JISC DEVELOPMENT PROGRAMMES

Project Document Cover Sheet

An Overview of Service-Oriented Architecture

Project

Project Acronym CORE Project ID

Project Title Collaborative Orthopaedic Research Environment
Start Date 01 November 2004 | End Date 31 October 2006

Lead Institution

University of Southampton

Project Manager &
contact details

Dr Gary Wills

Intelligence, Agents, Multimedia Group
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ

Project Web URL

WWW.core.ecs.soton.ac.uk

Programme Name
(and number)

Virtual Research Environments (05/04) Strand I11

Programme Manager

Dr Maia Dimitrova

Document

Document Title

An Overview of Service-Oriented Architecture

Reporting Period

Author(s) & Project Role

Yee Wai Sim (Co-Investigator), Chu Wang (Co-Investigator),
Lester Gilbert (Technical Manager), Gary Wills (Project

Manager).
Date 01/07/2005 Filename | ecstr_iam05_004.doc
ISBN 0854328262

Technical Report Number

ECSTR-IAMO05-004

Access

O Project and JISC internal

B General dissemination

Document History

Version Date

Comments

Oa 17 June 2005

Initial draft of report

la 1 July 2005

Final version




CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

An Overview of Service-Oriented Architecture

Y. W. Sim, C. Wang, L. Gilbert, G. B. Wills
School of Electronics and Computer Science
University of Southampton
E-mail: {yws01, cw2, 1g3, gbw}@ecs.soton.ac.uk
Technical report Number: ECSTR-IAM05-004
ISBN: 0854328262

Abstract

This report is a literature review of Service-Oriented Architectures (SOA). An SOA is
a loosely couple network of communicating services. The key elements and
characteristics of SOAs are outlined to guide the CORE project in creating a Virtual
Research Environment (VRE). The benefits of using SOA concepts in implementing
the VRE are presented and justifications of their use in the CORE project are also
discussed.

1 Introduction

The Collaborative Orthopaedics Research Environment (CORE) [7] is a JISC funded
project, which aims to provide an infrastructure that combines clinical, educational
and research in one working environment. The current paradigms of information
sharing and resource use in biology and medicine are being challenged at several
fronts. Firstly, as the number of investigators, organisations and institutions
conducting biomedical research increases, it becomes difficult to track the work and
provide infrastructure to support this expansion. Although current information
technology supports ready access, it does not address abstraction, integration, and
interpretation of information. The diverse bio-informatics tools generated to consume
and evaluate the data rarely interoperate [5]. Secondly, the very large volume of data
generated in modern biomedicine presents a primary challenge to the researcher. To
integrate biological data one would want to move seamlessly between biologic and
chemical process, between organelle, cell, organ, and organ systems, and between
individuals, family, community, and populations. Such integration generates
challenges to information structure as each research community tends to speak its own
scientific dialect [8]. Finally, biomedicine’s culture is at the nexus of the challenge
faced within many other scientific fields: the need for collaborative research. The
collaborative researchers recognise that many of the technology approaches required
in biology and medicine are expensive, beyond the reach of individual investigators,
and increasingly challenging the resource reserves of all but a few institutions. New
paradigms are required to support such researchers.

The CORE project intends to address the challenges discussed above by
implementing a Virtual Research Environment (VRE) demonstrator using Service-
Oriented Architecture (SOA) concepts. This report is a literature review of SOA,
which refers to systems structured as networks of loosely coupled, communicating
services [4]. The purpose of this review is present the SOA concepts, which will be
used as guidelines in designing and building the CORE VRE using Grid/Web services
technology.

Page 1 of 8



CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

A SOA is a style of design that guides all aspects of creating and using services
through their lifecycle (from conception to retirement), as well as defining and
providing the information infrastructure that allows different applications to exchange
data regardless of the operating systems or programming languages underlying those
applications. The report presents the definition of services and then continuing with a
discussion of the SOA concepts, namely the goals, key elements and characteristics of
a SOA. The authors conclude the report with discussion of benefits in using SOA to
underpin an information infrastructure, and finally describe the work of standard
bodies in producing SOA specifications.

2 Definition of Services

From an operational perspective, services are Information Technology (IT) assets that
correspond to real-world activities that can be accessed according to the service
policies that have been established for the services. The service policies define, for
example, who or what is authorised to access the service, the performance and
reliability levels of the service, and the security levels of the service.

Viewed from a technical perspective, services are coarse-grained, reusable IT assets
that have well-defined interfaces that clearly separate the services’ externally
accessible interface from the services’ technical implementation. This separation of
interface and implementation decouples service requesters from service providers,
enabling both requesters and providers to evolve independently as long as the
interfaces remain unchanged.

In a SOA, a system operates as a collection of services. Each service may interact
with various other services to accomplish a certain task. The operation of one service
might be a combination of several low level functions, e.g. functions that converts
objects to basic data types, and in this case, these low level functions are not
considered as services.

3 The Goals of SOA

An important goal of using SOA is to align the information infrastructure with real-
world activities. A SOA reduces project costs and improves project success rates by
adapting technology more naturally to the people who need to use it, rather that
focusing on the technology itself. The major difference between a SOA and other
approaches, i.e. object orientation and procedure orientation, is that it concentrates on
the description of the real-world problem, whereas other approaches require
developers to focus more on the use of specific execution environment technologies
such as COM/DCOM, J2EE or the .NET framework.

A second goal of the SOA approach is to provide an agile technical infrastructure that
can be quickly and easily reconfigured as user requirements change. The promise of
the SOA approach is that it breaks down the barriers between technical
implementation and real-world processes by combining the advantages of custom
solutions and packaged applications while reducing lock-in to any single IT vendor.
This is achieved by separating the service interfaces from their implementation. The
operations underlying each service can be coded using technologies, such as J2EE and
CORBA objects, but none of the details of any of these technologies are visible to the
service requesters. Hence, the implementation underlying the services can change (i.e.

Page 2 of 8



CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

for better performance) independently of their requesters provided the interfaces
remain the same.

4 Key Elements of SOA

A SOA is an evolving entity that changes over time; therefore, processes, principles,
and tools need to be put in place to facilitate its evolution and growth [9]. There are
three key components of a SOA, illustrated in Figure 1 .

The SOA Governance Policies & Processes component in Figure 1 represents the
high-level processes for governing the SOA, including the SOA decision making and
issue resolution processes, roles and responsibilities of teams, development processes,
testing processes, quality assurance processes, registering services and so on.

Service-Oriented Architecture

SOA Governance

Policies & Processes

SOA Principles

& Guidelines

SOA Methods
& Tools

Figure 1: Key components of a service-oriented architecture

The SOA Principles & Guidelines component depicted in Figure 1 describes the
principles that guide architects and developers when defining services, such as the
principles of reusability that needs to be taken into account whenever designing or
developing a service.

The SOA Methods & Tools component in Figure 1 defines the methods (analysis,
design, testing, etc.) and tools (design tools, development tools, test tools, etc.) that
have been approved for use in a given SOA. In general, a SOA should be based on
standards that are independent of any single product or vendors and so that different
technologies can be used as part of the SOA as necessary.

5 Characteristics of SOA

This section presents the key characteristics that should go into the design and
implementation of services in order to deliver the goals of SOA discussed earlier in
this report. However, sometimes the cost of including a particular service
characteristic (e.g. making the service stateless) is prohibitive when compared to a
specific organisation’s goals.

Page 3 of 8



CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

5.1 Loose Coupling

A SOA is an architectural style whose goal is to achieve loose coupling between the
service requesters and service providers. This means that the service requester has no
knowledge of the implantation details of the service provider, such as the
programming language used, the deployment platform, etc. The service requester
should be able to invoke a service by way of messages through a published interface
(service contract), rather than through the use of APIs. For example, under no
circumstances should the service requester be asked to provide one of the input
parameters as a SQL command even though the service provider uses a SQL database.
In other words, the service interface should encapsulate all implementation details and
make them opaque to service requesters.

5.2 Well-Defined Interface

Every service should have a well-defined interface that defines the service’s
capabilities and how to invoke the service in an interoperable fashion, clearly
separating the service’s externally accessible interface from its technical
implementation. Although it is not widely recognised, service contracts are generally
more valuable than the service implementations. The service interface is the basis for
service sharing and reuse and is the primary mechanism for reducing interface
coupling. Furthermore, changing a service interface could be more expensive than
modifying the implementation of a service. This is due to the fact that changing a
service interface might require modification to be made at the service requesters’ side,
while changing the implementation of a service does not usually have such far-
reaching effects. Hence, it is important to have a formal mechanism for extending and
versioning service interfaces to manage these dependencies.

