorithms that only search a subset and
produce solutions that are guaranteed to be within a finite
bound of the optimal. Specifically, Sandholm et al. (1999)
proved that a worst-case bound can be established by searching
the bottom two levels of the coalition structure graph. They
also presented an anytime algorithm which can meet tighter
bounds by searching the rest of the graph as long as there is
time left, starting from the top level downwards. However,
their algorithm’s computational complexity is exponential.
Moreover, they search through coalition structures which, by
definition, include disjoint coalitions where each agent is a
member of only one coalition. This means that they exclude
the possibility of having overlapping coalitions. Dang and
Jennings (2004) presented an alternative way for searching
the coalition structure graph; they first search the bottom
two levels, as well as the top one. After that, however,
instead of searching the remaining levels one by one, they
search specific subsets of all remaining levels. They also
proved that their algorithm can establish the same bounds
from the optimal by searching a significantly smaller space
than Sandholm et al.’s. However, the complexity of their
algorithm remains exponential, and they also do not consider
the case of overlapping coalitions. Shehory and Kraus (1998)
set limitations on the size of the permitted coalitions which
makes the formation process of polynomial complexity. They
also consider environments where the coalitions are allowed
to overlap. In more detail, their solutions are bounded by
a logarithmic ratio bound from the optimal solution given
the limit on the coalitional size. However, no bound can be
guaranteed from the optimal solution that could have been
found by searching all possible coalitions.

In either the optimal case (in which the coalitional val-
ues of all the coalitions are calculated) or the sub-optimal
case (in which only a subset of the values are calculated)
the issue of who performs which of these calculations is
still a key concern. In Sandholm et al.’s work, a method is
presented for choosing which agent searches which portion of
the space. Specifically, their method assigns each agent the
same expected amount of search. However, this still leaves
some agents searching significantly more space than others.
The algorithm presented by Dang and Jennings was tested
centrally, and there was no description of how the search can
be done in a distributed manner among the agents. Shehory
and Kraus do present an algorithm for distributing the value
calculations among the agents. Their method works by making
the agents negotiate about which of them performs which
of the calculations (see performance evaluation section for

more details). However, by using their algorithm, some agents
may calculate significantly more values than others, and some
values can be calculated more than once. In addition, their
algorithm requires high communication complexity.

To address these shortcomings, we developed an algorithm
that distributes the coalitional value calculations efficiently
among the agents. Like Shehory and Kraus’s algorithm,
ours can be applied for environments where the coalitions
are allowed to overlap, and where the algorithm imposes
specific limitations on the coalitional sizes (cf. Sandholm’s
and Dang’s algorithms). Therefore, we compare our algorithm
with Shehory and Kraus’s algorithm (hereforth called SK).

Distributing Coalitional Value Calculations
In general, the set of possible coalitions can be divided into
subsets, each containing the coalitions of a particular size. In
DCVC, the distribution of all possible coalitions is carried out
by distributing each of these subsets equally among the agents
(i.e. agent a1 has x coalitions of size 1 to consider, y of size 2,
z of size 3, and so on, and so does a2, a3, and so on). This has
the following advantages:
• An increase in the size of the coalition usually corresponds to

an increase in the number of operations required to calculate
its value. Therefore, by distributing the coalitions of every
size equally among the agents, each agent will not only cal-
culate the same number of values, but also perform the same
number of operations.

• Any relevant limitations can be placed on the size of the
coalitions that are allowed to form. For example, if coali-
tions of a particular size are not allowed to form, then the
agents simply do not distribute the coalitions of this size
among themselves. In such cases, the agents would still cal-
culate the same number of values. Note that allowing for
such limitations is important since the problem under inves-
tigation might only allow the formation of coalitions of par-
ticular sizes. This is also important since it makes DCVC
applicable for coalition formation algorithms that reduce the
complexity of the search by limiting the size of the coali-
tions.

