A first programming language for IT students

Quintin Gee
Gary Wills
Eric Cooke

Learning Technologies Group
Learning Technologies Group
Learning Technologies Group
Electronics and Computer Science
Electronics and Computer Science
Electronics and Computer Science

University of Southampton, UK
University of Southampton, UK
University of Southampton, UK

qg2@ecs.soton.ac.uk
gbw@ecs.soton.ac.uk
ecc@ecs.soton.ac.uk
[image: image1.emf]

Specification 25% User Guide 20% Design 20% Testing 15% Deliverable 5% Logbook 15%

Figure 1 : mark allocation for programming project

Abstract

While agreement has not been reached on which programming language to teach Computer Science students initially, at least the complexities of the problem are understood. Less well explored is the problem facing IT students. We show that the same answers are valid for this group, although the intensity, depth and formalism needs to be less. An example is given from experience at the University of Southampton. There are still difficulties in separating the educational aspects of programming from the training aspects of coding.
Keywords

Learning programming, IT students
1. Introduction

Many papers have been published which discuss what first programming language should be taught to students of computing and computer science. The case has been made for a number of possible routes to teaching a language, [1, 2, 13, 15, 16]. They all agree that all students studying computers should be taught a programming language.
Common to schools of Computer Science and some schools of Management, is the particular problem concerning the tuition of students reading Information Technology (IT) or Information Systems (IS) – or similar – rather than Computer Science. These learners who often only have an elementary grasp of mathematics, do not see themselves as technicians, and would often (but not exclusively) be application-oriented rather than wanting to know what goes on inside the computer hardware.
What programming language should we teach to these students?

2. IT Student Profile

Students coming into computer courses and management courses with an Information Technology thread, often have a very different profile to the traditional Computer Science student. IT students tend to be drawn from four different sources.

As with Computer Science, some register on the programme direct from school.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

© 2005LTSN Centre for Information and Computer Sciences
Secondly, students transfer from Computer Science programmes. The initiative for this generally comes from the students and their difficulty with handling the formalisms and abstraction that is required to support the normal Computer Science major degree [Argles, personal communication].
A third source of entrants is mature students (23 and older), who have industrial experience and demonstrate a determination to complete a programme in Information Technology, even if it requires an extended period of part-time flexible working. This may take many years.
The final source of entrants to Information Technology is transfers from other institutions and recruitment from overseas.

Different institutions will exhibit different ratios of these. At The University of Southampton it is currently 76 – 4 – 12 – 8% (school-leavers : ex-Computer Science : mature : other) [2].
Nearly all these students are aiming at careers in the computer industry. They eventually expect to achieve such titles as IT Manager, Operations Manager, Technical Manager, Team Leader, Project Leader, Project Manager. While a few students go into research, this is not a prime emphasis for the outcome from these programmes. Several graduates desire a further qualification, such as an MSc or an MBA degree.
3. Why teach programming to IT students?

Should we be teaching programming at all to this section of the student population?

Critical to our understanding of what needs to be done is Jenkins’ contention [13] that we need to teach a programming language to the students, just because they are studying computers. Dempster mirrors this concept when he says that he believes that “common to all computing programmes … At its heart is programming…” [10].
The case for programming being included within an IT degree programme is that there can be little understanding of the uses and limitations of computer technology without a comprehensive appreciation of the programming behind the software that drives the computer, which embodies businesses’ (arbitrary) rules, and how that software comes to be generated.

It is clear from exit interviews with students, that they are apprehensive about learning a new language (any language!), but understand in retrospect the fundamental nature of programming to the computing paradigm [2].
The case against teaching programming is a lot more problematical. IS and IT students have limited curriculum time, spending a greater proportion of their time on “soft” systems, and it can be considered wasteful to teach them a full complement of programming. Particularly as they are not going to become professional programmers (with the odd exception), a good understanding of the difficulties of software development should be enough. However, Denning asks “why not teach the algorithmic thinking first, programming later?” He “does not recommend this approach. Most computing professionals do not appreciate how abstract our field appears to others. … Students need to see from the beginning how to connect abstractions to actions. There is little joy in worlds of pure abstractions devoid of action.” [11]
4. If so, what method?