5.3 Base on Open Standards

Services should be designed and implemented based on open standards. Using such
an approach provides a number of advantages such as minimising vendor lock-in and
increasing the opportunities for the service provider to support a wider base of service
requesters. Web services technologies are one of the open standards that have been
adopted by SOA developers. Its open, standards-based technologies allow service
requesters and service providers to be isolated from proprietary, vendor-specific
technologies, e.g. J2EE and .Net framework. The open standards-based approach also
increases the opportunities to take advantage of open source implementations of the
standards, and of the communities that have grown up around these open source
implementations.

5.4 Discoverable

Publication of services should be in a manner which permits discovery and
consumption with minimum intervention of the provider. A service interface should
use metadata to define the service capabilities and constraints. The service interface
should be machine-readable, i.e. an XML-based text file, so that it can be dynamically
registered and discovered. This lowers the cost of locating and using services, reduces
errors associated with such use, and improves the management of services.

5.5 Stateless Service

Dependencies among services should be minimised. Most importantly, services
should be self-sustaining so that they can interoperate with other services without

Page 4 of 8



CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

unnecessary internal dependencies and without sharing state. In particular, they
should be implemented so that each invocation is independent and does not depend on
the service maintaining persistent state between invocations.

Stateless interactions scale more efficiently because any service requester can be
routed to any service instance. The requirement of stateless service makes a service
provider more scalable because it does not have to store state information between
requests. In addition, the lack of intermediate states makes recovery from partial
failure relatively easy. This makes a service more reliable.

When dependencies among services are required, they are best defined in common
terms of common application processes, functions and data models, not
implementation artefacts (e.g. a session key). Nevertheless, in certain situations, the
requirement of persistent state between service invocations is unavoidable, but his
should be separate from the service provider.

5.6 Service Granularity

The use of coarse-grained interfaces for external consumption is recommended,
whereas fine-grained interfaces might be used internally. Although fine-grained
interfaces offer more flexibility to the consumer application, it also means that
patterns of interaction may vary between difference service requesters. This can make
support more difficult for the service provider. A coarse-grained interface ensures that
the service requesters will use the service in a consistent manner.

5.7 Quality of Services

Service developers need to consider the security capabilities and requirements when
using the Internet and linking across partners’ security domains. Further, Internet
protocols are not designed for reliability (guaranteed delivery and order of delivery).
It is therefore up to the service developers to ensure that a message is delivered and
processed once and on time (alternatively, the developers can permit duplicate
messages provided this has the same effect as receiving a unique message).

6 Benefits of SOA

Services that posses the characteristics discussed earlier deliver the benefits presented
in the following sections.

6.1 Efficiency

A SOA promotes modularity because services are loosely coupled. This modularity
has positive implications for the development of composite applications because after
the service interfaces have been defined, each service can be designed and
implemented separately by the developers who best understand the particular
functionality that is required. As for the service requesters, they can design and
implement applications based solely on the published service interfaces and without
reference to the source code that implements the service consumed.

At the application level, there are two distinct, well defined tasks. The first task is to
model the application in terms of the data it produces and consumes. After the model
has been defined, the application can be created by composing or orchestrating the
available services. For complex applications where the service composition logic is

Page 5 of 8



CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

likely to change, service composition or orchestration is best handled using a product
designed for that purpose (such as one that supports WS-BPEL [11]).

6.2 Reusability

One of the benefits of using SOA is that service reuse will lower development costs
and speed time to market. Services that have well-defined interfaces make it easier for
the developer to locate the appropriate service. Proper registration policies and
standardised taxonomies enable easy discovery. Furthermore, the metadata-driven
interfaces can be used to fully or partially generate artefacts for using the service and
for run-time code to dynamically adapt to changing conditions.

Another key characteristic of a SOA is loose coupling among services. This
characteristic facilitates reuse across different applications since services are
decoupled from a single real-world process. In addition, the encapsulated
implementation of the SOA also simplifies the developers’ life as they do not have to
worry about compiler version, platforms, and other incompatibilities that typically
make code reuse difficult.

6.3 Simplified Maintenance

The concepts of a SOA simplify maintenance and reduce costs because of the fact that
SOA applications are modular and loosely coupled. A service and its associated
interface encapsulate process logic in such a way the other services can be agnostic
about its implementation and focuses on inputs and responses of the service. This
means the developers can modify the services (including major modification) without
affecting those who maintain other parts of the system, as long as the service
interfaces remain unchanged. For instance, a service can be rewritten and hosted on a
lower-cost platform without having any necessary impact on its requesters.

6.4 Incremental Adoption

Due to the nature of modularity and loose coupling of the SOA, applications can be
developed and deployed incrementally. Often, a reasonable subset of the full
functionality can be developed quickly, which has obvious time-to-deployment
advantages. Additional functionality can readily be added in planned stages until the
full feature set has been realised.