Now, let A be the set of agents, and n be the number of agents
(i.e. n = |A|). In order to allow for any limitations on the
coalitional sizes, we assume there is a set S of the permit-
ted coalitional sizes. Let Ls be the list of possible coalitions
of size s ∈ S, and Ns be the number of coalitions in Ls

(i.e. Ns = |Ls|). Also, let {i, ..., j} denote the coalition of
agents ai, ..., aj . Now for any s ∈ S, Ls should be ordered as
follows:
• The first coalition in the list is: n − s + 1, ..., n − 1, n.
• The last coalition in the list is: 1, ..., s − 1, s.
• Given any coalition ci that is located at index i in

Ls, the agent can find ci−1 by checking the values
ci,s, ci,s−1, ci,s−2, ... until it finds a value ci,x such that
ci,x < c1,x, then:
◦ ci−1,k = ci,k : 1 ≤ k < x
◦ ci−1,k = ci,k + 1 : k = x
◦ ci−1,k = ci−1,k−1 + 1 : x < k ≤ s

This means the agents know how Ls is ordered, although they
do not actually maintain Ls. An example of the resulting lists is

shown in Table 1. Here we have A = {a1, a2, a3, a4, a5, a6},
n = 6, S = {1, 2, 3, 4, 5, 6} and N1, N2, N3, N4, N5, N6 have
the values 6, 15, 20, 15, 6, 1 respectively.

Table 1: The lists of possible coalitions for 6 agents.

Now, for each agent ai ∈ A, let Ls,i be its share of Ls

(i.e. the subset of Ls for which it will calculate values) and
Ns,i be the number of coalitions in Ls,i (i.e. Ns,i = |Ls,i|).
Given this, we can now express our distribution algorithm (see
Figure 1). Here we assume each agent has a unique global
identifier (UID) by which it is identified by other agents3.

Each agent ai should perform the following:
• Sort the set of agents based on the agents’ UID
• For every s ∈ S, do the following:

1. If s = 1 :
Calculate the value of the coalition {i}

2. If 1 < s < n− 1 :
2.1. Calculate the size of your share: Ns,i = bNs/nc
2.2. Calculate the index of the last coalition in your share:

indexs,i = i ∗ Ns,i

2.3. Calculate the values of each coalition in your share.
2.4. Calculate the number of additional values that need calculation:

N ′ = Ns − n ∗ bNs/nc
2.5. If (N ′ > 0) then:

find the sequence of agents A′ in which each agent should calc-
ulate one additional value. And if you are a member of A′ then
calculate the appropriate value. This is done as follows :
◦ If (α+N ′−1 ≤ n) then: A′ = (aα, aα+1, ..., aα+N′−1)

else: A′ = (aα, aα+1, ..., an, a1, ..., a(α+N′−1)−n).

◦ If (ai ∈ A′) then calculate one of the additional values based
on your position in A′.

If (α + N ′ ≤ n) then: α = α + N ′ else: α = α + N ′ − n
3. If s = n− 1 :

Calculate the value for the coalition {1, ..., i − 1, i + 1, ..., n}
4. If s = n :

4.1. If (α = i) then calculate the value of the coalition {1, ..., n}
4.2. Set: α = α + 1

Figure 1: The DCVC algorithm.

In more detail, each agent starts by sorting the set of agents
according to their UID. Note that this is done using a unique
key, which means that each agent will end up with the same
sequence, denoted by ~A. Moreover, the agents implicitly agree
on ~A without contacting each other; this is because every agent
knows that every other agent also has ~A. Note that sorting the

3The existence of such an identifier is a reasonable assumption
since all agents need to be uniquely identifiable so that messages can
be routed corrrectly.

set of agents is only performed once. For the remainder of
this paper, we will denote by ai the agent located at position
i of the resulting sequence ~A. Now by having an agreement
on ~A, each agent can know which of the calculations it should
perform based on its position in ~A, this is done as follows:

1. For s = 1, there exists n possible coalitions. Therefore, the
calculations are distributed such that each agent calculates
one value. This is done by having each agent ai calculate
the value of the coalition in which it is the only member (i.e.
{i}).