If we have made the case for teaching programming, can we do this without teaching a coding language? There will be very few who would contend that this is even possible, far less desirable. Indeed, Jenkins, [13] says that it is “hard for students to make this separation”.
Bornat believes that the difference between program designers and implementers is spurious. “A programming factory system can’t exist, because programs are so hard to design, and once designed, they are already produced ... In reality both “designers” and “implementers” in today’s programming shops are in the dark about even the tiniest details of their work...” [7]
The question really comes down to: can we teach programming and program design without teaching by means of a coding language? That is, can we divorce coding from programming? Just as it is possible (some would say far better) for high school students to initially study the classics through translation, can we study programming through discussion of worked examples?
In what language would those examples be displayed? It doesn’t matter; it’s a minor point. In fact, it might be better to show the examples in many coding languages or one could simply remain with pseudo-code.

While we could tackle it all from a theoretical perspective, algorithms, data constructs, objects and so on, we cannot get away from programming totally, since unless they undertake the hard graft of assembling and implementing the solution to a computing problem in detail, the students will be unable to appreciate the work that goes into doing it, and the difficulty with which the simplest of requirements is mapped onto a set of computer instructions, despite Denning’s recommendations [11].
5. Choice of language
Thus, if we need to teach programming, what programming language should we be training the students in? Note up to this point we have been discussing programming education. When it comes to conversion of a program (pseudo-code, algorithm, etc.) to code, we inevitably require our students to be trained in a coding language. There are plenteous courses in the market that do just that; should we be competing with them? Bishop [4] suggests that we should do “some of both”.
One way forward would be to take any programming language designed for teaching purposes, for example, Pascal or Modula 2. Jenkins [13] has dismissed these has not being relevant to any current students.
It is true that industry does not use these as production languages to any extent. Student perception is therefore that these languages are of no use and also assume that, in general, they lack the advanced facilities of other languages, but Delphi has a good Interactive Development Environment (IDE) suitable for professional developers.
If we went further with this argument, we would have to choose COBOL, which now has an installed base of “more than 200 billion lines of code, and 5 billion lines of COBOL are written every year” [19], and Object COBOL is readily available [13, 20]
Against this we can say that many useful programming languages do not offer a “career path”. Even with a production language, some of the IDEs that are currently available do not make life very easy for tuition. Significant complexity of the IDE or user interface means that only the most dedicated get to know them fully, and for an initial learner there are just too many facilities. All this really demonstrates is that complexity is the real problem for the students.
Dijkstra [12] prefers not only a “simple, clean, imperative programming language”, but one that is not even implemented in a compiler “so that students are protected from the temptation to test their programs.” This tongue-in-cheek assertion is belied by his other work which claims that testing in a practical environment is the only way to convince others that a program behaves as desired.
[image: image2.emf]

Specification 25% User Guide 20% Design 20% Testing 15% Deliverable 5% Logbook 15%

Figure 1 : mark allocation for programming project

Perhaps a good alternative is to take an existing production language, such as Visual Basic, Java, Delphi, and use the basic elements of these to teach programming. Let us ignore for the moment the difficulty with the IDEs mentioned above which are designed to facilitate professional large-scale development.

The students like these languages, initially, since most have heard of them, and therefore have an immediate rapport with the topic, believing this will help them obtain future employment. If that is so, then clearly we are recruiting the wrong sort of student, because the aim of an IS or IT degree is not to teach programming to a professional level! Some students may, of course, find that they have a talent for programming and we will deal with that as a separate issue, under Diversity.

It has been suggested by Bishop and Hurter [6] that the use of scripting languages would address the problem, while providing not only a proper programming environment but also an instant link into the formation of active web pages. This is certainly a good approach, not a compromise, and has the advantage of producing very quick implementations.
6. Experiences at Southampton

The emphasis in our IT programme is on producing graduates that have a good feeling for computers, understand the processes, and the limitations of the discipline, but are not necessarily going to be technical practitioners.

The programming module is offered in the second semester of Level 1. It follows critically important modules, setting the scene for the degree with Computer-based Information Systems, and a grounding in the techniques and theories of Problem Solving. The study of the principles of programming has been separated from the practice of programming, which is undertaken in separate practical workshops.

