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Abstract

We show in this paper the multiclass classification problem can be imple-
mented in the maximum margin framework with the complexity of one
binary Support Vector Machine. We show reducing the complexity does
not involve diminishing performance but in some cases this approach can
improve the classification accuracy. The multiclass classification is real-
ized in the framework where the output labels are vector valued.

1 Introduction

Multiclass classification has been considered a more complex problem than the well-known
implementations of binary classification. There are two main streams among the attempts
to attack these kind of problems. In the first one decomposes the multiclass problem into a
certain combination of binary problems, e.g. “one versus all”, “one versus one” approaches
built upon some kind of binary classification. The second derives a regression based so-
lution framework [12], possibly also exploiting the multivariate capability of partial least
squares analysis [11], [1] and [10].

Recently Evegniou et al. [4] and Micchelli et al. [7], [8] presented a synthesis of the kernel
learning approach with a general form of regression. In this framework vector labelled
outputitems are also learned by a machine that is an extension of the Support Vector learner.
In [4] the complexity issue is mentioned as a weakness of the presented approach. We
show there is an implementation of this kind of machine with computational complexity
independent of the number of classes and that it requires no more computation than a single
binary Support Vector Classifier. The multiclass learning is then expressed as an application
of this technique.

First, we formulate the Support Vector Machine with vector output (voSVM) that cuts
down the complexity and then the realization of the multiclass learning will be given with
experimental results. Following this we present a vector perceptron learner realizing a
potential online multiclass learning, derived from the vector valued SVM. We present a
Novikoff type theorem for this algorithm as well as experimental results on the same data
as that used to test the multiclass SVM.

The notations that we use are summarized in Table 1. Note that we assume every Hilbert
space mentioned has finite dimension and is defined above the real numbers.



‘H,, is an arbitrary Hilbert space with dimensian

‘H.. is a Hilbert space comprising the possible input vectors
He () is a Hilbert space comprising the feature vectors

H, is a Hilbert space comprising the label vectors

W is a matrix representing a linear operator mapping from the feature $pace into
the label spacét,,

(.,-), |l denotes the inner product and the norm defined in the corresponding Hilbert
space,

tr(W) denotes the trace of the mati,

dim(H) gives the dimension of the spaté

Table 1: Notation used in the paper

2 Formulation of the SVM with vector output

The idea of our implementation for the vector valued Support Vector Machine comes from
a simple reinterpretation of the normal vector of the separating hyperplane. We say this
vector is a projection operator of the feature vectors into a one-dimensional subspace. An
extension of the range of this projection into multi-dimensional subspaces gives the solution
for vector labelled learning.

Assume we have a sampteof pairs{(y;,x;) : yi € Hy, xi € Hy, i = 1,...,m}
independently and identically generated by an unknown multivariate distribirtiofihe
Support Vector Machine with vector output is realized on this sample by the following
optimization problem

1
min itr(WTW) +C1t¢ 1)
subjectto  {W|W : Hy,) — H,, W linear operatoy,
{b|b € H,}, bias vector
{¢]€ € H,,}slack or error vector

<Yi? (W¢(Xl) + b)> Z q; _ngu 1= 17 ceey I,
£>0.

where0 and 1 denote the vectors with componetitaand 1 respectively. The real val-
uesq; andp; denote normalization constraints that can be chosen from the set of values
{1, ly:ill; lox)l, llyillll¢(x:)||} depending on the particular task. This kind of normal-
ization allows us to tune the training error.

A particular example will illustrate the point. Let evegy be ||¢(x;)|| and everyp; be

1, then the magnitude of the error measured by the slack varigbledl be the same
independently of the norm of the feature vectors, therefore the effect caused by outliers is
controlled. Obviously the appropriate selection of this type of normalization depends on
the problem being solved.

The norm of the feature vectors are of course given by the square root of diagonal entries
of the corresponding kernel matrix.

Introducing dual variablego;|i = 1,...m} to the margin constraints and based on the
Karush-Kuhn-Tucker theory we can express the linear opeMfoby using the tensor



products of the output and the feature vectors, that is

W = ZaiYid)(Xi)T' 2
i=1
The dual gives
n¢ kY,
m J :J m
min D iy (D(x:), d(x))) (Vi y5)) = > qic, 3)
i,j=1 i=1

subjectto  {ay|ay; € R},

m

Z(yi)tai =0,t=1,...,dim(H,),
=1
C

Di

where we can write the output of inner products in the objective as kernel items
(d(x:), p(x;))yi,¥;)) = Kirl;, wherex{; andx!; stand for the elements of the ker-
nel matrices for the feature vectors and for the label vectors respectively. Hence, the vector

labels are kernelized as well. The synthesised kernel is the element-wise product of the
input and the output kernels, an operation that preserves positive semi-definiteness.