2. For any 1 < s < n − 1, each agent ai starts by calculating
the number of coalitions in Ls,i as follows:

Ns,i = bNs/nc

The agent then calculates the index in Ls at which Ls,i ends
(denoted by indexs,i). This is done as follows:

indexs,i = i ∗ Ns,i

The agent now calculates the values of all the coalitions
in Ls,i. This is done without maintaining Ls, or even
maintaining Ls,i. Instead, the agent calculates the values
by saving one coalition at a time; this is done by allocating
a space of memory, denoted by M , which is enough to
save the maximum size coalition. Basically, the agent sets
M to be the last coalition in Ls,i, and after calculating its
value, the agent sets M to be the coalition before it. It then
calculates its value, and so on until all the values in Ls,i are
calculated. As mentioned earlier, given a coalition in Ls, the
agent can always find the coalition before it. Then, in order
to know the coalitions in Ls,i, it is enough for the agent to
know the last coalition in Ls,i. Note that the agent so far
knows only the index in Ls at which Ls,i ends. However,
since the agent does not maintain Ls, then knowing the
index does not give the coalition directly. Therefore, the
agent needs to be able to find the coalition by only knowing
its index in Ls.

Generally, the number of all possible coalitions of size
s (i.e. the coalitions that contain s agents) out of n agents,
is given by the following equation:

|n, s| =
n!

(n − s)! ∗ s!
(1)

Now let P (i, {i + 1, ..., n}) be the list of all possible coali-
tions of agents ai+1, ..., an after adding ai in the begin-
ning of each coalition. Also, let Ps(i, {i + 1, ..., n}) be
the list of all coalitions in P (i, {i + 1, ..., n}) that are of
size s. From (1) we find that the number of coalitions in
Ps(i, {i + 1, ..., n}) is given as follows:

|Ps(i, {i + 1, ..., n})| = |n − i, s − 1| (2)

Now for every 1 < s < n−1, if Ls was ordered as specified
earlier, then Ls will contain Ps(i, {i + 1, ..., n}) with i run-
ning from n − s + 1 down to 1. For example, for 6 agents,
L4 will contain P4(3, {4, 5, 6}), then P4(2, {3, 4, 5, 6}) and
finally P4(1, {2, 3, 4, 5, 6}) (see Table 1). Therefore, any
coalition in Ls which starts with (n − s + 1) − i + 1 must

have an index k such that:

k >
i−1∑
j=1

|Ps((n + s − 1) − j + 1, {(n + s − 1) − j + 2, ..., n})|

k ≤
i∑

j=1

|Ps((n + s − 1) − j + 1, {(n + s − 1) − j + 2, ..., n})|

For example, for 6 agents, any coalition in L4 that starts with
1 must have an index k such that:

k > |Ps(3, {4, 5, 6})| + |Ps(2, {3, 4, 5, 6})| = 1 + 4 = 5

k ≤ |Ps(3, {4, 5, 6})|+|Ps(2, {3, 4, 5, 6})|+|Ps(1, {2, 3, 4, 5, 6})|

From (2) we know that any coalition in Ls which starts with
(n − s + 1) − i + 1 must have an index k such that:

k >
i∑

j=1

|s + j − 2, s − 1| , k ≤
i+1∑
j=1

|s + j − 2, s − 1|

Based on this, agent ai can set M to be the coalition located
at indexs,i without maintaining Ls as follows. Each agent
first forms what we call a Pascal array which is of size:
n − 1 ∗ n − 1. The array includes values from Pascal’s
triangle4 and is calculated as follows:

Pascal[i, 1] = 1 : ∀i ∈ {1, ..., n − 1}
Pascal[1, j] = j : ∀j ∈ {2, ..., n − 1}
Pascal[i, j] = Pascal[i− 1, j] + Pascal[i, j − 1] : ∀i, j ∈
{2, ..., n − 1}

By this, the following equation holds:

Pascal[s, i] =
i∑

j=1

|s + j − 2, s − 1|

Therefore, the agent can find the first member
in the required coalition by checking the values:
Pascal[s, 1], Pascal[s, 2], ... until it finds a value
Pascal[s, x] such that Pascal[s, x] ≥ indexs,i. The
first member would then be (n − s + 1) − x + 1. (Step 1 in
Figure 2 shows how to find the first member in a coalition
that is located at index 46 in the list L5 for 9 agents).