This has allowed the lecturer to concentrate on the elements of programming theory. The workshops, away from the lecturer’s gaze, have helped the students raise their problems more readily. This totals 150 hours of study of which 24 are contact with the lecturer, and 12 hours with a practical workshop leader.

The assessment consists of weekly worksheets for the practical, and two implementations which are submitted midway through the module and at the end of the module. The marking of these is biased heavily towards the process of implementation rather than getting the code right (see Figure 1), although students are expected to deliver working programs. One feature heavily emphasised is the keeping of a personal Logbook in which the student records all manner of learning, design choices, class structures, fragments of code and pseudo-code, rough working, lecture notes, and explanations of code samples. This is a school requirement for all engineering programmes, and was found useful for this module. These Logbooks are regularly inspected so that the Lecturer can get frequent feedback on learning that has been undertaken or missed.

The perceived learning outcomes that students could achieve at Level 1 are:
· The adoption of an algorithmic approach to problem solving

· Knowledge of the principles underlying programming

· Awareness of the software development process

· Experience of a development environment

· Experience writing programs in the small

Our specific aims in coding constructs, identical with Sayers [20] are:

· Storing results in the computer’s memory

· Printing to the screen

· Reading in data from the keyboard

· Selection (if and switch statements)

· Iteration (for, while and do…while loops)

· Arrays

· Methods (parameter passing)

In summary, we are not looking for skilled proficiency, and programming is not needed for most of the rest of the degree. Having said that, there are some exceptions since this is a level 1 course, and it is enhanced by a level 2 course (in Contemporary Programming Methods). How can we handle this? In addition, the Final Year Project (one third of the credits) chosen by each student could easily be a product implementation, although so far it has largely been a research topic. If it is an implementation it will therefore require some expertise at least in a programming language, and maybe also a scripting language, certainly in database handling and quite possibly in web page generation.

At Southampton, we adopted the approach for three years of teaching algorithmic programming, with implementation using classes in Visual Basic, although the students are encouraged to use any language with which they are already familiar. The topic came up for review as a result of the replacement of our VB6 service with VB.NET, which caused us to re-think our strategy. While others are continuing this approach, we have now switched to implementation examples in BlueJ [18], using this simple IDE with Java as its background. The results of this change are not yet available.
We have not investigated the option of using a scripting language, although we have used JavaScript with media students in another context, and Python is used for some of our Computer Science students in the same School.
7. Diversity

What do we do about students that are already conversant with a programming language? Some say that they will easily get bored and need additional stimulation such as more challenging projects [8] (but these cannot then be marked against the same criteria) or learn another programming language (useful for the learning regime, but how effective for stimulating the learner?) or give them a pass-out for the course (which means they could miss the fundamentals).

Bishop [4] suggests that, where a significant proportion of the initial cohort have programming experience, they can skip the introductory course and be joined in a later semester by the ‘catch-up’ students.

This problem was usefully discussed with two professional programmers that are attending in the current cohorts. They were divided in their opinions. One wanted more inspiring work, the other wanted to tackle the programming principles which she was never taught on her intensive language training courses.

The problem remains of what to do about comparison with their cohort of the assessment of work that high-fliers perform.
It is entirely possible in large classes to segregate the students by their perceived ability (space cadets vs. space monkeys) [8] and allow them to transfer between these categories as they wish. The critical point is “have the learning objectives been met and measured?” All the students must take the same assessment process, but some may get there quicker than others.

8. Conclusion

In this paper we have examined a number of issues affecting the teaching of programming to IT students.
Students prefer a language of which they have heard, with a real, if simplified, programming language and a simple IDE. While the same solution that is used for Computer Science students can be adopted for IT students, with a decreased emphasis on the formalities of the language, its advanced features, and its facilities for professional developers. This is very much along the lines of Denning’s recommendations [11].
Having used a number of programming languages on introductory programming courses, we have yet to find one that addresses the issues presented above. It is generally accepted that there are practical difficulties in separating the educational aspects of programming from the training aspects of coding. Attempts to address this difficulty have been made by using simplified IDEs [16]. Yet there is more of a cognitive understating required at degree level and it is clear that we cannot get away from teaching an understanding of algorithmic programming to IT students.