Zai207 izla"'7ma

The complexity of the dual moderately increases relative to the base SVM because the
structure of the objective remains the same and we have constraints with the same content
but the number of them is increased to the dimension of the output space. However, using
a special optimization technique known as the Augmented Lagrangian approach, see [2],
this additional complexity can be eliminated. For most practical cases thélgas be
ignored to give a simpler formulation.

3 Multiclass classification

The multiclass classification can be implemented within the framework of the vector valued
SVM. Let us assume the label vectors are chosen out of a finitgyset. ., yr} in the
learning task. The decision function predicting one of these labels can be expressed by
using the predicted vector output

dlz) = arg max (§, We(x)+Db) (4)

m

e, Z ik (1, yi) 6% (i, %) + (3¢, b),

U =1

where the bias vectds is the corresponding Lagrangian of the constraitt , (y;):a; =
0, t=1,...,dim(H,) in the dual.

Now we are able to set up a multiclass classification. Let the label vectors be chosen as
indicator vectors of the classes following the rule

| 1 ifitemibelongs to categorgit =1,...,T,
(¥i)e = { 0 otherwise ®)

Obviously there are some other choices of the vector labels. One, which minimizes the
correlation between all pairs of the labels, gives the vertices of hyper-tetrahedron with



values

B L-1  ifitem i belongs to categoryt =1,...,T, 5
(vi)e = 77#(17“—1) otherwise ©)

where the length of these vectors are normalized to

If the label vectors are chosen as the indicator vectors given in (5), then wé& tepexial
maximum margin machines realizing a set of one class SVMs for each of the classes. This
statement follows from the fact multiplying the projection ma from the left with the
transpose of a label vector with only one non-zero component selects one Mivawid

this row can be considered as a normal vector of the hyperplane cutting the feature space
into two parts such that one part contains the corresponding class with the smallest error.

If the indicator type label vectors from (5) are applied then the bias has to be excluded
from the model, since the dual constraint contains only non-negative compongigts of
thus, the only feasible solution faris 0. In this case the separating hyperplanes are linear
subspaces of the feature space.

Surprisingly this simple learner can work and gives as good result as the “one versus all”
and “one versus one” approaches can but with much less computational effort. This result
shows that the problem of multiclass learning still has not been fully understood.

4 Perceptron algorithm for multiclass learning

The formulation of the SVM for vector output also suggests an implementation of a percep-
tron type algorithm for multiclass classification. Consider the optimization problem where
for the sake of simplicity we drop the normalization constants occurring in (1)

m

min > A= (i, Wo(z:)) 7

subjectto  {W|W : H, — H,, W alinear operatdr,

where\ is a prescribed margin assumed to be equal to the sequel, and the function
h(u) denotes the Hinge loss, that is

_Jou ifu>0,
h(u) = { 0 otherwise ®)
The error function that we are going to minimize has subgradient with respa¥t &md
this can be computed independently in an incremental way for each term occurring in the
summation (7). The reader can consult [2] and [6] for details of incremental subgradient
methods. The term-wise subgradient is equal to
if A\ —{y;, Wo(z;)) >0

Oh(A = (yi, Wo(z:)))lw = { 7y¢¢()(xi)T otherwise G

We can define the learning speed with a step size, denotedimgl we have the perceptron-
like algorithm given in Figure 1.

The departure from the original perceptron algorithm is very slight. Here we need to learn

a matrix realizing the projection of the input vectors into the output space. The incremen-
tal subgradient based update employs the tensor product of the corresponding output and
input vectors to update the projection matrix. After choosing indicator vectors or vectors
expressing interactions between the classes the multiclass learning can be trained against a
sequence of input and output vectors.

An analogue of the standard Novikoff theorem is able to provide a bound on the number of
updates.