Now since the first member is (n − s + 1) − x + 1,
then the rest of the members must be located in the
sub-list which contains all the coalitions that start with
(n − s + 1) − x + 1 after removing the first member.
This sub-list is similar to Ls−1. However, it contains
Ps(i, {i + 1, ..., n}) with i running from n − s + 2 down to
(n − s + 2) − x + 1 instead of 1 (see the list in Figure 2,
step 2). Note that in this sub-list, the index of the required
coalition becomes indexs,i − Pascal[s, x − 1] (in our
example, the index of the required coalition becomes:
46 − 21 = 25). Based on this, the agent can find the
next member in the coalition by checking the values:

4More details about Pascal triangles can be found in (Conway &
Guy 1996).

Pascal[s − 1, 1], Pascal[s − 1, 2], ... until it finds a value
Pascal[s − 1, x] ≥ indexs,i − Pascal[s, x − 1], the next
member would then be (n − (s − 1) + 1) − x + 1.

Similarly, all the members of the coalition can be found.
Note that as the agent checks the values in Pascal array
in order to find some member Mj , if it finds a value
that is equal to the required index, then the agent can
find Mj , as well as all the members after it as follows:
Mk+1 = Mk + 1 : k = j, ..., s − 1. Figure 2 shows
a complete example for setting M to be the coalition at
index = 46 in the list L5 for 9 agents.

Figure 2: Finding a coalition at index = 46 in the list L5

of coalitions of 9 agents.

Now that each agent ai has set M to be the last coali-
tion in Ls,i, it repeatedly performs the following:

• Calculate the value of M 5

• Set M to be the coalition before it. This is done by first
checking the values Ms,Ms−1,Ms−2, ...until it finds a

5The details of how to calculate a value are left for the developers
to decide; this is because the evaluation of different metrics (e.g. time,
quality, cost etc.) can differ based on the problem under investigation.

value Mβ such that Mβ < c1,β , then:
◦ Mk = Mk + 1 : k = β
◦ Mk = Mk−1 + 1 : β < k ≤ s

This process should be repeated until all the coalitional val-
ues in Ls,i are calculated. Note that after each agent calcu-
lates the values in its share, some values might remain un-
calculated. This is because Ns might not be exactly divisible
by the number of agents, and in this case, the agents’ equal
shares will not cover all the required values. In particular,
the number of the remaining values would be:

N ′ = Ns −
n∑

j=1

Ns,j = Ns − n ∗ bNs/nc (3)

And the coalitions that need their values to be calculated
would be: cNs−N ′+i : i ∈ 1, ..., N ′. Note that N ′ < n,
and that each agent so far has calculated the same number of
values. Therefore, in order to calculate these additional val-
ues and keep the distribution as fair as possible, each value
should be calculated by a different agent; the agents should
agree on a sequence A′ which contains N ′ agents and in
which each agent calculates one additional value. This can
be done by maintaining a value α, initially set to 1, then for
any list Ls, if there are additional values (i.e. if N ′ > 0)
then A′ would contain N ′ agents, starting from aα. Then,
each agent in A′ calculates one additional value based on
its position in A′ (if we denote by a′i the agent located at
index i of A′, then a′i should calculate the value of coali-
tion cNs−N ′+i). Note that after these values are calculated,
the agents need to update α so that for other lists, the next
N ′ agents perform any additional calculations. This way,
given any set S, the total number of values calculated by
each agent will either be equal, or differ by only one value.
Updating α is done as follows:

If(α + N ′ < n) then α = α + N ′, else α = α + N ′ − n

And forming A′ such that it contains N ′ agents, starting
from aα, is done as follows:

If(α + N ′ − 1 < n) then A′ = (aα, aα+1, ..., aα+N ′−1)
else A′ = (aα, aα+1, ..., an, a1, ..., aα+N ′−n)

For example if we have 6 agents, then from equation
(3) we find that for L2 we have N ′ = 3. Therefore, A′

would be: (a1, a2, a3) and α becomes 4. Then for L3

we have N ′ = 2. Therefore, A′ would be (a4, a5) and α
becomes 6. Finally for L4 we have N ′ = 3. Therefore, A′

would be (a6, a1, a2) and α becomes 3.

3. For s = n − 1, there exists n possible coalitions. There-
fore, the calculations are distributed such that each agent
calculates one value. This is done by having each agent
ai calculate the value of the coalition in which it is
not a member, and every other agent is a member (i.e.
{1, ..., i − 1, i + 1, ..., n}).

4. For s = n, there exists one coalition: {1, ..., n}. This is
similar to the case where N ′ = 1. Therefore, the value of
this coalition is calculated by aα. In our example of 6 agents,
this value would be calculated by a3 and α becomes 4. Note
that after all the values are calculated, the value of α remains
4 instead of being initialized to 1. This means that in order

to form other coalitions, any additional calculations will start
from a4. By this, the average number of values calculated by
each agent becomes equal.

Performance Evaluation
To evaluate the performance of the DCVC algorithm we com-
pare it against the SK algorithm (see Figure 3).

Each agent ai should perform the following:
• Put in Pi the set of potential coalitions that include up to k agents

including ai.
• While Pi is not empty do:

◦ Contact an agent aj that is a member of a potential coalition in Pi.
◦ Commit to the calculation of the values of a subset Sij of the com-

mmon potential coalitions (i.e. a subset of the coalitions in Pi in
which ai and aj are members).

◦ Subtract Sij from Pi. Add Sij to your long-term commitment list.
◦ For each agent ak that has contacted you, subtract from Pi the set

Ski of the potential coalitions for which it had committed to calc-
ulate values.

◦ Calculate the values for the coalitions you have committed to (Sij).
◦ Repeat contacting other agents until Pi = ai (i.e., no more agents

to contact).

Figure 3: The SK algorithm.

Specifically, we tested the performance of DCVC and
SK for different numbers of agents6. The results presented
in Table 2 are for the case where coalitions of any size are
allowed to form (which means in our terms S = {1, ..., n}, and
in SK’s terms: k = n). Note that the results for SK were taken
as an average of running a number of times; this is because
their algorithm gives different results based on the order by
which the agents contact each other.

The results show the differences in the performance of
both algorithms in terms of:

1. Distribution time: The agents performed significantly
faster when using DCVC. This is because in DCVC each
agent can start processing its share of coalitions immediately,
while in SK, each agent had to start with a list of all the
coalitions in which it is a member, and then repeat the process
of negotiating with other agents and committing to some
coalitions and deleting others, until there were no more agents
to contact.

2. Redundant calculations performed: Here by redun-
dant we mean having the value of the same coalition calculated
by more than one agent, while it was enough for one agent
to calculate it. The table shows that using DCVC results
in no redundant calculations (because each agent knows the
precise bounding of the calculations it should perform, and
these are disjoint). In contrast, SK results in an exponentially
large number of redundant calculations; this is because each
agent’s commitment to a set of coalitions is done with very
limited knowledge about the other agents’ commitments. For
example, agent ai’s knowledge about agent aj’s commitments
is restricted to the set Sji that aj sends to ai. This means that
ai is not aware of the coalitions to which aj has committed
by contacting other agents. This results in having the agents

6The PC on which we ran our simulations had a processor: Pen-
tium(R)4 2.80 GHz, with 1GB of RAM.

Time (in seconds) Redundancy Communication (in bytes) Memory (in bytes) Difference
DCVC SK DCVC SK DCVC SK DCVC SK DCVC SK

16 agents < 0.01 2.27 0 513452 0 735408 2 65536 1 8424
17 agents < 0.01 6.11 0 1208715 0 2350481 3 196608 1 12886
18 agents < 0.01 13.76 0 2583828 0 4974743 3 393216 1 26071
19 agents < 0.01 32.29 0 5506420 0 10538129 3 786432 1 52890
20 agents < 0.01 72.27 0 11659720 0 22152227 3 1572864 1 103484
21 agents < 0.01 159.89 0 24605666 0 46512635 3 3145728 1 208931
22 agents < 0.01 372.58 0 52170535 0 97957698 3 6291456 1 454812
23 agents < 0.01 881.64 0 108933551 0 204911555 3 12582912 1 880428
24 agents 0.01 2280.43 0 210504067 0 429009502 3 25165824 1 2191528
25 agents 0.02 5298.52 0 477826101 0 1188779705 4 67108864 1 3043149

Table 2. Simulation results.

commit to coalitions without knowing that other agents have
already committed to them.