7 Conclusion

Two common methods of integrating systems are integration at the user interface
level using portals, or at the data level by creating large combined datasets or data
warehouses. The SOA approach does not preclude using portals or data warehouses,
and is in fact agnostic about how the rest of the enterprise is configured. Thus, the use
of SOAs can be regard as a good approach for constructing frameworks.

In addition, adopting SOA is essential to delivering agility and flexibility in technical
terms. The SOA theme enables reuse via shared services, where flexible granular
functional components expose service behaviours accessible to other applications via
loosely coupled standards-based interfaces. The benefits of using SOA can only be
fully realised when the key principles articulated in this report are followed closely in
creating a service oriented application.

Page 6 of 8



CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

SOA specifications are progressing toward standardisation through a variety of ways,
including small groups of vendors and formally chartered technical committees. For
example, a SOA Reference Model Technical Committee [10] has been formed by
OASIS members to encourage the continued growth of different and specialised SOA
implementations whilst preserving a common layer of understanding about what SOA
is. Another function of these committees is to help architects and software vendors
make consistent logical divisions in their architectures and products. JISC SOFER is
another working group starting to define a Service-Oriented Framework for Education
and Research [1]. The working group’s aim is to define a classification of services
and related specifications, standards and protocols that are of relevance to a VRE,
based on the concepts of SOA. It is intended that, in fullness of time, JISC funded
projects should follow the recommendations of this working group in order to ensure
interoperability of the tools and services being deployed. However, there are still
difficulties in standardising SOA specifications since no single standards body is
clearly in a leadership position.

References

1. Allan, R. (2005) SOFER: The Service Oriented Framework for Education and
Research, CCLRC e-Science Centre, Daresbury Laboratory, articles available
from http://www.grids.ac.uk/Papers/SOFER/sofer.pdf

2. Bairoch, A. and Apweiler, R. (2000) The SWISS-PORT Protein Sequence
Database and its Supplement TrEMBL in 2000. Nucleic Acids Research, 28(1), pp.
45-48.

3. Bernholdt, B., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A.,
Cinquini, L., Brach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Middleton,
D., Nefedova, V., Pouchard, L., Shoshani, A., Sim, A., Strand, G. and Williams, D.
(2005) The Earth System Grid: Supporting the Next Generation of Climate
Modeling Research. Proceedings of the IEEE, 93, pp. 485-495.

4. Booth, D., Champion, M., Ferris, C., McCabe, F., Newcomer, E. and Orchard, D.
(2004) Web Services Architecture (W3C Working Group Note 11 February 2004).
Available from: http://www.w3.org/TR/ws-arch/

5. Buetow, K. (2005) Cyberinfrastructure: Empowering a “Third Way” in
Biomedical Research. Science, 308(5723), pp. 821-824.

6. Castells, M. (2001) The Internet Galaxy: Reflections on the Internet, Business,
and Society. Oxford University Press, Inc., New York.

7. Collaboration Orthopaedics Research Environment. University of Southampton,
Web site available from: http://www.core.ecs.soton.ac.uk

8. Hey, T. and Trefethen, A. (2005) Cyberinfrastructure for e-Science. Science,
308(5723), pp. 817-821.

9. Newcomer, E. and Lomow, G. (2005) Understanding SOA with Web Services.
Addison-Wesley Professional.

10. OASIS SOA Reference Model TC. OASIS, Web site available from:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Page 7 of 8


http://eprints.ecs.soton.ac.uk/archive/00009358/

CORE - An Overview of Service-Oriented Architecture — Version 1a — 1 July 2005

11. OASIS Web Services Business Process Execution Language (WSBPEL) TC.
OASIS, Web site available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

12. Szalay, A. and Gray, J. (2001) The World-Wide Telescope. Science, 293(5537),
pp. 2037-2040.

Page 8 of 8



	1 Introduction 
	2 Definition of Services 
	3 The Goals of SOA 
	4 Key Elements of SOA 
	5 Characteristics of SOA 
	5.1 Loose Coupling 
	5.2 Well-Defined Interface 
	5.3 Base on Open Standards 
	5.4 Discoverable 
	5.5 Stateless Service 
	5.6 Service Granularity 
	5.7 Quality of Services 
	6 Benefits of SOA 
	6.1 Efficiency 
	6.2 Reusability 
	6.3 Simplified Maintenance 
	6.4 Incremental Adoption 

	7 Conclusion 
	References 