Output of the learner: W e R (Hy)xdim(H.)
Initialization: W =0; i = 1;
Repeatfori =1,2,---:
read inputz; € R™;
if (yi, Wo(z;)) < Athen
W =W + sy;é(x;)T

(10)

Figure 1: Vector perceptron algorithm

Theorem 1. Suppose we have a training sebf m vector input/output pairs

S = {(YL ¢(Tl))7 ceey (Y7m ¢(x77L))}

with ||¢(x;)|| = 1 = ||y:|| for all ¢ and further that there exists a weight matN* such
that
yiW¢(z;) = 1

then Algorithm 1 withs = 1 will halt after ¢ steps where
t < 3|W*|%.

Proof. Following the Novikoff pattern we first upper bound the norm of the ma¥thix
obtained aftet updates:

W% [We_1]|F + 2yiWeo16(z;) + |lyio(z:)” |5
[Wo_illF + 2+ [yl [l e(z) |12
[We_i1]|3 + 3

3t.

IN AN IA

We now provide a reverse inequality for the inner product WiH:
(W, WH o = (W, W+ (yig(z:) ", WH)

<Wt717W*>F + <yl7W*¢<xl>>
(Wi, W5 o+ 1
t

AV

Now we can create the squeezing inequality:
BH[W*|[3 = [Wl|HIIW*IF = (W, WL > 2.
implying the result. O

Sparsity bounds [5] can also be used to translate this bound on the number of updates into
a corresponding bound on the generalisation of the resulting classifier.

5 Experiments with the multiclass SVM

In the test procedure of the vector output SVM we used multiclass classification problems
from the UCI Repository of machine learning datasets [3]. The data sets chosen mostly cor-
respond to those used by Rifkin et al. [9] to give a well-defined benchmark for comparison.

Table 2 shows these sets and their descriptors.

We used similar configurations to those described in [9], the kernel type for the feature
spaces was Gaussian.



Number of

Name Training  Test Classes Numerical/

ltems Items Nominal attr.
abalone 3133 1044 29 8/1
glass 214 * 7 9/0
optdigits 3823 1797 10 64/0
page-blocks 5473 * 5 10/0
satimage 4435 2000 6 36/0
spectrometet 531 * 48 101/0
yeast 1484 * 10 8/0

Table 2: Parameters of the data sets used in the experiment. * denotes the datasets with no
dedicated training and test subsets.

Number of subSVMs
Name allvrs. all onewvrs. all vector output
abalone 406 29 1
glass 15 6 1
optdigits 45 10 1
page-blocks 10 5 1
satimage 15 6 1
spectrometer 1128 48 1
yeast 45 10 1

Table 3: Number of binary classifiers computed in one multiclass classification problem

Table 3 shows the number of optimisation that need to be solved for the different problems.
This is only an indication of the computational effort since they will not all be of the same
size. Here we should mention that the elementary binary classifiers in the “one versus one”
are generally much simpler than they are in the other methods but their number can be
enormous.

In Table 4 the values for the methods “one versus all” and “one versus one” are borrowed
from [9] as well. we should emphasize that if the computational complexity of a learner

is small then a systematic scanning of the parameter space for an optimal configuration
remains sufficiently cheap, so that using a validation set better (and sometimes much better)
accuracies can be achieved. For example, the presented test results for the Glass and the
Spectrometer use this approach.

6 Conclusions

In this paper we have shown that multiclass learning is expressible in a simple optimization
framework and this sort of simplicity not only preserves the accuracy but may improve
it. Furthermore it suggests a vector version of the perceptron algorithm with margin (or
T-perceptron) for which the number of updates can be bounded in terms of the optimal
margin obtainable [5].

In further research we plan to make a similar reduction of the complexity for structural
learning. The simplicity and transparency of the learning methods in this formulation can
give strong support to the generalization theory as well by removing unnecessary technical
complications.

An interesting and fruitful extension of our approach is to use objects in infinite dimen-



Table 4: Test error rates (%). If the data set has dedicated training and test subsets, marked
with *, then the table shows the accuracy computed on the given test subset otherwise the
presented accuracies are averages computed via 10-fold cross-validation.

Test error rate (%)
vector output

Name allvrs. all  onevrs. all Perceptron voSVM
abalone * 72.3 79.7 78.6 75.4
glass 30.4 30.8 44.6 24.3
optdigits * 3.8 2.7 10.0 15
page-blocks 3.4 3.4 55 3.2
satimage * 8.2 7.8 17.3 8.5
spectrometer 42.8 53.7 61.3 35.8
yeast 41.0 40.3 46.8 40.3

sional Hilbert spaces, that is to learn when the input and the output are real valued functions
exploiting the simplicity and finiteness of the dual problem.
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