3. Communication between the agents: Communica-
tion is usually necessary in order for each agent to know its
share of the calculations to perform. SK requires sending
an exponentially large number of bytes between the agents;
this is mainly because if an agent ai commits to a set Sij of
coalitions, then aj would have to subtract this set from its
list, and in order to do so, ai would have to send Sij to aj .
In contrast, DCVC requires no communications between the
agents because each agent knows its share of calculations by
using the provided equations, and not by negotiating with
other agents.

4. Memory requirements: Any coalition of n agents
can be saved in memory using n bits, where each bit indicates
whether an agent is a member of the coalition. However, since
the minimum unit of memory that can be allocated is one byte,
we can say that the memory required per coalition is dn/8e
bytes. Given this, Table 2 shows the number of bytes required
per agent to save the necessary coalitions. As can be seen,
the memory requirements grow exponentially for SK. This
is because their algorithm cannot be applied without having
each agent start with a list of all the possible coalitions in
which it is a member. However, when using DCVC, each
agent only needs to maitain in memory one coalition at a
time. This makes DCVC particularly suitable for domains
where very little memory space is available for the agents (e.g.
agents located on mobile devices). In our case, for example,
one kilobyte of memory per agent would be enough for up to
8192 agents, while each agent would have required more than
5.2 ∗ 102459 Gigabytes if it used SK.

5. Equality of agents’ shares: Table 2 shows the dif-
ference between the agent that had the biggest share of the
calculations and the one that had the smallest. DCVC has a
maximum difference of 1 (because of the way it maintains
and updates α). However with SK, the difference grows
exponentially with the number of agents. This is because the
agents’ shares were arbitrarily determined based on the order
in which they contacted each other. Thus, some agents were
contacted by more agents than others, and so removed more
coalitions from their list, and ended up with smaller shares.
On the other hand, some agents contacted more agents than

others, and thus committed to more coalitions, and ended up
with larger shares.

Conclusions and Future Work
In this paper, we developed a novel algorithm for distributing
the coalitional value calculations among cooperative agents.
We then benchmarked the performance of our algorithm
against the only available one in the literature. This com-
parison showed that our algorithm is significantly faster,
requires significantly less memory space, and requires much
less communication. These improvements stem from the fact
that our algorithm performs no redundant calculations and
distributes the calculations equally among the agents. Thus,
DCVC can be seen to represent a significant advance in the
state of the art.

For future work, we will concentrate on developing the
enforcement mechanism so that DCVC can be applied in
environments where the agents are selfish. In such cases, the
agents might not necessarily perform all the calculations they
are assigned or they might lie about the results they found in
order to improve the outcome for themselves. The enforcement
mechanism should motivate the agents to calculate the values
they are assigned and to truthfully reveal the results they find.

References
Conway, J. H., and Guy, R. K. 1996. The Book of Numbers. New
york, USA: pub-COPERNICUS.
Dang, V. D., and Jennings, N. R. 2004. Generating coalition struc-
tures with finite bound from the optimal guarantees. In AAMAS,
564–571.
Norman, T. J.; Preece, A.; Chalmers, S.; Jennings, N. R.; Luck, M.;
Dang, V. D.; Nguyen, T. D.; Deora, V.; Shao, J.; Gray, A.; and Fid-
dian, A. 2004. Agent-based formation of virtual organisations. In-
ternational Journal of Knowledge Based Systems 17(2–4):103–111.
Sandholm, T.; Larson, K.; Andersson, M.; Shehory, O.; and Tohmé,
F. 1999. Coalition structure generation with worst case guarantees.
Artificial Intelligence 111(1–2):209–238.
Shehory, O., and Kraus, S. 1998. Methods for task allocation via
agent coalition formation. Artificial Intelligence 101(1-2):165–200.
Tsvetovat, M.; Sycara, K. P.; Chen, Y.; and Ying, J. 2000. Customer
coalitions in the electronic marketplace. In AAAI/IAAI, 1133–1134.