9. References

ICS = http://www.ics.ltsn.ac.uk/pub

1 Allison, I, Orton, P and Powell, H, A Virtual Learning Environment for Introductory Programming, in Proceedings of 3rd Annual LTSN-ICS Conference (2002). ICS/conf2002/allison.html
2 Argles, D, Programme Statistics for IT in Organisations, University of Southampton (2005).
3 Barnes, DJ, Objects First in Java, in Proceedings of 3rd LTSN-ICS One-day Conference on Teaching Programming (2003). ICS/prog3/barnes_pdf.pdf
4 Bishop, JM, A philosophy of teaching Java as a first teaching language, in Proceedings of SACLA 1997 Conference (1997). http://www.cs.up.ac.za/cs/jbishop/Homepage/
Pubs/Tech-reports/SACLA97.pdf.

5 Bishop, JM, Teaching not Re-teaching, in Proceedings of SACLA 1998 Conference (1998). http://www.cs.up.ac.za/cs/jbishop/
Homepage/Pubs/Tech-reports/ Sacla98.pdf.

6 Bishop, JM and Hurter, R, Competitors to Java: Scripting Languages, in Proceedings of SACLA 1999 Conference (1999). http://www.cs.up.ac.za/cs/jbishop/Homepage/
Pubs/Tech-reports/Sacla99.pdf

7 Bornat, R, In defence of programming, Inaugural Professorial Lecture, 21 Jan 2004, Middlesex University.

8 Cohen, L, Introducing BCom Information Systems students to basic programming, in Proceedings of SACLA 2004 Conference (2004). http://www.isys.wits.ac.za/~lyricec/sacla04.pdf
9 Davis, HC, Carr, L, Cooke, E and White, S, Managing Diversity: Experiences Teaching Programming Principles, in Proceedings of 2nd Annual LTSN-ICS Conference (2001). ICS/conf2001/papers/Davis.htm
10 Dempster, R, Computer Science + Information Systems != Information Technology. (2000). http://saturn.cs.unp.ac.za/~robd/2000plus/
research/csvsis/csvsis.html
11 Denning, PJ, The profession of IT: the field of programmers myth. Communications of the ACM 47 (7) 15-20 (2004).

12 Dijkstra, EW, On the Cruelty of Really Teaching Computer Science, Communications of the ACM 32 1398-1404 (1989).
13 ISO 1989:2002 COBOL standard (2002). http://www.cobolstandards.com/annexf.pdf
14 Jenkins, T, On the Difficulty of Learning to Program, in Proceedings of 3rd Annual LTSN-ICS Conference (2002). ICS/conf2002/jenkins.html
15
Jenkins, T, The First Language – A Case for Python? in Proceedings of 4th Annual LTSN-ICS Conference (2003). ICS/conf2003/tony_jenkins.htm
16 Jenkins, T, Java with BlueJ or Java and BlueJ, in Proceedings of 5th Annual LTSN-ICS Conference (2004) University of Ulster, (2004). ICS/ltsn5/papers/Tony%20Jenkins%203.pdf

17 Jones, R, Boyle, T and Pickard, P, Object World: Helping Novice Programmers to Succeed Through a Graphical Objects-First Approach, in Proceedings of 4th Annual LTSN-ICS Conference (2003). ICS/conf2003/ray_jones.htm
18 Kölling, M and Barnes, DJ, Objects First with Java, Prentice Hall (2004).
19 Langley, N, COBOL integrates with Java and .NET, Computer Weekly (2004). http://www.computerweekly.com/articles/
article.asp?liArticleID=133085

20 MicroFocus, Micro Focus Object COBOL Developer Suite (2005). http://www.microfocus.com/000/datasheet-ocds_tcm21-2854.pdf
21 Sayers, HM, Nicell, MA and Hagan, SJ, Teaching java programming: determining the needs of first year students, in Proceedings of 4th Annual LTSN-ICS Conference (2003). ICS/conf2003/Heather_Sayers.htm
� EMBED Word.Picture.8 ���

_1171953571.doc

Specification	25%

User Guide	20%

Design	20%

Testing	15%

Deliverable	5%

Logbook	15%

Figure 1 : mark allocation for programming project

