1/f Noise and Generation/Recombination Noise in SiGe HBTs on SOI
1/f Noise and Generation/Recombination Noise in SiGe HBTs on SOI
A study is made of 1/f and generation/recombination (GR) noise in SOI SiGe HBTs fabricated using selective growth of the Si collector and non-selective growth of the SiGe base and n-type low doped Si emitter. A range of devices is studied in which different etch processes are used for the field oxide and different temperatures for the selective collector epitaxy. The results obtained are interpreted using Gummel plot measurements and 2D device simulations. The 1/f noise dominates the base current noise spectra at high biases while the GR noise is the main noise component at low biases, and the noise levels in all devices are much lower than reported in previous bulk devices. The 1/f noise in small area devices shows a different base current dependence than in large area devices and this dependence correlates with a turnover of the collector characteristic at high biases. This turnover is also more marked in devices where the overlay of the polysilicon over the emitter window is large. The analysis of the 1/f noise in small area devices has shown that the collector current turn over effect observed is due to the voltage drop across the interfacial oxide layer resistance. Device simulations show two different current crowding mechanisms, with crowding in the centre of the device for large overlays and crowding at the periphery for small overlays. Analysis of the 1/f noise results indicates that the 1/f noise in small area devices has a signature consistent with transparency fluctuations in the interfacial oxide at the polysilicon/silicon interface and in large area devices a signature consistent with recombination at the oxide/silicon surface. The GR noise is visible because of the low values of 1/f noise obtained and is shown to be due to recombination at deep levels in the emitter/base depletion layer, possibly due to residual damage from the extrinsic base implant. The noise in SOI devices is found to be comparable to that in control bulk devices, indicating that the buried oxide in SOI devices does not degrade the noise.
SOI, HBT, noise
1468-1477
Lukyanchikova, N.
42c8ec0a-a85a-4a7e-97e4-7b39c5ed19d9
Garbar, N.
445f1a7e-e4a7-4628-83e0-dcca724b345d
Smolanka, A.
c82ee02a-a77b-4351-9baa-5f906ce822f5
Lokshin, M.
08d4d26a-aff2-4044-897b-90b6aff52781
Hall, S.
a11a8f8b-d6fb-47a7-82b1-1f76d2f170dc
Buiu, O.
a994b22e-018b-4355-abd5-0227724f2a1a
Mitrovic, I.
c8d9bffc-30a3-43e5-9313-901e5c31d1a0
El Mubarek, H.A.W.
08195505-5e00-40a6-bc9f-ebbf2a2fbf63
Ashburn, P.
68cef6b7-205b-47aa-9efb-f1f09f5c1038
July 2005
Lukyanchikova, N.
42c8ec0a-a85a-4a7e-97e4-7b39c5ed19d9
Garbar, N.
445f1a7e-e4a7-4628-83e0-dcca724b345d
Smolanka, A.
c82ee02a-a77b-4351-9baa-5f906ce822f5
Lokshin, M.
08d4d26a-aff2-4044-897b-90b6aff52781
Hall, S.
a11a8f8b-d6fb-47a7-82b1-1f76d2f170dc
Buiu, O.
a994b22e-018b-4355-abd5-0227724f2a1a
Mitrovic, I.
c8d9bffc-30a3-43e5-9313-901e5c31d1a0
El Mubarek, H.A.W.
08195505-5e00-40a6-bc9f-ebbf2a2fbf63
Ashburn, P.
68cef6b7-205b-47aa-9efb-f1f09f5c1038
Lukyanchikova, N., Garbar, N., Smolanka, A., Lokshin, M., Hall, S., Buiu, O., Mitrovic, I., El Mubarek, H.A.W. and Ashburn, P.
(2005)
1/f Noise and Generation/Recombination Noise in SiGe HBTs on SOI.
IEEE Transactions on Electron Devices, 52 (7), .
Abstract
A study is made of 1/f and generation/recombination (GR) noise in SOI SiGe HBTs fabricated using selective growth of the Si collector and non-selective growth of the SiGe base and n-type low doped Si emitter. A range of devices is studied in which different etch processes are used for the field oxide and different temperatures for the selective collector epitaxy. The results obtained are interpreted using Gummel plot measurements and 2D device simulations. The 1/f noise dominates the base current noise spectra at high biases while the GR noise is the main noise component at low biases, and the noise levels in all devices are much lower than reported in previous bulk devices. The 1/f noise in small area devices shows a different base current dependence than in large area devices and this dependence correlates with a turnover of the collector characteristic at high biases. This turnover is also more marked in devices where the overlay of the polysilicon over the emitter window is large. The analysis of the 1/f noise in small area devices has shown that the collector current turn over effect observed is due to the voltage drop across the interfacial oxide layer resistance. Device simulations show two different current crowding mechanisms, with crowding in the centre of the device for large overlays and crowding at the periphery for small overlays. Analysis of the 1/f noise results indicates that the 1/f noise in small area devices has a signature consistent with transparency fluctuations in the interfacial oxide at the polysilicon/silicon interface and in large area devices a signature consistent with recombination at the oxide/silicon surface. The GR noise is visible because of the low values of 1/f noise obtained and is shown to be due to recombination at deep levels in the emitter/base depletion layer, possibly due to residual damage from the extrinsic base implant. The noise in SOI devices is found to be comparable to that in control bulk devices, indicating that the buried oxide in SOI devices does not degrade the noise.
Text
2005_Natali_SOI_noise.pdf
- Other
Restricted to Registered users only
Request a copy
More information
Published date: July 2005
Keywords:
SOI, HBT, noise
Organisations:
Nanoelectronics and Nanotechnology
Identifiers
Local EPrints ID: 261174
URI: http://eprints.soton.ac.uk/id/eprint/261174
PURE UUID: 35f20bc1-b4f5-4294-9b22-2f98fad15d67
Catalogue record
Date deposited: 02 Sep 2005
Last modified: 14 Mar 2024 06:49
Export record
Contributors
Author:
N. Lukyanchikova
Author:
N. Garbar
Author:
A. Smolanka
Author:
M. Lokshin
Author:
S. Hall
Author:
O. Buiu
Author:
I. Mitrovic
Author:
H.A.W. El Mubarek
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics